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Abstract.  Industry 4.0, a part of the German high tech 
strategy, prefers self-organization in production over 
central production planning for the sake of greater flexi-
bility, faster response to disruptions and to deviations, 
and less effort. Current planning systems usually plan 
centrally. We developed a universal self-organizing pro-
duction and empirically compared its performance to a 
centrally planned production. Compared to most other 
approaches, the self-organizing production does not just 
schedule already existing operations, but starts with 
material requirements, explodes the bills of materials, 
creates production orders, and schedules backwards. 
The self-organizing production is based upon agents. For 
better comprehensibility, we additionally implemented 
central planning. The results of self-organization in pro-
duction are promising in relation to central planning; 
especially when disruptions and deviations occur. Fur-
thermore, the results suggest as best solution a combi-
nation of rough central planning and self-organization. 

Introduction 
Current ERP, APS, and ME systems plan, control, and 
optimize production rather centrally. The systems pro-
vide “naive” resources with the following targets: when, 
what, where, how much, and by what means to pur-
chase, to produce, to store, etc. Thereupon, the re-
sources give feedback regarding time, quantity, and 
completion of production. According to the feedback, 
the above systems plan, control, and optimize anew 
after every shift or just every night; some are even able 
to react event-based but still plan centrally. 

Industry 4.0 turns away from central planning, con-
trol, and optimization and promotes self-organization in 
production [1] which is expected to result in greater 
flexibility, in faster response to disruptions of the pro-
duction and deviations in processing times, and in less 
computational effort. In this contribution, we confirm 
empirically that pure self-organization in production is 
possible. We compare a centrally planned and a self-
organizing production empirically. Our experiments 
confirm that a self-organizing production performs as 
good as a centrally planned production [2] in most cases 
and often even better; especially when disruptions or 
deviations of processing times occur. 

1 Self-organization in Our 
Production 

Since self-organization is always an ability of a system, 
we initially define a system: A system is a set of com-
ponents, which interact with each other and differ from 
the environment of the system [2]. There are many 
different definitions of self-organizing systems, e.g. “A 
self-organizing system is a system that changes its basic 
structure as a function of its experience and environ-
ment.” [3] and “[A self-organizing system is a system in 
which] pattern formation occurs through interactions 
internal to the system, without intervention by external 
directing influences.” [4].  
In literature, the following properties are attributed to 
self-organizing systems [5, 4, 6]. Those properties may 
not be mutually exclusive and collectively exhaustive:  
1. Openness: The system exchanges matter, energy, or 

information with its environment, and the exchange 
is the cause of the development of the system.  

2. Adaptiveness: The systems adapts to changes in its 
environment.  

3. Autonomy: The system and its components process 
all (external) stimuli from the environment according 
to internal mechanisms.  
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4. Nonlinearity: The output of the system does not al-

ways change proportionally to its input.  
5. Indeterminism: The system develops in a way, which 

is hard to predict because it depends on random 
events, or almost equal inputs lead to completely dif-
ferent paths of development. 

6. Attraction: Over time, the system converges asymp-
totically to a region (a socalled attractor) in the state 
space of the system, and if the environment disturbs 
the system only slightly, the system will stay near the 
region. 

7. Path dependence/operational closedness: The history 
(path of development) of the system influences the 
further development of the system much more than 
the environment of the system does.  

8. Emergence: The system develops new spatiotemporal 
characteristics or structures as result of the interac-
tion of its components. Those new characteristics and 
structures cannot be explained by the rather simple 
behavior of the single components. 

9. Autopoiesis: The system or its components can au-
tonomously create the components of the system. 
Hence the systems preserves itself. 

According to the above definitions, properties 1, 2, 3, 7 
and 8 are essential for a self-organizing system. Thus, if 
a system exhibits these properties, we will call it a self-
organizing system. A production is a system, which 
produces goods [7]. If the production is also a self-
organizing system, then it is a self-organizing produc-
tion (system). Productions often also exhibit property 5. 
Because of property 5, analytical methods often fail to 
analyze productions successfully. Hence, we analyze 
our production by means of discrete-event simulation.  

