

FBS
19

Fo
rt

sc
hr

it
ts

be
ri

ch
te

 S
im

ul
at

io
n

A
dv

an
ce

s
in

 S
im

ul
at

io
n

ISBN print 978-3-903024-85-4 ISBN ebook 978-3-903347-19-9 DOI 10.11128/fbs.19

Integration of Agent Based
Modelling in DEVS for
Utilisation Analysis:
The MoreSpace Project
at TU Vienna

Shabnam Tauböck

FBS Fortschrittsberichte Simulation
 Advances in Simulation
Herausgegeben von ASIM - Arbeitsgemeinschaft Simulation, Fachausschuss der GI – Gesellschaft
für Informatik - im Fachbereich ILW – Informatik in den Lebenswissenschaften
Published by ASIM – German Simulation Society, Section of GI – German Society for Informatics -
in Division ILW – Informatics in Life Sciences

ASIM FBS 19

Shabnam Tauböck

Integration of Agent Based Modelling
in DEVS for Utilisation Analysis:
The MoreSpace Project at TU Vienna

FBS - Fortschrittsberichte Simulation / Advances in Simulation

Published on behalf of ASIM – German Simulation Society, → www.asim-gi.org
ASIM is a section of of GI – German Society for Informatics, → www.gi.de, in division ILW – Informatics
in the Life Sciences, → ĩ-ilw.gi.de

Herausgegeben von ASIM - Arbeitsgemeinschaft Simulation, → www.asim-gi.org
ASIM ist ein Fachausschuss der GI - Gesellschaft für Informatik, → www.gi.de, im Fachbereich ILW –
Informatik in den Lebenswissenschaften, → ĩ-ilw.gi.de

Series Editors
Prof. Dr.-Ing. Th. Pawletta (ASIM), HS Wismar, Thorsten.pawletta@hs-wismar.de
Prof. Dr. D. Murray-Smith (EUROSIM / ASIM), Univ. Glasgow,
 David.Murray-Smith@glasgow.ac.uk
Prof. Dr. F. Breitenecker (ARGESIM / ASIM), TU Wien, Felix.Breitenecker@tuwien.ac.at
Title: Integration of Agent Based Modelling in DEVS for Utilisation Analysis:

The MoreSpace Project at TU Vienna

Author: Shabnam Tauböck, Shabnam.tauböck@gmx.net

FBS Volume: 19

Typ: PhD Thesis

ISBN print: 978-3-903024-85-4, 2019, TU-Verlag, Vienna, 2019;
 Print-on-Demand, www.tuverlag.at

ISBN ebook: 978-3-903347-19-9, 2019, ARGESIM Publisher Vienna, 2016;
 www.argesim.org

DOI: 10.11128/fbs.19

Pages: 123

© by ARGESIM / ASIM, Vienna, 2016/2019

 Diese Dissertation haben begutachtet:

………………… …………………
Felix Breitenecker Gašper Mušič

DISSERTATION

Integration of Agent Based Modelling in
DEVS for Utilisation Analysis:

The MoreSpace Project at TU Vienna

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaft unter der Leitung von

Ao.Univ.-Prof. Dipl-Ing. Dr.techn. Felix Breitenecker

Institut 101
Institut für Analysis und Scientific Computing

eingereicht an der Technischen Universität Wien

bei der Fakultät für Mathematik und Geoinformationen

von

Dipl.-Ing. Shabnam Michèle Tauböck
Matrikelnummer: 9411564

Hirschengasse 15, 1060 Wien

Wien, am

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

1

Table of Content

Abstract .. 8

Zusammenfassung ... 12

Acknowledgments ... 13

Chapter 1: Introduction to Modelling and Simulation... 14

1.1 Reasons for Simulation .. 15

1.2 Data .. 16

1.3 Validation and Verification... 16

1.3.1 Comparison to Other Models ... 16

1.3.2 Event Validity: .. 16

1.3.3 Extreme Condition Tests ... 17

1.3.4 Face Validity ... 17

1.3.5 Fixed Values .. 17

1.3.6 Historical Data Validation .. 17

1.3.7 Data Validity ... 17

1.3.8 Conceptual Model Validation .. 17

1.3.9 Model Verification ... 17

1.4 Continuous Simulation.. 18

1.5 Discrete Simulation .. 19

1.6 Discrete Event Simulation ... 20

1.6.1 Eventlist ... 21

1.7 Cellular Automata .. 21

1.8 Agent Based Simulation .. 24

Chapter 2: Database Controlled Assembling of a Simulation Model 28

2.1 From Model to Simulation .. 28

2.2 Basic Idea and Concept ... 30

2.2.1 Interface to External Data Source ... 31

2.2.2 Automatic Model Generation ... 32

2.3 Simulation Database .. 33

2.3.1 System Elements ... 33

2.3.2 System Structure Parameters .. 33

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

2

2.3.3 System Parameters ... 33

2.3.4 Input Parameters .. 33

2.4 Simulation Environment ... 33

2.4.1 The Template .. 33

2.4.2 The Simulation Library.. 34

2.4.3 Functions ... 34

2.4.4 The Simulation Model ... 35

2.5 Result Aggregation .. 35

2.6 Effects on Verification and Validation .. 35

Chapter 3: MoreSpace ... 37

3.1 History of the Vienna University of Technology ... 37

3.2 Univercity 2015 ... 38

3.3 TU Campus ... 39

3.4 Problems with Room Management at TU Vienna ... 40

3.5 Definition of Terms .. 41

3.5.1 Utilisation of Rooms .. 41

3.5.2 Capacity Utilisation ... 41

3.5.3 Travelling Time .. 41

3.5.4 Clearance Time ... 41

3.5.5 Not Successfully Booked Lectures ... 42

3.5.6 Compulsory Lecture .. 42

3.5.7 Elective lecture .. 42

3.5.8 Additional Lectures ... 42

3.6 Intended Purpose of MoreSpace .. 42

3.6.1 Aide for Booking Courses ... 44

3.7 Benefits... 45

Chapter 4: MoreSpace: Model Description .. 46

4.1 The MoreSpace Model from DEVS Point of View ... 48

4.1.1 Queue In and Queue Out: ... 48

4.1.2 Door .. 49

4.1.3 Room .. 49

4.1.4 The Student: A Double Agent? ... 50

4.2 Room Management .. 54

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

3

4.3 Booking Management .. 54

4.3.1 Sorting by Date ... 54

4.3.2 Sorting by Duration ... 54

4.3.3 Sorting by Capacity Demanded ... 54

4.3.4 Sorting by Category of Lecture .. 54

4.3.5 Sorting by Type of Lecture .. 55

4.3.6 Sorting by Modus of Lecture .. 55

4.3.7 Additional Options .. 55

4.3.8 Behaviour of Rooms ... 55

4.4 Student Numbers - a General Problem ... 55

4.5 Step I: Simulation Model Assembly .. 59

4.6 Step II: Simulation of Booking Procedure... 59

4.6.1 Sorting .. 61

4.6.2 Booking Criteria ... 61

4.7 Step III: Dynamic Simulation.. 62

Chapter 5: The Simulation Approach ... 64

5.1 Simplify, Simplify! (Henry David Thoreau) ... 64

5.2 Simulation Peoples Movement in ED ... 65

5.3 Hybrid Model: Connection to the CA Model ... 69

5.3.1 Interface between JAVA and ED .. 71

5.3.2 Problems .. 71

5.3.3 Impact on the MoreSpace Model ... 73

5.4 The MoreSpace Simulation Environment: Enterprise Dynamics 74

5.4.1 Everything is an Atom ... 75

5.4.2 Of Mothers and Daughters ... 76

5.4.3 The Atom Editor ... 76

5.4.4 Events ... 77

5.4.5 Eventlist ... 78

5.4.6 Attributes ... 78

5.4.7 Tables ... 79

5.4.8 The 4d Script ... 79

5.4.9 Enterprise Dynamics Simulation Environment 79

5.5 MoreSpace Application and Model file .. 80

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

4

5.6 MoreSpace GUI .. 81

5.7 MoreSpace Library ... 81

5.7.1 Building ... 81

5.7.2 Room .. 81

5.7.3 Courses .. 83

5.7.4 Student ... 84

Chapter 6: Functional Description of MoreSpace ... 87

6.1 Booking Procedure ... 87

6.1.1 Best Fit Loop ... 88

6.1.2 Optimal Environment Loop ... 88

6.1.3 Room Setup Loop ... 88

6.2 Student Creation Procedure ... 89

6.3 Simulation Run ... 99

6.4 Functions regarding Data Exchange ... 100

6.4.1 Interface between ED and the Simulation Database 100

6.4.2 Interface to TUWIS++ / TISS.. 100

6.5 Interface from ED to the CA Model ... 100

6.6 Functions regarding Alternative Scenarios .. 103

6.6.1 Reduction of Not Booked Lectures .. 103

6.6.2 Increase of Utilisation – Keeping of ‚Free„ Rooms 104

Chapter 7: Experimenting with MoreSpace ... 105

7.1 MS GUI .. 105

7.2 Changes to Design ... 107

7.2.1 Room Structure ... 107

7.2.2 Courses .. 107

7.2.3 Students ... 107

7.3 Tables for Input Data ... 107

7.3.1 Studies .. 107

7.3.2 Courses .. 107

7.3.3 Building ... 108

7.3.4 Room Structure ... 108

7.3.5 Room Reservation .. 108

7.4 Changes to Behaviour .. 109

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

5

7.4.1 Behaviour of Rooms ... 109

7.4.2 Behaviour of Students ... 109

7.4.3 Booking Behaviour ... 109

7.5 Alternative Scenarios ... 110

7.5.1 Comparison of Booking Rules .. 110

7.5.2 Reduction of Not Booked Lectures .. 110

7.5.3 Increase of Utilisation – Keeping of ‚Free„Rooms 110

7.6 Tables for Simulation Results ... 111

7.6.1 Documentation ... 111

7.6.2 Not Successfully Booked Lectures ... 111

7.6.3 Room Utilisation ... 111

7.6.4 NichtExact ... 111

7.6.5 NichtGebäude ... 112

7.6.6 List of Booked Lectures ... 112

7.7 Results: Database Reports ... 112

7.7.1 Utilisation of Lecture Rooms .. 112

7.7.2 Capacity Utilisation of Lecture Rooms ... 114

7.7.3 Not Successful Booking ... 114

7.8 Accessibility of Lectures .. 116

Chapter 8: Conclusion ... 117

Table of Definitions .. 119

Table of Figures .. 120

References.. 122

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

6

For Georg:
 you are the Best

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

7

Get your facts first,
and then you can distort them as much as you please.

- Mark Twain

(1835 - 1910)

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

8

Abstract

In this dissertation an approach to integrating agent based modelling into a discrete
event simulation system is developed and tested in the course of the MoreSpace
project done at the Vienna University of Technology. Considering the basic
formalism of DEVS a Discrete Event System Specification (DEVS) is a structure 𝑀 =
(𝑋, 𝑆, 𝑌, 𝛿𝑖𝑛𝑡 , 𝛿𝑒𝑥𝑡 , 𝛿𝑐𝑜𝑛 , 𝜆, 𝑡𝑎), where X is the set of input values, S the set of states, Y the
set of output values, 𝛿𝑖𝑛𝑡 the internal transition function, 𝛿𝑒𝑥𝑡 the external transition
function, 𝛿𝑐𝑜𝑛 the confluent transition function, 𝜆 the output function, 𝑡𝑎 the time
advance function. Several of this so called atomic models can be put together to form
a coupled model.
An agent based model is defined as tuple 𝐴, 𝐸 where A is a set of agents with

𝐴 = ⋃𝑎𝑘and 1 ≤ 𝑘 ≤ 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 and E is the Environment. The agent k itself is defined

as a function 𝑎𝑘 : 𝑅𝑆
𝑘 → Λ𝑘 ; an Environment E is defined as tuple Σ, 𝜏 where Σ is the

system state, 𝜏: 𝑅Λ → Σ is a state transformer function that changes the system state

based on 𝑟𝑖
𝑘 ∈ 𝑅Λ with

𝑠𝑗
𝑘 is the 𝑗𝑡𝑕set of state variables that is seen by agent k where 1 ≤ 𝑘 ≤

𝑁𝑎𝑔𝑒𝑛𝑡 𝑠

𝛼𝑗
𝑘 is the 𝑗𝑡𝑕action done by agent k in response to a set of state variables 𝑠𝑗

𝑘

𝛬𝑘 = ⋃𝛼𝑗
𝑘all actions done by agent k

𝑟𝑖
𝑘 , the 𝑖𝑡𝑕 run of agent 𝑎𝑘 , is the 𝑖𝑡𝑕 sequence of interleaved 𝑠0

𝑘 , 𝛼0
𝑘 , 𝑠1

𝑘 , 𝛼1
𝑘 , …

𝑅𝑘 = ⋃𝑟𝑖
𝑘 , the set of runs of agent k, where 1 ≤ 𝑖 ≤ 𝑁𝑟𝑢𝑛𝑠

𝑘

𝑅𝑆
𝑘 = 𝑅𝑘 that ends with an 𝑠𝑗

𝑘

During the last years the feasibility of finding an equivalent discrete event model for
any agent based model that conforms to the specification given above has been
discussed and shown in several publications. This implies that every agent that is
part of such an agent based system can be integrated in a discrete event system. It is
obvious that both modelling techniques have their advantages and drawbacks.
Discrete Event Simulation is known to be efficient and fast as long as the concept of
event driven time steps is able to use its advantage of jumping over time intervals
where no changes to the system state occur and only update the system elements of
the time points where events are schedules or triggered. People‟s behaviour and
movement is hard to model in such a system. Movement i.e. is usually not along a
certain foretold line – people do tend to take the shortest route from A to B but the
easiest way that seems to be free of obstacles and decisions between different ways

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

9

are due to individual personal preferences – some people prefer to take the stairs,
some rather wait for the elevator, some take on the longer walk to the escalator to
save themselves from having to take the stairs.
Therefore it should be possible to develop a model, where both systems - discrete
event and agent based - coexist.
This work focuses on the discrete event simulation environment Enterprise
Dynamics (ED) that is designed to develop discrete event simulation systems. The
formalism shown by DEVS is very much reflected in the basic make up of ED. Basic
elements called atoms would refer to the atomic models described by DEVS. They
are all identical in their basic structure, their behaviour defined by the transition
functions. A simulation model is build by using atoms again, again a concept
conform to the coupled models in DEVS. The main idea now is to create an atomic
model that behaves like an agent to integrate it in the discrete event simulation.
The main characteristic of an agent is its ability to make its own decisions based on
its own state and its environment. To model the human decision making in this work
the Utility Theory is used: it assumes that the decision process has two elements: the
options and the evaluation function, called utility function that maps each option in
the choice set to a numerical value. The function 𝑢: 𝒳 ⟼ ℝ is a utility function if 𝒳
is the set of choices. Preferences of the modelled individuals can be: no preferences
(∽), prefer the first over the second option (≻) or the second over the first (≺). If the
preferences observed in the individuals modelled correspond to the relations given
by 𝑢 ∘ , 𝑢 ∘ is called a valid utility function for the given decision problem.
As application of this theory the MoreSpace project done for the TU Vienna is
introduced: The simulation of the booking management for all courses held at the
TU Vienna and the student flow to determine the utilisation and accessibility of
lectures and the allocated space. Dealing with the simulation of the whole TU
Campus in Vienna as well as the student behaviour it needs the best of both worlds,
DEVS and ABM, to cover all characteristics of this system. Entering and leaving
rooms can be best modelled using a queuing system whereas students are best
represented by agents to model their individual behaviour regarding the attendance
of lectures as well as the travelling between lecture halls. The main idea is to use an
ED atom to create an agent that interacts with and moves through the discrete event
simulation, regarding it as its environment.

According to the aforementioned definition an agent goes through a sequence of

states sj
kfollowing certain actions αj

k ; from the DEVS point of view an action αj
k of an

agent is a time consuming activity; therefore it is possible to replace it with an event
triggered at the beginning of this activity using 𝛿𝑒𝑥𝑡 the external transition function;
the time consumed by the activity needs to be represented by 𝑡𝑎 the time advance

function. So basically every action αj
kneeds to be replaced by an event 𝑥 ∈ 𝑋

and 𝛿𝑒𝑥𝑡 (𝑥) to ensure the correct update of the state variables of the atom itself as
well as its environment. The state transformer function 𝜏 that updates the
environment of the agent needs to be ingrained in the interaction of the agent with
the DEVS based system.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

10

The main problem is to coordinate the behaviour of the DEVS system with the AB
elements. In the case of the project MoreSpace the solution to this problem lays
partly in the definition of the problem itself and partly in the simulation package
used. Enterprise Dynamics is a discrete event simulation environment that
represents the DEVS formalism in its basic makeup. All elements, called atoms,
share the same layout and basic functionality. Several atoms can be used to build a
more complex atom; several of them can be combined again, reflecting the principle
of coupled models.
 A given set of events may cause an update of the atoms state, the transition
functions can be defined using the ED internal programming language. The time
advance function 𝑡𝑎 is handled using an eventlist that controls the adjustment of
time steps.
But additional to everything that forms an atomic or coupled model, ED offers
spatial attributes as well as the functionality to move objects through space. And the
set 𝑋 of incoming values to trigger an event includes two elements that assist the
ABM as well: the timed event 𝑥𝑡 and the message event 𝑥𝑚 . Both are not caused by a
change of state of a model but in the first case by reaching a certain point in time and
in the second by a message from outside of the system. Especially the latter option
makes it possible to control elements in the DEVS system from external.
In case of the MoreSpace project this option was used to transfer the agents out of
the ED model into a JAVA model for the calculation of travelling times at the
movement between two spatial locations.

The project MoreSpace was launched to develop a software tool to support the
planning phase of “University2015”. “University2015” is a project of the Vienna
University of Technology (TU Vienna) to renovate all university buildings and to
improve the existing infrastructure and the inherent processes. This shall also be
done by determining and evaluating the (spatial) resources required.
The project was launched to assist the department of Gebäude und Technik (GuT) at
the TU Vienna during the planning phase of Univercity 2015. The team responsible
for this project used static methods to calculate an assessment of the number of
square meters each faculty of the TU Vienna needs for lectures and other student
related activities. This calculation was based on the number of students that took
exams and the hours of teaching for each faculty. The resulting numbers did show
the need of square meters required to accommodate the number of student during
the lectures but did not take into consideration how these square meters are used
over time. One thing that complicates things considerably is the fact that lectures at
the TU Vienna do not take place one after the other in a strict pattern as it is done at
schools or colleges but are set at times favoured by the lecturer. This results in a
weekly timetable for the student that contains times where several lectures may be
very close to each other, even overlapping, and times where no lectures at all are
taking place, leaving a big time gap. Over the whole of the TU Vienna one can say
that there are certain times during the week that are more or less preferred by many
lecturers, resulting in a high demand of rooms during certain time periods, where

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

11

other times – i.e. Friday afternoons – are not that popular. The fact that the required
amount of square meters is available, does not mean it is used in a way that ensures
that it will be indeed possible to acquire a room for a lecture at a certain time.
The idea to develop a simulation was born, a tool to reproduce the situation as it
currently is concerning the lectures and their demand on room and experiment with
the room structure. The basic idea was to keep the lectures exactly as they were and
test if the new room situation was able to accommodate all of them.
In 2008 the working group consisting of the Research Group for Mathematical
Modelling and Simulation and the Research Group for Real Estate Development and
Management at the Vienna University of Technology were asked by GUT TU, co-
responsible for Project Management of “Univercity 2015”, to introduce a model for
the room management that can simulate the usage of resources to optimize the
planning of the rooms and the future usage.

The agents represent students that attend lectures at a given time; therefore it is
possible to use timer events for controlling the activity of the agent atoms. Triggered
by a timed event the activity of the agent takes place: they either change their
location by moving towards a certain lecture hall, take a decision whether they
should attend a lecture and chose one in case of several overlapping, they enter a
queue, or leave the ED model for the more exact simulation of peoples movement in
a JAVA model.
But it is the agents themselves that control the setting of these events: each atomic
agent has its own personal settings and takes its own decisions.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

12

Zusammenfassung

Diese Dissertation beschäftigt sich mit der Kombination von Discrete Event
Simulation und Agent Based Modelling. Der Schwerpunkt liegt hierbei in der
Integration des Agentenkonzepts in ein Discrete Event Simulationssystem.
Geht man von der formalen Definition der Discrete Event System Specification aus,
so ist ein DEVS eine Struktur 𝑀 = (𝑋, 𝑆, 𝑌, 𝛿𝑖𝑛𝑡 , 𝛿𝑒𝑥𝑡 , 𝛿𝑐𝑜𝑛 , 𝜆, 𝑡𝑎), wobei X die Menge an
Eingangswerten ist, S die Menge an Zuständen, Y die Menge der Ausgangswerte,
𝛿𝑖𝑛𝑡 die interne transition function, 𝛿𝑒𝑥𝑡 die externe transition function, 𝛿𝑐𝑜𝑛 die
konfluente transition function, 𝜆 die output function, 𝑡𝑎 die time advance function.
Mehrere dieser atomic models können zu einem sogenannten Coupled Model
zusammengefaßt werden.