Self-organization in production is a central topic of 
Industry 4.0. The German government introduced In-
dustry 4.0 as part of its high-tech strategy in 2011 [8]. 
Industry 4.0 describes the tight interlinkage between 
industrial production and modern information and 
communication technology [10]. Industry 4.0 is sup-
posed to enable self-organizing production. Industry 4.0 
comprises “intelligent” resources and “intelligent” ma-
terials. Resources are humans, machines, means of 
transportation, and storage systems. Materials are raw 
materials, purchase parts, assembly groups as well as 
final products. Resources and materials communicate 
and cooperate directly and locally and should thereby 
self-organize the complete value-added network. 

Communication and cooperation span all phases of 
the product lifecycle. Concepts, programs, or platforms 
similar to Industry 4.0 are US-American “Smart Manu-
facturing”, “Advanced Manufacturing”, or “Industrial 
Value-Chain Initiative” [9], or the Chinese “Made in 
China 2015”.  

Production planning, control, and optimization al-
ready successfully applied self-organizing systems like 
self-organizing maps, artificial ant colonies [10], artifi-
cial neural networks [11], and genetic algorithms. How-
ever the combination of self-organizing production and 
Industry 4.0 leads to intelligent autonomous behaviour 
of machines and material, their communication, distrib-
uted computation, and in the end to multi-agent systems 
(MAS). For a definition of MAS and its agents, we refer 
to the Foundation for Intelligent Physical Agents [14]. 
There are three possible relationships between the 
agents on one side and the “intelligent” resources and 
materials on the other: Resources and materials are (two 
types of) agents, or agents connect to resources and 
materials physically, or agents are digital twins [12] of 
resources and materials. In the latter two cases, the 
agents make resources and materials “intelligent”. In 
either case, the agents communicate and collaborate. 
Thus, the production organizes itself. Additionally, our 
MAS exhibits property 9: The MAS and its agents can 
autonomously create its agents.  

2 A Giffler-Thompson-based 
Resource Planning to 
Challenge the Self-organized 
Productions 

We implemented our own central production planning 
in order to compare a self-organizing production and 
centrally planned production fairly and comprehensibly. 
We adopted and stripped data structures and algorithms 
from current ERP systems, like SAP, as far as possible.   

Our algorithm for central planning adapts well 
known scheduling and planning algorithms. It works as 
follows: In the first phase, the algorithm creates recur-
sively the network of requirements and satisfiers via bill 
of materials explosion. Requirements are positions of 
customer orders, positions of production orders, or stock 
requirements. Satisfiers are positions of purchase orders, 
positions of production orders, or stock. They satisfy the 
requirements. 
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The algorithm starts with requirements, which are 

not yet satisfied. During the same phase, the algorithm 
merges and splits lots according to fixed lot sizes and it 
schedules the network backwards, starting at their due 
time. If at least one satisfier starts in the past, the algo-
rithm will execute phase two and phase three: In the 
second phase, the algorithm schedules the network 
forwards. It begins with the satisfiers, which start in the 
past and have no predecessors. In phase three, the algo-
rithm schedules the network backwards again. It starts 
at the maximum of two points in time: the due time or 
the end time calculated by forwards scheduling. Phase 
three of the algorithm guarantees that the satisfiers start 
as late as possible. Phase four of the central planning 
executes finite capacity planning. It adapts the algorithm 
of Giffler and Thompson [13], considers earliest start 
times additionally, and schedules first the operation of 
that production order with shortest remaining slack 
time. Our central planning deliberately omits the phases 
of infinite capacity demand planning and capacity level-
ling because existing planning systems also do not au-
tomate these steps. Instead, we adjusted the parameters 
manually to guarantee a high and steady capacity utili-
zation. Our central production planning operates period-
ically. When it starts anew, it changes remaining pro-
cessing times and quantities according to the feedback 
from the production. Moreover, every new planning run 
firstly discards all connections between requirements 
and their satisfiers and secondly creates new connec-
tions with respect to the current situation of the produc-
tion. 

3 Our Production Created for 
the Comparison of Self-
Organization and Central 
Planning 

In order to compare self-organization and central plan-
ning, we created a production (see Figure 1). It produces 
two products. The products are wooden toy trucks. The 
bill of material of each product is three levels deep and 
contains 30 materials. Each material is produced in up 
to three operations. The operations of one material can 
seize a machine more than once. The operations sum up 
to 20 per product. Transportation times are not yet con-
sidered, but can be represented by an additional opera-
tion assigned to the material.   