Ein Agent Based Model ist definiert als Tupel 𝐴, 𝐸 wobei A die Menge der Agenten

darstellt, mit 𝐴 = ⋃𝑎𝑘und 1 ≤ 𝑘 ≤ 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 und E ist die Umgebung. Der Agent k

selbst ist definiert als Funktion 𝑎𝑘 : 𝑅𝑆
𝑘 → Λ𝑘 ;

Eine Umgebung E ist definiert als Tuple Σ, 𝜏 wobei Σ den System Zustand darstellt,
𝜏: 𝑅Λ → Σ ist eine Zustandsübergangsfunktion das den Zustand des Systems ändert

basierend auf 𝑟𝑖
𝑘 ∈ 𝑅Λ wobei

𝑠𝑗
𝑘 ist die 𝑗𝑡𝑒 Menge von Zustandsvariablen die vom Agent k beobachtet wird,

wobei 1 ≤ 𝑘 ≤ 𝑁𝑎𝑔𝑒𝑛𝑡𝑠

𝛼𝑗
𝑘 ist die 𝑗𝑡𝑒 Aktion die der Agent k durchführt in Reaktion auf die

Zustandsvariablen 𝑠𝑗
𝑘

𝛬𝑘 = ⋃𝛼𝑗
𝑘aller Aktionen durchgeführt von Agent k

𝑟𝑖
𝑘 = der 𝑖𝑡𝑒 Durchlauf des Agenten 𝑎𝑘 , ist die 𝑖𝑡𝑒 Folge 𝑠0

𝑘 , 𝛼0
,𝑘𝑠1

𝑘 , 𝛼1
𝑘 , …

𝑅𝑘 = ⋃𝑟𝑖
𝑘 ,die Menge aller Durchläufe des Agenten k, wobei 1 ≤ 𝑖 ≤ 𝑁𝑟𝑢𝑛𝑠

𝑘

𝑅𝑆
𝑘 = 𝑅𝑘 endend mit 𝑠𝑗

𝑘

Im laufe der letzten Jahre wurde die Möglichkeit agentenbasierte Modelle in DEVS
Systemen abzubilden in diversen Veröffentlichungen diskutiert. Die Übersetzbarkeit
von ABM in DEVS wurde dabei zu Genüge demonstriert. Beide Methoden verfügen
über ihre distinkten Vor- und Nachteile: Das legt nun die Überlegung nahe ein
System zu entwickeln, in dem agentenbasierte Element mit DEVS Elementen
coexistieren um damit die Vorteile beider Welten je nach Bedarf ausnutzen zu
können.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

13

Acknowledgments

I would like to take this opportunity to express my gratitude to all those people who
contributed, directly or indirectly, to this work.
My very sincere thank you goes to Prof. Dr. Felix Breitenecker who never stopped
supporting me and did his best to help me balancing work and my ever growing family.
Without him I would not be where I am now.
To my dear husband Georg I can only say: Thank you for your endless patience and calm.
And last but not least I want to thank my friends and family for their constant support, be it
in taking over babysitting duty whenever needed or listening to my nervous ramblings
when work became too much or simply dragging me out to have some fun.
So thank you to all of you, who supported me and believed in me – it was all of you together
who made this possible for me.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

14

Chapter 1: Introduction to
Modelling and Simulation

A model is a representation (especially in miniature), or description of a system of
entities, phenomena, or processes. Basically a model is a simplified abstract view of
the complex reality. It may focus on particular views, enforcing the "divide and
conquer" principle for a compound problem.
A modelling language is any artificial language that can be used to express
information or knowledge or systems in a structure that is defined by a consistent set
of rules. The rules are used for interpretation of the meaning of components in the
structure. One example for modelling languages is the Unified Modelling Language
(UML) for software systems.

By developing a model a certain extent of abstraction is required. It is normally not
possible to model any system in a way that it is a complete and exact representation
of the real thing. The complexity of such a model would become too much and the
advantage of using a simulation model would quickly be lost.
It is necessary to clearly define the information one wants to gain from this model.
Then it is possible to see which aspects of the real system can be simplified and
which need to be represented as exactly as possible.
This is reflected in the following quote from Eugene Miya:

‘Simulation is really only an extension of human intellect, not the way things
behave in nature’

To more clearly define the phrase simulation we can take a look into the Oxford
English Dictionary that describes simulation as:

‘The technique of imitating the behaviour of some situation or system
(economic, mechanical, etc.) by means of an analogous model, situation, or
apparatus, either to gain information more conveniently or to train
personnel.’

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

15

The Encyclopaedia of Computer Science, Nov. 1999:

‘Simulation is the process of designing a model of a real or imagined system
and conducting experiments with that model in order to understand the
behaviour of the system or evaluate strategies for the operation of the system.’

Or put another way, simulation is the technique of building a model of a real or
proposed system so that the behaviour of the system under specific conditions may
be studied. One of the key powers of simulation is the ability to model the behaviour
of a system as time progresses.
Generally Simulation can be considered as conducting experiments using a model.
This can be a crash test for cars were the situation during an accident is imitated to
test the impact on the car. The situation that leads to the accident is of no interest for
the results to be gained – this is where the abstraction of the system comes in.
What we are going to call simulation in this work is more precisely computer
simulation which means the implementation of a model on a computer using some
kind of program. It offers the possibility to study the behaviour of a system over
time and usually it is able to deliver results quickly and in a way that makes further
processing easily possible.

1.1 Reasons for Simulation

Quite often it is of great interest to study a certain system, especially under variable
circumstances. Watching the effect of certain changes over a period of time can give
interesting results concerning future developments.
For example in the field of Supply Chain Management it is of great interest to
analyze the effect of changes in the customer behaviour. These effects may not show
immediately but will move through the supply chain with a certain time delay.
Equally of interest would be the effect of different queuing strategies in a production
plant to avoid bottle necks. The bottle necks themselves can be discovered by
watching the original system, and then different strategies can be tried out to find a
solution.
But it is often difficult to experiment with a real system or even not possible at all.
Reasons for that can be:

 High costs

 Too fast processes - e.g. electrical processes

 Too slow processes – e.g. evolutional processes

 Too huge – e.g. planets

 Too small – e.g. molecules

 Too dangerous – e.g. crash tests

 Too time consuming

 Too elaborate in setup

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

16

Especially if a high number of repetitions of the experiments are needed to cover all
possibilities the usage of a computer model seems an interesting and reasonable
solution.

If a system is to be modelled the decision has to be made which modelling approach
should be used. There are different classifications of modelling:

 Static - Dynamic

 Continuous - Discrete

 Stochastic - Deterministic

1.2 Data

Creating a simulation model usually requires a lot of data and that more often than
not proofs to be the Achilles Heel of any simulation project.

1.3 Validation and Verification

Before the results of a simulation study can be used for decision making it has to be
verified that they are correct. This means the model has to be checked for its validity.
This process is often underestimated in both, effort and importance. Validating a
simulation model is not an easy task as quite often the amount of data needed is not
available.
There are different approaches but usually it is a very individual process that very
much depends on the structure of the model as well as the implementation of the
simulation model.
There are several methods that may be used to check the model validity. Which one
is the most applicable will depend on the individual model and its implementation.

1.3.1 Comparison to Other Models

If other – valid - models already exist a direct comparison can give a first insight
about the correctness of the results achieved. If identical data sets are used in the
comparison, the results should correspond.

1.3.2 Event Validity:

Events that take place in reality also have to occur in the simulation.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

17

1.3.3 Extreme Condition Tests

The results for extreme conditions should still be reasonable. E.g. if in a supply chain
no orders are placed, no deliveries should be made.

1.3.4 Face Validity

Expert knowledge can be used to assess the results of the simulation.

1.3.5 Fixed Values

If it is possible to use a set of fixed data were the results can be calculated without
using the simulation for comparison a so called test scenario can be created.

1.3.6 Historical Data Validation

If historical data exist it can be used to determine if the simulation works the way the
real system does.

1.3.7 Data Validity

The validity of the data the model is based upon is crucial for the development of an
accurate model. It affects the conceptual design of the model as well as the behaviour
of the model elements.
Checking this validity is an enormous and often impossible task. The best that can be
done is to refine the routines of data collection and data processing. Each step has to
be recorded and must be completely transparent to ensure the accuracy of the used
data. Additional internal consistency checks can be done.

1.3.8 Conceptual Model Validation

Conceptual model validity is determining that (1) the theories and assumptions
underlying the conceptual model are correct, and (2) the model representation of the
problem entity and the model‟s structure, logic, and mathematical and causal
relationships are “reasonable” for the intended purpose of the model.

1.3.9 Model Verification

Computerized model verification ensures that the computer programming and
implementation of the conceptual model are correct. To help ensure that a correct
computer program is obtained, program design and development procedures found
in the field of software engineering should be used in developing and implementing
the computer program.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

18

1.4 Continuous Simulation

Continuous simulation is usually used for systems whose state changes continuously
over time. These systems are most often described by using differential equations.
Such continuous systems can be found in the field of natural sciences as physics,
chemistry, medicine, electrical engineering, and so on.
Usually this models are deterministic, with only very few stochastic elements in
them.
One of the most popular examples is the predator-prey relationship:
The Lotka–Volterra equations, also known as the predator-prey equations, are a pair
of first order, non-linear, differential equations. They describe the interaction of two
species, one a predator and one its prey.
They were proposed independently by Alfred J. Lotka in 1925 and Vito Volterra in
1926.

𝑑𝑥

𝑑𝑡
= 𝑥 ∝ − 𝛽𝑦

𝑑𝑦

𝑑𝑡
= −𝑦(𝛾 − 𝛿𝑥)

Where
𝑦 is the population size of predators – for example wolves
𝑥 is the population size of its prey – for example rabbits
𝑡 represents the time
∝, 𝛽, 𝛾, 𝛿 are parameters representing the interaction of the two species
𝑑𝑥

𝑑𝑡
 and

𝑑𝑦

𝑑𝑡
 represent the growth of the two populations against time

The equations have periodic solutions which do not have a simple expression in
terms of the usual trigonometric functions. However, an approximate linearised
solution yields a simple harmonic motion with the population of predators following
that of prey by 90°.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

19

Queue

C
o
u
n
t
e
r

Figure 1-1 Predator – Prey Relationship

This model is used in studying the interaction between species and the effect that
changes to one population will have on the other.

1.5 Discrete Simulation

In discrete processes the state of the system or its elements does change at certain
time points. Typical examples are classic server – queue models as a supermarket or
a post office.

Figure 1-2 Simple Server – Queue Model

People wait in a queue in front of a counter as shown in Figure 2-2. Time moves in
steps, e.g. as soon as the customer in front of the counter is finished several actions
take place: the customer moves away, so the state of the place in front of the counter
switches to idle. Therefore the first in the queue can step forward and leave the
queue – the content of the queue decreases by one, the place in front of the counter
becomes busy again. The next time step will be either if a new customer enters the
queue and changes its content or the customer in front is finished with their
business. The time in between is not regarded as no changes to the states of any
model elements take place.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

20

1.6 Discrete Event Simulation

Discrete event simulation is one way of building up models to observe the time
based (or dynamic) behaviour of a system. There are formal methods for building
simulation models and ensuring that they are credible. During the experimental
phase the models are executed (run over time) in order to generate results. The
results can then be used to provide insight into a system and a basis to make
decisions on.
The main characteristic of Discrete Event Simulation is that the system state does
only change at certain time points when events occur. Time moves from one of these
events to the next, the time in between is of no relevance.
A typical event would be the entering of a queue in front of a server. This could be a
customer in a supermarket, waiting at the cash.
Each event has a time of occurrence. If an event takes place it may cause changes to
the state of individual objects as well as the system itself. These changes occur right
at the time of the event or after a certain time delay, but not slowly over time as it
may happen in continuous simulation. Any changes happen within a certain time
point.
The occurrences of events and the time they take place create the timeline of the
simulation run.
Discrete Event Simulation Specification (DEVS) is a widely used approach for
modelling and simulation of dynamic discrete systems. The modern object-oriented
DEVS world view regards active objects (entities) passing passive objects (stations)
along given path.

Definition 1: Discrete Event System Specification (DEVS)

A DEVS is a structure

𝑀 = (𝑋, 𝑆, 𝑌, 𝛿𝑖𝑛𝑡 , 𝛿𝑒𝑥𝑡 , 𝛿𝑐𝑜𝑛 , 𝜆, 𝑡𝑎), where

 X is the set of input values

 S is the set of states

 Y is the set of output values

 𝛿𝑖𝑛𝑡 : 𝑆 → 𝑆 is the internal transition function

 𝛿𝑒𝑥𝑡 : 𝑄 × 𝑋𝑏 → 𝑆 is the external transition function, where

 𝑄 = (𝑠, 𝑒) 𝑠 ∈ 𝑆, 0 ≤ 𝑒 ≤ 𝑡𝑎(𝑠) is the total state set

 e is the time elapsed since the last transition

 𝑋𝑏denotes the collection of bags over X (= sets in which some
elements may occur more than once)

 𝛿𝑐𝑜𝑛 : 𝑄 × 𝑋𝑏 → 𝑆 is the confluent transition function

 𝜆: 𝑆 → 𝑌𝑏 is the output function

 𝑡𝑎: 𝑆 → ℝ0,∞
+ is the time advance function

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

21

Definition 2: Coupled Model

A Coupled Model is a structure build of several atomic models with

𝑁 = 𝑋𝑁 , 𝑌𝑁 , 𝐷, 𝑀𝑑 , 𝐼𝑑 , 𝑍𝑖 ,𝑑 , 𝑆𝑒𝑙𝑒𝑐𝑡 , where

 𝑋𝑁 , 𝑌𝑁are the sets of input and output values of the coupled model

 D is the set of component references, so that for each 𝑑 ∈ 𝐷, 𝑀𝑑 is a
DEVS model

 For each 𝑑 ∈ 𝐷 ∪ 𝑁 , 𝐼𝑑 ⊂ 𝐷 ∪ 𝑁 ∖ 𝑑 is the set of influencer
models on subsystem d

 For each 𝑖 ∈ 𝐼𝑑 , 𝑍𝑖 ,𝑑 is the translation function, where

 𝑍𝑖 ,𝑑 :

 𝑋𝑁 → 𝑋𝑑 if 𝑖 = 𝑁

𝑌𝑖 → 𝑌𝑁 if 𝑑 = 𝑁

 𝑌𝑖 → 𝑋𝑑 otherwise

 Select: 2𝐷 → 𝐷 is a tie breaking function for simultaneous events; it
must verify 𝑆𝑒𝑙𝑒𝑐𝑡 𝐸 ∈ 𝐸, 𝑤𝑖𝑡𝑕 𝐸 ⊂ 2𝐷 , the set of components
producing the simultaneity of events

1.6.1 Eventlist

The occurrence of events and their order need to be controlled somehow. In discrete
simulation software programs this usually is done by a so called event list or event
chain. This list contains all future events as well as some additional information as
the time of occurrence and optionally a priority. During the simulation run new
events are added to this list. Only if all events are executed and the list is empty the
simulation run has reached its logical end. Of course additional conditions for
ending the simulation run can be set, and then the simulation run will be stopped
even if the event list does still contain future events.
One big concern in Discrete Event Simulation is the handling of events that take
place at the same time. Usually the event list contains all events in order of their
occurrence. Events that will take place at the same time are simply listed in the order
they have been added to this list.
To ensure the correct order of event priorities have to be assigned to give a ranking
for the execution. This corresponds to the Select function in Definition 2.

1.7 Cellular Automata

A cellular automaton is a collection of cells placed on a grid that can assume certain
states according to given rules. These rules are applied iteratively in equidistant time

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

22

steps to evaluate the current state of each cell. The state of each cell is defined by the
set of rules and the state of the neighbouring cells.

Definition 3: Cellular Automaton (CA)

A cellular automaton is a 4-tuple 𝐿, 𝛴, 𝒩, 𝜙 , where

 𝐿 = ℤ𝑑 is a dimensional lattice of cells indexed by integers

 𝛴 is a finite set of cell states

 𝒩 is a neighborhood scheme , which is a finite list of lattice vectors

from ℤ𝑑

 and 𝜙 is a local transition function 𝜙: 𝛴𝒩 → 𝛴

A configuration is simply an assignment of states from Σ to each cell in 𝐿. Given a
configuration, the transition function 𝜙 determines a new configuration after a single
discrete time step. For each cell 𝑥, the new state is given by applying 𝜙 to the current
states of the cells in the list 𝑥 + 𝒩.

So, each cellular automaton is defined by

 the grid the cells are placed upon

 the definition of the neighbourhood

 the initial state of the cells

 the set of rules defining the changes to the state of the cells

 the number of states a cell can assume

Which cells are considered to be neighbouring cells is conditioned by the type of
Neighbourhood the cellular automata works with.
The von Neumann neighbourhood is a diamond-shaped neighbourhood that can be
used to define a set of cells surrounding a given cell 𝑥0 , 𝑦0 that may affect the
evolution of a two-dimensional cellular automaton on a square grid.
The von Neumann neighbourhood of range 𝑟 is defined by

𝑁𝑥𝑜 ,𝑦0
𝑣 = 𝑥, 𝑦 : 𝑥 − 𝑥0 + 𝑦 − 𝑦0 ≤ 𝑟

Figure 1-3: von Neumann Neighbourhood

I.e. the von Neumann neighbourhood for 𝑥0 = 0, 𝑦0 = 0, 𝑟 = 1 is the set of
neighbours:

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

23

𝑁 = 0, −1 , −1,0 , 0,0 , +1,0 , 0, +1

The number of cells in the von Neumann neighbourhood of range 𝑟 is the centred
square number 2𝑟 𝑟 + 1 + 1.

The Moore neighbourhood is a square-shaped neighbourhood that can be used to
define a set of cells surrounding a given cell 𝑥0 , 𝑦0 that may affect the evolution of a
two-dimensional cellular automaton on a square grid. The Moore neighbourhood of
range 𝑟 is defined by

𝑁𝑥𝑜 ,𝑦0
𝑀 = 𝑥, 𝑦 : 𝑥 − 𝑥0 ≤ 𝑟, 𝑦 − 𝑦0 ≤ 𝑟

Figure 1-4: Moore Neighbourhood

I.e. the Moore neighbourhood for 𝑥0 = 0, 𝑦0 = 0, 𝑟 = 1 is the set of neighbours

𝑁 = −1, −1 , 0, −1 , 1, −1 , , −1,0 , 0,0 , +1,0 , −1, +1 , 0, +1 , +1, +1

The number of cells in the Moore neighbourhood of range 𝑟 is the odd
squares: 2𝑟 + 1 2 .

Usually cellular automata are considered to be set upon an infinite grid. In reality
this is not always the case so certain rules have to be applied for the calls on the edge
of the grid. One way is to define a fixed state for the „missing‟ neighbouring cells;
another is to connect the left cells with right, and the upper cells with lower. In the
case of a rectangular grid this would result in a Torus.

Figure 1-5: Torus

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

24

1.8 Agent Based Simulation

Agent Based Modelling is a relative newly rediscovered and powerful simulation
technique for discrete systems. An Agent Based Model consists of autonomous
elements that are able to make their individual decisions based on the state of their
situation and a given set of rules.
The concept of agent based modelling was developed in the late 1940s but since a
agent based simulation model very quickly requires a huge amount of
computational resources its real breakthrough came when the according hardware
became first available in the 1990s.
Its history can be tracked to the Von Neumann machine, one of the first cellular
automata and John Conway‟s Game of Life.

The definition of Jennings und Wooldridge, the so called "Weak Notion of Agency"
lists the following attributes of an agent:

 Autonomy: each agent acts on its own and decides its own behaviour

 Social ability: agents are able to communicate with each other

 Reactivity: agents react to their environment and changes therein

 Pro-activeness: Agents do not only react to their environment but act on their
own as well

Stan Franklin and Art Graesser tried to find a mathematical definition for an agent,
but call it „weak around the edges‟.

‘An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, over time, in
pursuit of its own agenda and so as to effect what it senses in the future.’

According to this the attributes of an agent can be listed as:

Reactive (sensing and acting): responds in a timely fashion to changes in the
environment
Autonomous: exercises control over its own actions
Goal-oriented (pro-active, purposeful): does not simply act in response to the
environment
Temporally Continuous: is a continuously running process
Communicative (socially able): communicates with other agents, perhaps
including people
Learning (adaptive): changes its behaviour based on its previous experience
Mobile: able to transport itself from one machine to another
Flexible: actions are not scripted
Character: believable "personality" and emotional state.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

25

Agents may be usefully classified according to the subset of these properties that
they enjoy. Every agent, by this definition, satisfies the first four properties. Adding
other properties produces potentially useful classes of agents, for example, mobile,
learning agents. Thus a hierarchical classification based on set inclusion occurs
naturally. Mobile, learning agents are then a subclass of mobile agents.

Agent-based models describe the behaviour and interactions of a system‟s parts
from the bottom up; There are several situations, where agent based modelling is a
more practical and realizable approach then i.e. describing the system using
differential equations:

Complex interactions: it can be particularly useful using agent based modelling if
describing the discontinuity of individual behaviour is difficult, for example, using
differential equations.

Heterogeneous populations: Using an agent-based approach offers the possibility to
design a heterogeneous population of individuals where agents can represent any
type of unit, from which intuitive groups of units can be formed, creating the
population design from the bottom up.

Topological complexity: The topology of agent interactions is heterogeneous and
complex. Aggregate flow equations usually assume global homogeneous mixing, but
the topology of an interaction network can lead to significant deviations from
predicted aggregate behaviour. This is particularly significant concerning social
processes where physical or social networks have great influence; it can also result
from complex behaviour of the agents, including the ability of learning and
adaptation.

Appropriate model framework: Quite often using the agent-based approach for
describing and simulating a system composed of real-world entities seems the most
natural ant intuitive way as it is more akin to reality than other modelling
approaches; this makes ABM the natural choice for simulating people and objects in
very realistic ways.
In particular, the agent-based approach is useful when the units of a system are
easier to describe then the system itself; this is the case if one of the following
situations applies:

 The individual behaviour cannot clearly be defined through aggregate
transition rates (e.g. panic within a fleeing crowd).

 The individual behaviour is complex.