 
Figure 1: The main production flow involving two cutting 

machines, one drilling machine, and two  
assembly units. The production allows  
different routings for one product. The drilling 
machine is the bottleneck. 

During the simulation of the production, new customer 
orders arrive at the production. The inter-arrival time of 
the orders is exponentially distributed as suggested in 
[16, 17]. We choose an inter-arrival time, which leads to 
a well-utilized production but does not cause an over-
load. The production runs for two weeks, 24 hours a 
day. The production will produce approximately 35 
products per day if the processing times do not deviate. 
To examine the flexibility of the production, we vary 
the processing times of the operations. According to 
[16] processing times are distributed log-normally. The 
inter-arrival times, the processing times, the capacity of 
the machines as well as the duration of the simulation 
can be configured separately for each simulation. 

4 Multi-agent-based Self- 
organization 

4.1 Concept of a self-organizing production  
As defined in Chapter 2, a self-organizing production 
adapts to environmental changes. Although its compo-
nents are able to build hierarchical structures, they in-
teract as equals. Simulations of self-organizing systems 
commonly apply multi-agent systems [14]. The “intelli-
gent” resources and material of Industry 4.0 also sug-
gest a multi-agent-based approach to a self-organizing 
production. Hence, we also applied a multi-agent-based 
approach. 

We defined eight different types of agents, which 
can be further divided into transient and persistent 
agents. The lifetime of transient agents starts and ends 
with their task. The lifetime of persistent agents starts 
and ends with the lifetime of the production. Figure 2 
shows that all agents only know their direct neighbors. 
They are not aware of any other agent within the pro-
duction.  
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Figure 2: Concept of a multi-agent-based self-organizing 

production. Each symbol represents one type 
of agent. Each arrow is a communication path 
between two types of agents. In the text  
below, the numbers (#number) refer to the 
communications paths. The letters in brackets 
describe the type of the agents according to 
their lifetime: (P) .. persistent and (T) ..  
transient. 

Next, we explain the functionality of the multi-agent-
based self-organizing production as well as the interac-
tions between the agents. Therefore, we follow the pro-
cessing of a single sales order throughout the production 
step by step.   

4.2 System initialization  
The MAS initializes the system, machine and directory 
agents during start-up and provides all required data, i.e. 
stock quantities to the storage agents (#1), machine 
capabilities to the machine agents, etc. The agent initial-
ized first during start-up, is the system agent, followed 
by the storage agents and the directory agent. The sys-
tem agent is responsible for all in- and outbound com-
munication of the MAS with its environment. 

Second, the MAS creates all machine agents. The 
machine agents register at the directory agent and pro-
vide their capabilities (#2). The directory agent creates 
and assigns a communication agent to each machine 
group (#3) to provide a simple way of service discovery 
and to mediate between homogenous machines. After-
wards the production is ready to take orders and to start.  

4.3 Order processing  
If a new sales order arrives, the system agent will create 
a contract agent for this sales order (#4). The contract 
agent supervises the order fulfillment. Therefore, the 
contract agent creates one dispo agent (#5) for each 
product required to fulfill the order. The dispo agent 
represents a material in the real world: a digital twin. 
The dispo agent will ask the storage agent (#6) if there 
is an equivalent product in stock at the time the sales 
order requires it. The storage agent will check if there is 
a product in stock or needs to be purchased by the sys-
tem agent. (#7). If the storage agent’s response (#8) to 
the request is positive, the dispo agent’s task will be 
done and it will signal its parent agent, in this case the 
contract agent, that the task is finished (#9). The con-
tract agent signals the system agent that the contract is 
fulfilled (# ). If the storage agent’s response is nega-
tive, the dispo agent will create a production agent for 
the required material (#10). Then, the production agent 
instantiates new dispo agents for each of its components 
(#11). The cycle will start again until the bill of material 
of the ordered product is fully processed. The contract 
agent does not ask the storage agent for available mate-
rial directly but the newly created dispo agent does 
because the dispo agent has to ask for available material 
anyway when asked by a production agent. Thus, only 
one agent keeps the same functionality.  

4.4 Self-organizing scheduling with 
restricted horizon  

The task of each production agent is not only to order its 
components but also to organize all required operations 
to assemble its assembly group. All production agents 
are competing for the earliest production timeslot on a 
machine. Therefore, the production agent requests one 
communication agent for each of its operations from the 
directory agent (#12). The directory agent returns the 
communication agent, which is responsible for the oper-
ation specified at the request (#13).  