 The individual behaviour is stochastic

Flexibility: The agent based approach is very flexible. An agent-based model can be
defined within any given system environment. Agents have the ability to move
within their environment, in different directions and at different velocities, making
the model very flexible in terms of potential variables and parameters that can be

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

26

specified. The implementation of agent interactions is by far easier to implement
than using mathematics, for example. Agent-based models also provide a robust and
flexible framework for tuning the behaviour of agents, their degree of rationality,
ability to learn and evolve, and the rules of interaction.

Definition 4: Agent Based Model (ABM)

An Agent Based Model is defined as tuple 𝐴, 𝐸 where A is a set of agents

with 𝐴 = ⋃𝑎𝑘and 1 ≤ 𝑘 ≤ 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 and E is the Environment with:

 𝑠𝑗
𝑘 is the 𝑗𝑡𝑕set of state variables that is seen by agent k where 1 ≤ 𝑘 ≤

𝑁𝑎𝑔𝑒𝑛𝑡𝑠

 𝑆𝑘 = ⋃𝑠𝑗
𝑘all sets of state variables seen by agent k where 1 ≤ 𝑘 ≤

𝑁𝑎𝑔𝑒𝑛𝑡𝑠

 𝑆 = ⋃𝑆
𝑘 all sets of state variables seen by all agents

 𝛼𝑗
𝑘 is the 𝑗𝑡𝑕action done by agent k in response to a set of state

variables 𝑠𝑗
𝑘

 𝛬𝑘 = ⋃𝛼𝑗
𝑘all actions done by agent k

 𝛬 = ⋃𝛬𝑘all actions done by all agents

 𝑟𝑖
𝑘 , the 𝑖𝑡𝑕 run of agent 𝑎𝑘 , is the 𝑖𝑡𝑕 sequence of interleaved

𝑠0
𝑘 , 𝛼0

,𝑘𝑠1
𝑘 , 𝛼1

𝑘 , …

 𝑅𝑘 = ⋃𝑟𝑖
𝑘 ,the set of runs of agent k, where 1 ≤ 𝑖 ≤ 𝑁𝑟𝑢𝑛𝑠

𝑘

 𝑅𝑠
𝑘 = 𝑅𝑘 that ends with an 𝑠𝑗

𝑘

 𝑅𝛬
𝑘 = 𝑅𝑘 that ends with an 𝛼𝑗

𝑘

 𝑅𝑆 = ⋃𝑅𝑆
𝑘

 𝑅𝛬 = ⋃𝑅𝛬
𝑘

Definition 5: Agent

An Agent k is defined as a function 𝑎𝑘 : 𝑅𝑆
𝑘 → 𝛬𝑘 .

Definition 6: Environment
An Environment E is defined as tuple 𝛴, 𝜏 where

 𝛴 is the system state

 𝜏: 𝑅𝛬 → 𝛴 is a state transformer function that changes the system

state based on 𝑟𝑖
𝑘 ∈ 𝑅𝛬

It has been shown in several publications that it is possible to find an equivalent
discrete event model for any agent based model that conforms to the specification
given in the following formal definition of an agent. This implies that every agent
that is part of such a system should be able to be integrated in a discrete event

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

27

system. Therefore it should be possible to develop a model, where both systems -
discrete event and agent based - coexist.

This is of great interest, because the system developed in course of the project done
for the TU Vienna contains elements of both worlds: the main layout of the TU
Vienna can be modelled using discrete event simulation, especially regarding the
modelling of rooms. Students enter a room through doors, queuing occurs as soon as
the number of people trying to enter or leave the room becomes too big. This
resembles the classic server queue problem represented by the traditional post-
office-problem. But students are not simple entities, waiting in a queue to be
processed and routed through the system. Their individual behaviour is much more
complex than that and the overall behaviour of all students on the TU Vienna can
hardly be modelled by using the classic approach of discrete event simulation alone.
Combining the individuality of the student with the classic discrete event driven
behaviour of the environment seems the logical solution.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

28

Chapter 2: Database
Controlled Assembling of a

Simulation Model

2.1 From Model to Simulation

To implement a Model in a computer program there are several options:
General Programming Languages as C or C# can be used to develop a computer
model. Some of this languages offer certain libraries that contain basic functions as
random variables or distribution functions.
Simulation Languages usually provide a number of functions that are typical for
developing a discrete simulation model i.e. probability functions.
Discrete Simulators usually offer a graphical oriented environment for creating
models from predefined elements like sources and queues that are contained in
libraries; the simulation engine includes some kind of time handling like an event
list or event chains.
Specialized Discrete Simulators are already designed to be applied within a certain
range of applications.
Special Simulators are already highly specialized for the implementation of certain
applications. The software package that will be later on discussed in more detail for
example, Enterprises Dynamics offers different suites for the simulation of logistic or
airports. These suites already contain the basic elements that are typical for this kind
of application. This keeps development time down to a minimum.
Problem Specific Solutions are Simulators, developed to solve a certain Problem.

It is obvious that the higher a simulation program is situated in the pyramid shown
in
Figure 2-1, the higher its specialization in a certain area becomes; and concordantly
the higher becomes the user friendliness in regard to the needed time and effort in
developing a model. But as this increases another aspect gets lost: flexibility. The
more a simulator is designed to solve a very specific kind of problem, the more
difficult it becomes to use it for anything that does not fit into the same scheme.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

29

The lower a simulation program remains in the pyramid the higher the flexibility in
developing a simulation model is. But as flexibility increases so does the time that
needs to be invested in the development of a model.
So, choosing the right balance of flexibility and user friendliness is a task not to be
underestimated.

Figure 2-1 Flexibility contra User Friendliness

There are two aspects that make the application of simulation on an everyday basis
more difficult than it might appear:

 The gap between need and knowledge: Expert knowledge is required to
develop an accurate and valid simulation model and it is required to modify
it as well. But more often than not this is not existent in the average company
as they are not familiar with the concept of modelling and simulation and
have no prior knowledge of using a simulation tool. A simulation model is
usually developed by external specialists; the main interest for the company
is not the simulation itself but the results calculated.

 The time and effort needed to redesign a model: small changes to a
simulation model may not seem too complicated to incorporate; but the more
complex a model is, the more time consuming even small variations of
parameters may become. If changes to the structure are necessary it can
quickly become a difficult task to modify the model, especially if several
different approaches to such changes are to be compared.

During the last years the ability of a simulation system to be quickly and easily
modified has become more and more apparent due to different reasons: The
comparison and analysis of different approaches and systems has been one of them,
the reusability of a simulation model another.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

30

Real System

Model

Computer
Simulation

Validation /
Verification

Experiments

2.2 Basic Idea and Concept

A first step to offering a higher flexibility has been to allow the changing of
parameters within certain boundaries to observe the effect on the whole system.
The next step would be offering a possibility to change parts of the simulation
without actually needing to go down to the programming level.
And finally the last development would be a simulation that is based upon certain
structural parameters that define the whole system. Using these parameters the
complete simulation build-up process can be automated according to the current
parameters. This approach aims to keep the effort for the step between Model and
Computer Simulation as shown in Figure 7-1 to a minimum by automating it.

Figure 2-2 : Life Cycle of a Simulation Model

The basic idea is to separate the basic model from the scenario specific data. Keeping
the data outside of the simulation environment e. g. in a database offers several
advantages:

 The data is much easier to manage

 The data is much easier to modify

 The simulation model is less burdened with storing the data during the
simulation run; this is especially noticeable with result data

The data needs to be structured to represent a model of the simulated system that
contains all possible combinations of parameters.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

31

The interaction with the database can be easily done via a GUI, hiding the simulation
environment as well. Additionally this GUI can be used to start a simulation run and
to analyze the results.
This approach implies the split between a simulation environment and a data model:
The simulation environment contains the basic model elements as well as the
functions to create the simulation model according to the data in the external
database.
The data model contains all additional information needed.
To ensure a high flexibility the simulation implemented in Enterprise Dynamics is
completely controlled by the data stored in an ACCESS database. Depending on this
data the model structure is formed, the single components are connected and
parameterized.
The database contains all needed specifications. A list containing all of the scenarios
stored in the database enables the user to choose which ones to simulate. A function
implemented in Enterprise Dynamics allows exporting the result data back to the
database before starting the next simulation run.
The outcome is no longer a simulation, but a highly specialized simulator, that is
able to generate any scenario consisting of the specified components; it only has to
be defined in the database. Using it to simulate places where one could not be sure if
they would be able to deal with the additional customers allowed a better
assessment of the future situation, as well as an easy way to evaluate the effect of
changes.

2.2.1 Interface to External Data Source

To improve the speed of simulation runs it is often recommendable to keep as much
data as possible out of the simulation environment and in external databases. This
also enhances the user friendliness as these databases are much more convenient to
handle.
Several projects done during the last years have shown the tendency to hide the
simulation environment itself from the user behind an easy to manage General User
Interface (GUI) to offer a more comfortable way to parameterize the simulation
model.
Enterprise Dynamics offers the possibility to use ODBC connections to an external
data source or ADO to communicate with a database as ACCESS or ORACLE.
The more complex a simulation model becomes and the more complex therefore the
parameterization becomes the more complex the user interface becomes and
entering information is a task that is most of the time more time demanding than the
simulation run itself.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

32

Figure 2-3 User Interaction via GUI

2.2.2 Automatic Model Generation

To offer a possibility of quickly creating and modifying simulation models the
approach of database driven model generation was developed. Basically this is done
by splitting the simulation model specific data and the basic model to enhance the
flexibility of the simulation model.
The input data needs to be structured to represent a model of the simulated system
that contains all possible combinations of parameters.
The interaction with the database can be easily done via a GUI, hiding the simulation
environment as well. Additionally this GUI can be used to start a simulation run and
to analyze the results.
This approach implies the split between a simulation environment and a data model:
The simulation environment contains the basic model elements as well as the
functions to create the simulation model according to the data in the external
database.
The data model contains all additional information needed.

It might not even be known what the maximum number of each component might
be so it is not possible to create a pool activated on need as was done for RHI. We no
longer have a model with a certain number of components; all we know is the basic
structure. Here we need to take full advantage of the object oriented approach of ED.

User

GUI

Simulation
Engine

Database

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

33

2.3 Simulation Database

The model has to be well defined in order to be created accurately. So not only each
component of the model is defined via its parameters but also the simulation model
itself.
The simulation database contains the information needed to create all possible
scenarios. The according data model implemented in the external data source, like a
database or a spreadsheet reflects the basic structure of the atomic models used to
build the simulation model architecture. This data source is then used to specify the
scenarios to be simulated.

2.3.1 System Elements

The Data Model contains all elements that may exist in the simulated system. If they
exist in a certain scenario depends on the according system structure parameters.

2.3.2 System Structure Parameters

These parameters define the structure of the simulation model in a certain scenario:
of which elements it will exist, how many of them and how they are linked.

2.3.3 System Parameters

These Parameters define the state of the system: Parameters for each component are
stored in a database, allowing easy and quick editing. With this data the behaviour
of each single component is well defined.
The model has to be well defined in order to be created accurately. So not only each
component of the model is defined via its parameters but also the simulation itself.

2.3.4 Input Parameters

These parameters are relevant for the simulation run; they contain all information
that is not directly linked to a certain element.
e.g.: the length of the simulation run

2.4 Simulation Environment

2.4.1 The Template

Before the simulation model is created several actions have to be taken. These are
executed by functions embedded in the simulation model template.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

34

Such actions are the import of the data from the data model; the creation of the
simulation model, the start of a simulation run, the processing of the result data. All
these actions can be automatically triggered if a simulation run is started.

2.4.2 The Simulation Library

The simulation Library contains all elements that are defined in the data model. Each
has its own behaviour that can be influenced by the parameters given in the data
model. The functions creating the simulation model will use these elements and set
their individual parameters after the model build-up.

2.4.2.1 Classes and Library

All components of the model are divided into classes with certain parameters: and a
library is created containing these classes.
Each class already contains the full functionality and behaviour, for example the
class Intermediate Storage has its order strategy as well as its delivery behaviour
fully implemented. Each object created from this class inherits this functionality;
parameters like storage size, minimum storage, delivery interval are individual for
each object. This data needs to be defined.
We usually have a complex web of product flow and message flow as well as a huge
amount of parameters. It seems only logical to once more use an external source for
editing the data in a more manageable way.
The library of classes allows an easy creating of objects but building a simulation
consisting of several hundred objects, connecting them without making any errors
quickly becomes a tiring as well as extremely complex task.
So the idea to expand the functions we used before for parameterising even further
quickly comes to mind.
Each element already contains the full functionality and behaviour, every model
element created inherits this functionality. For example each kind of cash has its
parameters like cycle time, opening times; they are individual for each object. This
data needs to be defined.

2.4.3 Functions

To generate the final simulation objects are built from the classes in the library, their
individual behaviour being influenced by their parameters.
The basic simulation only consists of functions that:

 Import the data from an external source

 Create the needed components from the library

 Parameterize them

 Connect them

 Reset and initialize the system

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

35

The data has to be imported into the simulation, objects have to be created and
parameterized according to this.
As soon as all components of the simulation are created we have the same situation
as in the prior case: These objects need to be connected, parameterized and
initialized. This is done as before using functions.
Now we have a simulation, automatically created basing on the data provided.
Changing this data causes a change to the model; therefore the simulation is newly
generated.
This offers a great flexibility. Once the simulation is implemented scenarios can be
tested with hardly any limits to the range of parameters.
Of course, creating the basic simulation, programming the functions that in turn will
create the final simulation is more intricate for everything has to be done completely
generic to ensure the adaptability to any scenario. To generate the final simulation
objects are built from the elements in the library, their individual behaviour being
influenced by their parameters.

2.4.4 The Simulation Model

The Simulation Model is the end result of executing the functions for the model
build-up and represents the structure defined in the chosen scenario that is based on
the data model. All elements have their predefined behaviour in dependency from
their parameters as specified in the data model.
The System State is defined by the System Parameters; the simulation run is
executed according to the input data received from the data model.

2.5 Result Aggregation

Most Simulation Tools as Enterprise Dynamics do offer some basic routines for
analyzing result data. But as soon as results are used to compare different scenarios
or model approaches data needs to be stored outside of the simulation tool.
The results generated in the simulation run are automatically stored for further
processing. It is possible to add the functionality to automatically create and
simulate a new scenario if certain results are not within given boundaries. The
parameters of the new scenario are set according to predefined rules – i.e. if the
average waiting time in a queue is to long an additional production line is added to
the system.

2.6 Effects on Verification and Validation

The automation of the process of building the simulation model has one additional
effect: the process of verification and validation should become easier to handle at
least after the basic model has been developed. Using the concept of automatic

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

36

generation of simulation models in simulation projects recommends using the basic
concepts of software development, especially in regard of testing.
The basic functions for creating the model elements and setup of the model structure
can be tested for working correctly – the result of executing them should be the
correct setup of the model, according to the model structure and parameters given in
the data model. Once these functions are verified there is no further need to test
them again as long as no changes are done.
The model elements as they are listed in the project specific library can and must be
validated by using the basic model, e.g. by using historical data. So the main work
for validation lies in the data model.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

37

Chapter 3: MoreSpace

3.1 History of the Vienna University of Technology

The Vienna University of Technology (TU Vienna) was founded 1815 as Imperial
and Royal Polytechnical Institute. It was the first University of Technology within
German speaking Europe. The first director, Johann Josef Ritter von Prechtl, took the
Ecole Polytechnique in Paris as an example and developed an Organisational
Charter with non military orientation for the Viennese Institute. The concept of
Prechtl‟s project who was a liberal advance thinker, a humanist and pedagogue was
quite revolutionary: It offered freedom of teaching and learning for professors and
students far beyond the usual scope of education for these times.

On November 6th 1815 with the ceremonial inauguration of the k. k. Polytechnische
Institut opened its doors and commenced its academic activities.

1815
Foundation as the Imperial and Royal
Polytechnical Institute (k. k.
Polytechnisches Institut)

1865

Restructure: 5 specialised colleges (1928:
faculties)
Rectorate

1872 Renamed to College of Technology

1902 First Doctorates awarded

1919 Admission of Women

1975 Renamed to University of Technology

2004 Autonomy

2006 Start of „Univercity 2015‟

Nowadays the Vienna University of Technology is the largest research and
educational institution in Austria in the fields of technology and natural sciences.
The TU Vienna offers a wide range of studies at its eight faculties:

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

38

 Faculty of Mathematics and Geo-information

 Faculty of Physics

 Faculty of Chemistry

 Faculty of Informatics

 Faculty of Electrical Engineering and Information Technology

 Faculty of Mechanical Engineering

 Faculty of Civil Engineering

 Faculty of Architecture and Regional Planning

2006 the idea was born to relocate the campus of the Technical University of Vienna
to an area outside of the city that offered more space for a university campus. This
launched a long discussion and evaluation of the pros and contras until finally
around ninety percent of those affiliated to the TU Vienna voted to remain in the
current inner-city location; the decision was made to keep the historical location at
the centre of Vienna. But almost two hundred years of research and teaching have
left their marks on much of the buildings of the TU Vienna. To keep the current
location but meet the standards of a 21st century university establishment measures
had to be taken. Instead of moving the Technical University started to renovate and
restructure the existing buildings to make better use of the existing space. The
project Univercity 2015 took on this task with the aim to finish until the 200 years
celebration in 2015.

3.2 Univercity 2015

Based on its autonomous decision to remain at its current city location, the Vienna
University of Technology, the largest research and education institution in the fields
of technology and natural sciences in Austria, has initiated the project "TU
Univercity 2015." The main features of the project are the building projects that will
create new research and teachings competencies, and the impetus to further develop
a self-conscious, future-oriented university culture.
"TU Univercity 2015" is much more than a restoration project. Totally new and
comprehensive features must be established by the 200-year anniversary in 2015. The
top project goal is the creation of optimal basic conditions for those who study and
work at the TU Vienna. Therefore, the main points of the project have been set up on
topics such as accessibility, sustainability, art/culture, and corporate identity.
Firstly, an entire existing university is redesigned. The following measures are
envisioned: an innovative information and signage system, communication areas,
more attractive spaces (also for sports or recreational activities), appealing and
inviting entrances and passages, as well as an increased uniformity of the area
(keyword: campus).
Quality standards were developed for all space types – offices, various labs,
workshops, auditoriums, seminar rooms, library, and so forth. All spaces must be

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

39

optimally equipped and should offer flexible functionality as much as possible. The
standards are effective for the entire TU and should also be of high quality. The
equipment updating periods were defined, and an “intelligent” internal technology
is deployed
TU spends 30 million Euro annually for its space. Therefore, each space that is
wrongly used costs cold cash. In other words, the resources must be used efficiently!
The space allocation must be based on current and future needs. This includes a new
assessment of the “grown” structures. International benchmark figures, current
usage, and development plans are all involved in this process. The unified key
figures model for spaces has field-specific space profiles and includes an evaluation
of employees and students. This leads to a new equitable space allocation. The
university equally provides flexible, multi-functional space structures, as well as
manages auditoriums and seminary spaces and a transparent space allocation.

3.3 TU Campus

Figure 3-1: Map of the TU Campus

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

40

Due to its inner-city location the space of the TU Vienna is largely restricted. The old
buildings are part of the UNESCO international cultural heritage which enforces
their preservation and puts a lot of pressure upon any renovation and redecoration
plans. The newer buildings as Freihaus or the new part of the Electrotechnical
Institute (EI) are not so easily rebuild either.

3.4 Problems with Room Management at TU Vienna

The general feeling on the TU Vienna can be summarised as: there is never a room
available if one is needed, especially on short notice. This leads to the firm belief, that
there simply is not enough room available. But if you walk around and look inside,
quite often rooms that are marked as booked at this time in the TUWIS System are
unoccupied.
This situation has been analysed by the working group of Gebäude und Technik
(GuT) of the TU Vienna who developed a calculation model based on the courses
and the number of student attending to derive the real requirement of lecture halls
for each of the eight faculties at the TU Vienna. And this calculation showed that
theoretically there is more than enough space available. So obviously the real
problem lies somewhere else.
For a deeper analysis a dynamic calculation was considered and a cooperation with
the institute for Städtebau-, Landschaftsarchitektur und Entwerfen, represented by
Univ. Prof. DI Dietmar Wiegand, and the Institute for Analysis and Scientific
Computing, represented by a.O.Univ.Prof. DI Dr.techn. Felix Breitenecker was
initiated to develop a tool for the dynamic simulation of the booking and utilization
of lecture rooms.
The first step was a feasibility study done in 2007, based on the faculties of
Architecture and Maschinenbau. The data needed was provided by the Zentralen
Informatik Dienst der TU Vienna (ZID). It contained the information about courses,
their dates and the number of students that passed the according exams. The study
was a success, confirming the GuT results and leading to the development of
MoreSpace, a tool designed to simulate the whole TU campus.
This dissertation will focus on the simulation tool that was developed and give a
detailed description of the simulation approach used as well as the different
algorithms that were implemented to offer a broad spectrum of possible scenarios to
experiment with.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

41

Figure 3-2 Original Building on Karlsplatz

3.5 Definition of Terms

To avoid any misconception several terms used in describing the MoreSpace project
are shortly explained here.

3.5.1 Utilisation of Rooms

This term indicates the percentage of the time the room is booked over the semester.

3.5.2 Capacity Utilisation

This term indicates how well is the capacity of the room used, respectively how
many people are in the room when it is occupied.

3.5.3 Travelling Time

This means the amount of time it takes a student to walk from one room to the other.

3.5.4 Clearance Time

This term indicates the time it takes to leave a room – of course this depends on the
number of people currently in the room as well as the size and location of the exit,

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

42

3.5.5 Not Successfully Booked Lectures

The booking procedure tries to assign a room to every lecture that is planned. If it
proves to be impossible to assign any room to a certain lecture this lecture is marked
as not successfully booked.

3.5.6 Compulsory Lecture

Lectures that are mandatory for a certain field of study are called compulsory
lectures.

3.5.7 Elective lecture

During the master study the student is able to choose between several lectures that
are offered at the TU to focus their interest on a special field within their field of
study. These lectures are called elective lectures.