  Munkelt and Krockert     Self-organizing Production vs. Centrally Planned Production 

 

   SNE 30(1) – 3/2020 27 

T N 
Afterwards, the production agent sends a “request 

for proposal” to the communication agent assigned to 
the operation (#14), similar to the Contract Net Protocol 
[20]. The communication agent forwards each incoming 
request to all of its machine agents (#15). Each machine 
agent calculates a possible start time based on the slack 
time of the operation and the current queue of the ma-
chine agent. That start time is returned as proposal by 
the machine agents (#15) to the communication agent 
(#16). After each machine agent returned a proposal to 
the communication agent, it decides for the proposal 
with the earliest start time and sends an acknowledge-
ment to the assigned machine agent (#15). Furthermore, 
the communication agent sends the assigned scheduling 
information to the requesting production agent (#17).  

The machine agent organizes the acknowledged 
proposals as operations in its own queue. Operations, 
which would not be processed for more than 60 
minutes, are rejected with the prompt to try again after 
45 minutes. Further analyses may address other time 
limits. If the machine agent receives an acknowledge-
ment of an operation, this operation will be enqueued. 
Operations with a longer slack time than the previously 
enqueued operation are dropped from the queue, and the 
machine agent informs their communication agents to 
request new proposals for them (#16). This way, another 
machine agent could respond with a better proposal. 

After the machine processes a material, its machine 
agent sends a completion message to the communica-
tion agent (#16). The communication agent forwards the 
message to the related production agent (#17). The 
production agent receives the message and sets the 
status of the subsequent operation to ready, for ma-
chines are only allowed to process ready operations. If 
there is no subsequent operation, the production agent 
will assume that the material is fully processed and 
forward the completion message to the related dispo 
agent (#11) which terminates itself because its task is 
done. The production agent also sends a message to the 
storage agent (#18) and terminates itself because its task 
is also done. The storage agent provides the currently 
produced material to the requesting dispo agent (#6) 
with the shortest slack time. After the dispo agent re-
ceives the required material, the production cycle starts 
over until the product is fully assembled.  

5 Results of the Empirical 
Comparison of a Self-
organizing and a Centrally 
Planned Production 

5.1 Parameters to vary  
The simulation applied the parameters specified in Ta-
ble 1. The production reached its steady state after ap-
proximately 24 hours. We added another 24 hours be-
fore we started the measurement of the KPIs. First, we 
chose a set of parameters both productions behaved well 
with: deviation of processing times ±20 %, lot size 1, 
planning scope 32 h, planning horizon 24 h, planning 
reset after 24 h, and average time to delivery 72 h. Ap-
plying these parameters, both productions had an aver-
age machine workload of 80 % and delivered 100 % of 
the sales orders in time. A major difference between the 
centrally planned and the self-organizing production 
was a significant deviation of lead times for both prod-
ucts. The centrally planned production had an average 
lead time of 4 h in contrast to the self-organizing pro-
duction with an average lead time of 8 h. This results 
from longer lay time between the operations which 
cause higher stock for all components (see Table 2).  

The difference between the lay times and lead times 
of the centrally planned production and the self-
organizing production leads back to two reasons: The 
self-organizing production starts as early as possible, 
and the Giffler-Thompson algorithm of the centrally 
planned production packs the operations tightly. 

 
Table 1: Parameters, their descriptions, and their values 

for the initial simulation run, [C]entrally 
planned and [S]elf-organizing production. 
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Table 2: Lay time range for each component. Green 
equals the lower half and red equals the upper 
half of the average lay time. The median lies at 
the transition from green to red. 

5.2 Shortening the time to delivery  
We shortened the time to delivery, to examine the per-
formance of both productions under stress. Therefore, 
we ran the simulation with ±20 % deviation, lot size 1, 
planning scope and reset after 24 h, and in average 48 h 
to delivery. Again, both productions reached a similar 
average machine workload of 80 %. The lead time for 
the products increased moderately by about ±20 %. But 
the centrally planned production only delivered 14 % of 
the products in time. In contrast, the self-organizing 
production was able to adapt and delivered 100 % of the 
products in time. Table 3 shows the results of the simu-
lation and visualizes that the self-organizing production 
was not only able to produce everything in time, but 
also produced 41 more end products during the analyzed 
period of time. 