3.5.8 Additional Lectures

Additional to compulsory and elective lectures the student has to choose a certain
number of lectures. These he can choose freely

3.6 Intended Purpose of MoreSpace

The project MoreSpace was launched to develop a software tool to support the
planning phase of “University2015”. “University2015” is a project of the Vienna
University of Technology (TU Vienna) to renovate all university buildings and to
improve the existing infrastructure and the inherent processes. This shall also be
done by determining and evaluating the (spatial) resources required.
The project was launched to assist the department of Gebäude und Technik at the
TU Vienna during the planning phase of Univercity 2015. The team responsible for
this project used static methods to calculate an assessment of the number of square
meters each faculty of the TU Vienna needs for lectures and other student related
activities. This calculation was based on the number of students that took exams and
the hours of teaching for each faculty. The resulting numbers did show the need of
square meters required to accommodate the number of student during the lectures
but did not take into consideration how these square meters are used over time. One
thing that complicates things considerably is the fact that lectures at the TU Vienna
do not take place one after the other in a strict pattern as it is done at schools or
colleges but are set at times favoured by the lecturer. This results in a weekly
timetable for the student that contains times where several lectures may be very
close to each other, even overlapping, and times where no lectures at all are taking
place, leaving a big time gap. Over the whole of the TU Vienna one can say that

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

43

there are certain times during the week that are more or less preferred by many
lecturers, resulting in a high demand of rooms during certain time periods, where
other times – i.e. Friday afternoons – are not that popular. The fact that the required
amount of square meters is available, does not mean it is used in a way that ensures
that it will be indeed possible to acquire a room for a lecture at a certain time.
The idea to develop a simulation was born, a tool to reproduce the situation as it
currently is concerning the lectures and their demand on room and experiment with
the room structure. The basic idea was to keep the lectures exactly as they were and
test if the new room situation was able to accommodate all of them.
In 2008 the working group consisting of the Research Group for Mathematical
Modelling and Simulation and the Research Group for Real Estate Development and
Management at the Vienna University of Technology were asked by GUT TU, co-
responsible for Project Management of “Univercity 2015”, to introduce a model for
the room management that can simulate the usage of resources to optimize the
planning of the rooms and the future usage. Figure 3-3 shows the effect simple
changes to the space management can have: If the strategy is used to increase the
utilisation of fewer rooms it automatically offers larger continuous timeslots in the
remaining rooms.

 Room 1 Room 2 Room 3

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

 Room 1 Room 2 Room 3

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

Figure 3-3 Keeping larger Timeslots

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

44

The first step to developing MoreSpace was to use the data of the faculty of
Architecture and Raumplanung and the faculty of Bauingenieure and test if the main
building on Karlsplatz as it was planned would be able to hold all lectures of these
two faculties.
To be able to experiment with the room structure was quickly advanced by the
possibility to use different strategies for the space management. It does make a big
difference in what order the list of demands for a room is processed.
This shows very nicely the analogy to the classical application of DEVS, the
simulation of logistic processes in production lines or manufacturing facilities where
the order of processing may become crucial for production times and the feasibility
of manufacturing certain quotas in time. Here simulation is one of the most evident
ways of analysing and enhancing the existing system.
The classical discrete event simulator Enterprise Dynamics was chosen to develop
the dynamic simulation including features like different possibilities of room
selection, different management of the resources, variability of classes, class
structures and number of students - only to mention a few of the features. This
discrete dynamic simulator was combined with - and is guided by - methods and
procedures of the real estate management like business process models.
In the course of developing the first studies the working group identified two main
problems that are different to tasks which are normally solved by classical discrete
event models. On one hand the interfaces to data collection and booking system had
to be improved and standardized. Booking features and also the representation of
data was not sufficiently optimized neither to the needs of the simulation tool that
has to be implemented nor to the needs of the future booking system that has to be
simulated. On the other hand the buildings of the Vienna University of Technology –
as the university will not move out of the city of Vienna – remain very scattered over
a few districts of the city. Therefore a simulation of room booking and facility
management has to be aware the problem of differently structured buildings within
the university and therefore consider travelling times, sometimes even between
classrooms within the same building.

3.6.1 Aide for Booking Courses

During its development MoreSpace did attract the attention of several people
working with the problem of assigning rooms to lectures. Especially the challenge of
finding a room on short notice quite often causes discontentment and the fact that
one might not find an available room via TUWIS++ but taking a good look around
shows several empty rooms that should be occupied according to TUWIS++.
This situation makes it annoyingly difficult to book rooms that are not only available
but also best equipped and comfortably close.
MoreSpace has been developed not only to show that technically more than enough
room is available but also to show a way to improve the current situation. The
department that is responsible for creating the plan of lectures for each semester and

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

45

for assigning rooms to these lectures has of course taken quite some interest in the
development of MoreSpace and has contributed to the integration of different
strategies in several meetings and discussions. The future plan here is to use
MoreSpace as an aide for their booking organisation to compare different strategies.

3.7 Benefits

The benefit of using a simulation tool in general is that ways of enhancement can be
tested without risk to the real system. The same can be said about MoreSpace –
strategies for booking can be experimented with, in scenarios rooms can be closed,
added, joined or redecorated with no risk or costs.
Results can be achieved very quickly; the comparison of different scenarios can be
easily done.
Due to the GUI used for parameterising and the connection to databases for the data
exchange the usage of the simulation tool should be as comfortable as possible.
MoreSpace has been designed to enable the calculation of different scenarios to
evaluate and compare different booking strategies but also to test future
developments in a safe environment.
This may be changes to

 Student numbers – increase of student numbers => more demand of room

 Room structure – rooms may be out of use for longer time periods due to
renovation or technical problems

 Courses – the different fields of studies may be reduced or new ones may be
added

 Handling of courses – blocking of courses becomes more and more popular

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

46

Chapter 4: MoreSpace: Model
Description

The MoreSpace model actually simulates two different but interlaced things: the
booking/assignment of rooms for lectures and the dynamic behaviour of students
attending these lectures and the resulting utilisation of space. Figure 4-1 shows the
steps MoreSpace executes: first is the collection of data from several different
sources:

Figure 4-1 MoreSpace

The MoreSpace simulation model uses three different sources for the data basis of a
simulation run: the information about courses is acquired from TUWIS++
respectively its successor TISS; all information regarding the lecture halls and their

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

47

status is obtained via the database of GuT; information about the number of students
attending a course are estimated based on historical data as well as actual trends.
The MoreSpace simulation uses this data for calculating a suggestion for the
assignment of rooms according to the selected booking management rules. This
leads to successful and not successful booking attempts, both which are part of the
simulation result. Other results are i.e. the expected utilisation of rooms.

This suggestion is used as a basis for the dynamic simulation of the semester that
includes the movement of students through the system. Students are simulated as
single agents with their own „intelligence‟; they are able to make decisions i.e. which
lecture to attend if two lectures overlap. The total number of students attending a
lecture is not really known, it is estimated based on the historical number of students
that have visited this course during the years before as well as an additional factor
that can be manipulated by the MoreSpace user. During the course of the semester
they attend their lectures and move through the university campus, causing the
dynamic behaviour of the system. This delivers additional results like the capacity
utilisation of the rooms – the number of students attending the lectures held in a
room opposed to the capacity of the room. This gives a greater understanding of the
real demand on room compared to the available space. Also a result of the dynamic
simulation based on the student - agents is the accessibility of lectures – spatial as
well as temporal and the utilisation of rooms. Accessibility is of great interest for it
takes the size and layout of the TU Campus into consideration. This is one of the
major advantages of MoreSpace: it does not stop at the best possible assignment of
rooms but also considers the individual problems that may occur for students to be
able to attend a lecture.

The model is designed to allow three different angles of experimenting:

 The room structure containing the type of rooms and their capacity and
location,

 The list of courses held with their time and expected number of students and
the required setup of the room

 The booking management used for the assignment of rooms to the single
lectures of each course

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

48

Figure 4-2 Entity Relationship Model

4.1 The MoreSpace Model from DEVS Point of View

As shown in Figure 4-2 the basic elements of the MoreSpace model are room, course
and student. The course is a passive object that is assigned to a student but has no
behaviour at all.
This leaves the room and the student. The room can be split into several small
models, representing a coupled model consisting of four atomic models as shown in
Figure 4-3:

Figure 4-3 Structure of Room Model

4.1.1 Queue In and Queue Out:

The queues Qin , Qout in front of the door are simple FIFO buffers. Using the DEVS
formalism the definition for the atomic model representing both of them is:

Queue In Door Queue Out

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

49

Qin = Qout = (X, S, Y, δint , δext , δcon , λ, ta), with

 𝛴 = 0,1,2, …
 𝑋 = 1, −1
 𝑌 = 0,1

 𝑡𝑎(𝑥) =
 ∞ 𝑖𝑓 𝑥 = 1
 0 𝑖𝑓 𝑥 = −1

 𝛿𝑖𝑛𝑡 𝑠 = 𝑠 − 1
 𝛿𝑒𝑥𝑡 𝑠, 𝑥 = 𝑚𝑎𝑥⁡(0, 𝑠 + 𝑥)

 𝜆 𝑠 =
 0 𝑖𝑓 𝑠 = 0
 1 𝑖𝑓 𝑠 > 0

4.1.2 Door

The door leading to a room is represented by a server atom in ED; the DEVS
formalism describes it as follows:
D = (X, S, Y, δint , δext , δcon , λ, ta), with

 𝛴 = 0,1
 𝑋 = 1
 𝑌 = 1
 𝑡𝑎(𝑥) = 𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒
 𝛿𝑖𝑛𝑡 𝑠 = 0
 𝛿𝑒𝑥𝑡 𝑠, 𝑥 = 1
 𝜆 𝑠 = 1

4.1.3 Room

The room has no other functionality than taking count of the number of people
entering and leaving over time.

R = (X, S, Y, δint , δext , δcon , λ, ta), with

 𝛴 = 0,1, …
 𝑋 = 1, −1
 𝑌 =
 𝑡𝑎(𝑥) = ∞
 𝛿𝑖𝑛𝑡 𝑠 = 0
 𝛿𝑒𝑥𝑡 𝑠, 𝑥 = 𝑠 + 𝑥
 𝜆 𝑠 = 0

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

50

4.1.4 The Student: A Double Agent?

The student is considered an atomic model with the behaviour of an agent. It is a
member of both worlds, DEVS as well as ABM because it still interacts with the
DEVS environment as a regular input and output of the DEVS system represented
by Queues and Server.

Considering the definition of a run 𝑟𝑗
𝑘 an action ∝𝑗

𝑘 takes place in response for every

state 𝑠𝑗
𝑘 the student takes in.

𝑆
𝑘is the set of all state variables an agent 𝑎𝑘 can see. The actions as well as the

change to the state variables have to be defined by using the structure of the atomic
model.
For the interaction with the discrete event simulation system the agent has to act as
an input to the DEVS elements. I.e. in ED an external event of a Queue is triggered
by an incoming atom.
In case of the student the actions can be listed as:

 Decision if the student will attend the next lecture: depending on their
individual time management and their own preferences the students decide
which lecture they will attend next.