We tried to increase the timeliness of the centrally 
planned production. For this purpose, we tested fixed lot 
sizes with 5 and 10 pieces; but the timeliness increased 
only marginally. In further tests, we allowed the central-
ly planned production to plan anew every 8 hours but 
the timeliness did not improve either, because new cus-
tomer orders enter the system more often and processing 
times deviate all the time. This leads us to the conclu-
sion that our central planning is not able to cope with 
shorter times to delivery. That is why we will apply 
professional planning systems for further comparison.  

 
Table 3: Product timeliness with ±20 % deviation and an 

average of 48 hours to delivery for all orders. 

We tried to increase the timeliness of the centrally 
planned production. For this purpose, we tested fixed lot 
sizes with 5 and 10 pieces; but the timeliness increased 
only marginally. In further tests, we allowed the central-
ly planned production to plan anew every 8 hours but 
the timeliness did not improve either, because new cus-
tomer orders enter the system more often and processing 
times deviate all the time. This leads us to the conclu-
sion that our central planning is not able to cope with 
shorter times to delivery. That is why we will apply 
professional planning systems for further comparison.  

5.3 Varying the deviation of processing 
times of operations  

Many disruptions and deviations may occur during the 
manufacturing of a product. Machines may break down, 
products may be rejected because of quality issues, 
personnel may drop out, operations may take more or 
less time than originally planned, etc. All these disrup-
tions and deviations lead to deviating processing times 
of operations. We varied the duration of processing 
times of operations randomly by ±20 % and ±40 % to 
examine the influence of the variations on the KPIs. The 
self-organizing production was able to handle both. It 
handled ±20 % deviation with ease, and even at ±40 % 
deviation, it delivered 94 % of all incoming sales orders 
in time. The centrally planned production performed 
even worse than expected: At ±20 % deviation, the 
centrally planned production reached 14 % timeliness 
only, and at ±40 % deviation, it was not able to finish 
any product in time. Due to the high deviation of pro-
cessing times and the rather long time between two 
consecutive central planning runs, the average lead 
times grew from 200 min (at ±20 % deviation) up to 
3000 min (at ±40 % deviation). In contrast, the self-
organizing production had a maximum of average lead 
time of 1100 min (see Table 4). 
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Table 4: Lead time comparison from left to right with 

0 %, ±20 %, and ±40 % deviation of processing 
times.  

To reduce the lead times in the self-organized pro-
duction, we delayed the production start like it is com-
mon [23]. Only when the time remaining until due time 
was equal to the upper fence [24] of the previous lead 
times, the production started. The deviation of the pro-
cessing times of the operations stayed at ± 20 %. The 
delay led to lead times almost equal to the lead times 
achieved by the centrally planned production (see Table 
5). Furthermore, the delayed start of the production 
reduced overall stock in the self-organizing production 
to values even lower than in the centrally planned pro-
duction (see Table 6). Despite the delayed start of the 
production, the self-organizing production still complet-
ed all orders in time.  

Table 5 also shows quartiles of the lead times of the 
self-organizing production. These quartiles are more 
than twice as wide as the quartiles of the lead times of 
the centrally planned production. To narrow the quar-
tiles of the lead times of the self-organizing production, 
we will investigate how different priority rules and load-
dependent start times influence lay times, lead times, 
and stock. In order to achieve even better results, we 
will combine rough central planning and our self-
organizing production. 

 
Table 5: Lead time comparison ([1, 2] centrally planned 

production; [3, 4] self-organizing production). 

 
Table 6: Stock values over time in comparison. 

6 Conclusion and Outlook  
The target of our research was to develop a concept for 
a self-organizing production and prove the concept 
empirically. We developed the concept and a prototype 
of a self-organizing production. We let the prototype 
compete with a widely used and well-established algo-
rithm for central production planning. We simulated a 
self-organizing and a centrally planned production with 
the same presets of random data and were able to prove 
the viability of the self-organizing production under the 
given circumstances. The results show that a self-
organizing production is extremely robust against dis-
ruptions and deviations during physical production. 
While the centrally planned production stuck with its 
originally created plan, the self-organizing production 
timely adapted to deviations in processing times. 
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The tradeoff were longer lay times, longer lead 

times, and higher stock.  
Next, we will incorporate set-up times and dynamic 

lot-sizing in our production.  
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