 Start Walking: the students start to move towards their destination. This can
either mean they will „frozen‟ in the ED model and transferred to the JAVA
model or it starts moving according to the function integrated in ED.

 Walk: the students move from their current location to the assigned lecture
room.

 Arrive: The students reach their destination. This means either they are
returned from the JAVA model and „unfrozen‟ in the ED model, or they have
reached their destination according to the function integrated in the ED
model.

 Enter: the agents enter the room. That means they enter the Queue_In atom
and let the DEVS system take over.

 Leave: either the lecture is over or the students have another lecture with
higher priority: that means they enter the Queue_Out atom and let the DEVS
system take over.

 Attend: the students have entered the room and attend the lecture

The student atom has several states that result from their activities:

 Waiting: after a decision: if at the current time there is no lecture to attend the
student waits until it is time to get ready for the next lecture. Their location is
set to somewhere outside the campus and their speed is set to 0.

 Attending: the students attend a lecture and remain in this state until they
leave. Position and speed do not change during this state.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

51

 Start Moving: students enter this state if they start walking and remain
unfrozen in the ED model. Their speed is changed, their position remains the
same. This state is immediately changed to walking by the action walk.

 Walking: the students move from one point in space to another with a given
speed. They remain in this state after they start walking until they arrive.
Their position changes, the speed remain the same.

 Frozen: the students remain in this state until they are „unfrozen‟; no events or
activities can happen during this state

 Arrived: after the students stop walking their speed is set to 0. If they are
„unfrozen‟ their position is updated.

 Queuing: as long as the student is moving through the queuing process he
remains in this state. Due to the ED atom design the entering and exiting
process automatically causes an input to the atom and therefore to the agent
atom as well. This causes an update in the agents state

Λ𝑘 = 𝑑𝑒𝑐𝑖𝑑𝑒, 𝑤𝑎𝑖𝑡, 𝑠𝑡𝑎𝑟𝑡 𝑤𝑎𝑙𝑘𝑖𝑛𝑔, 𝑤𝑎𝑙𝑘, 𝑎𝑟𝑟𝑖𝑣𝑒, 𝑒𝑛𝑡𝑒𝑟, 𝑎𝑡𝑡𝑒𝑛𝑑, 𝑙𝑒𝑎𝑣𝑒

S𝑘 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑠𝑝𝑒𝑒𝑑, 𝑓𝑟𝑜𝑧𝑒𝑛, 𝑤𝑎𝑙𝑘𝑖𝑛𝑔, 𝑞𝑢𝑒𝑢𝑖𝑛𝑔, 𝑤𝑎𝑖𝑡𝑖𝑛𝑔

The student agent entering the queue atom is treated as the positive input value
𝑥 ∈ 𝑋 and therefore triggers the time advance function and the external translation
function, thus the autonomous behaviour of the atomic model „Queue‟. The „Queue‟
treats the agent atom just like any other input, resulting in the output value 𝜆 𝑠 that
causes the student atom to be moved into the next atom, the „Door‟. Here again the
agent atom is treated as any regular input, generating the output
value 𝜆 𝑠 after 𝑡𝑎 𝑥 has passed from the „Door‟, that causes the agent atom to be
positioned in the „Lecture Room‟. Here the control is returned to the agent atom: the
lecture room has no further functionality but to count the number of student atoms it
contains, it does not generate an output value that influences the agent atom. The
next action of the agent atom is completely independent from the activity of the
discrete event system elements: the student will leave again at the time either the
lecture ends or it has another activity planned that is of higher interest than its
current activity. Leaving is the identical procedure: the student agent enters the
queue leaving the room, passes through the door and then moves on to its next
activity.
Using the concept of the timed events in ED an activity of an agent can be
represented by two events set at the beginning of an activity and at their end. The
events are triggered at the corresponding time and are used to update the state
variables.
The main characteristic of students is their ability to make their own decisions based
on their own state and their environment. To model the human decision making in
this work the Utility Theory is used: it assumes that the decision process has two
elements: the options and the evaluation function, called utility function that maps
each option in the choice set to a numerical value.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

52

Definition 7: Utility Function

The function 𝑢: 𝒳 ⟼ ℝ is a utility function if 𝒳 is the set of choices.
Preferences of the modelled individuals can be:

 No preferences (∽)

 Prefer the first over the second option (≻)

 The second over the first (≺)

If the preferences observed in the individuals modelled correspond to the
relations given by 𝑢 ∘ , 𝑢 ∘ is called a valid utility function for the given
decision problem.

In case of the MoreSpace model one decision the student has to take is the case of
overlapping lectures. If a lecture x and a lecture y take place at the same time the
student has to decide which one to attend.
Basically the utility function for the decision making of the student for overlapping
lectures can be derived from the type of lectures the student has to choose between:

𝑋 = c𝑜𝑚𝑝𝑢𝑙𝑠𝑜𝑟𝑦 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝑒𝑥𝑎𝑚, 𝑎𝑛𝑦𝑡𝑕𝑖𝑛𝑔 𝑒𝑙𝑠𝑒

𝑢 𝑥 =

5, 𝑥 = 𝑒𝑥𝑎𝑚
4, 𝑥 = c𝑜𝑚𝑝𝑢𝑙𝑠𝑜𝑟𝑦 𝑙𝑒𝑐𝑡𝑢𝑟𝑒
3, 𝑥 = 𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑐𝑡𝑢𝑟𝑒
2, 𝑥 = 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑒𝑐𝑡𝑢𝑟𝑒
1, 𝑥 = 𝑎𝑛𝑦𝑡𝑕𝑖𝑛𝑔 𝑒𝑙𝑠𝑒

And the preference is assumed to be ≻.

Of course the individual preferences need to be added as well: the option not to go
anywhere can be added to model the possibility that a student might not attend any
lecture at all. The decision between lectures may be done stochastically.
But a tendency towards one lecture has to be remembered – the decision the next
time may depend on the decisions felled in the past.

𝑋 = {𝑛𝑜 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒, 𝑒𝑥𝑎𝑚,

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

53

𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒}

𝑢 𝑥 =

6, 𝑥 = 𝑒𝑥𝑎𝑚
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(5,4), 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑡𝑕𝑎𝑡

 𝑕𝑎𝑠 𝑏𝑒𝑒𝑛 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 𝑖𝑛 𝑡𝑕𝑒 𝑝𝑎𝑠𝑡
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(4,3), 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(3,2), 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑡𝑕𝑎𝑡

 𝑕𝑎𝑠 𝑏𝑒𝑒𝑛 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 𝑖𝑛 𝑡𝑕𝑒 𝑝𝑎𝑠𝑡
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(2,1), 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(5,1), 𝑥 = 𝑛𝑜 𝑙𝑒𝑐𝑡𝑢𝑟𝑒

And the preference is assumed to be ≻.

The decision also depends on the quality of the lecture itself: Are there enough seats?
Does the course have a good scriptum? Is it an interesting topic?

𝑢 𝑥 =

10, 𝑥 = 𝑒𝑥𝑎𝑚
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(9,8), 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑡𝑕𝑎𝑡

 𝑕𝑎𝑠 𝑏𝑒𝑒𝑛 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 𝑖𝑛 𝑡𝑕𝑒 𝑝𝑎𝑠𝑡

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 8,7 , 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 7,6 , 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑎𝑛𝑑
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔 𝑡𝑜𝑝𝑖𝑐

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 6,5 , 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑎𝑛𝑑
𝑔𝑜𝑜𝑑 𝑠𝑐𝑟𝑖𝑝𝑡𝑢𝑚

𝑢𝑛𝑖𝑓𝑜𝑟𝑚(5,4), 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑡𝑕𝑎𝑡
 𝑕𝑎𝑠 𝑏𝑒𝑒𝑛 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 𝑖𝑛 𝑡𝑕𝑒 𝑝𝑎𝑠𝑡

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 4,3 , 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑎𝑛𝑑
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔 𝑡𝑜𝑝𝑖𝑐

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 3,2 , 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 2,1 , 𝑥 = 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑎𝑛𝑑
𝑔𝑜𝑜𝑑 𝑠𝑐𝑟𝑖𝑝𝑡𝑢𝑚

𝑢𝑛𝑖𝑓𝑜𝑟𝑚(9,1), 𝑥 = 𝑛𝑜 𝑙𝑒𝑐𝑡𝑢𝑟𝑒

And the preference is assumed to be ≻.

The depth of the utility function can be easily altered. Right now the behaviour of
the students is kept fairly simple to ensure the model works correctly. After
validation of the MoreSpace booking simulation the behaviour of the students can be
tuned to allow additional analysis of results.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

54

4.2 Room Management

The existing courses can be mapped to different room structures. This enables the
user to draw conclusions regarding the utilization and capacity utilization of rooms.
Alternative situations can be easily given a try i.e. the effect of additional available
space or the blocking or releasing of rooms. It is also possible to cause external
events during the simulation that causes a change to the room structure at any given
time during the simulated semester.

4.3 Booking Management

The rules that define the way rooms are assigned to lectures are summarized with
the term booking management. It includes the order in which the courses are dealt
with.
Aim of the simulation is it to study the consequences of different strategies and
different conditions regarding the room situation at the TU Vienna.

MoreSpace offers several strategies that can be used to establish the order in which
the lectures are booked into the rooms.

4.3.1 Sorting by Date

The list of lectures is sorted by begin date and time.

4.3.2 Sorting by Duration

The list of lectures is sorted by the duration of the lectures beginning with the
longest descending.

4.3.3 Sorting by Capacity Demanded

The list of lectures is sorted by the number of students that are expected to attend
beginning with the highest value and descending. This should lessen the crowding
out effect as lectures demanding big lecture halls are automatically booked first.

4.3.4 Sorting by Category of Lecture

Especially for Master Studies the lectures are divided into compulsory lectures that
are mandatory for a student of this field of study and additional lectures that can be
chosen from a wide range of offered lectures.
OF course compulsory lectures for bachelor as well as master studies usually should
be regarded as of higher priority.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

55

4.3.5 Sorting by Type of Lecture

There are several kinds of lectures: Basic lectures, Laboratory courses, Exercise
courses, Practical courses, Seminar courses, etc.
Usually different types also have different demands on the amount of space they
require as well as the setup. Therefore it seems reasonable to add some kind of
sorting regarding the type of lecture as well.

4.3.6 Sorting by Modus of Lecture

Lectures may be held in different kind of modus: Weekly lectures used to be the
most common type: the lecture takes place every week at the same time from the
beginning of the semester until the end. This may be once or several times a week,
depending on the amount of hours this lecture takes up.
Blocked lectures take place during a few consecutive days, covering the whole
semester in a few blocks of several hours. This used to be most common for
laboratory exercises but has become more and more employed during the last years.
Single lectures: every week a new time and day is assigned.

4.3.7 Additional Options

Additional options that are considered by the booking routine are: fixed rooms for
weekly courses, a classroom concept for bachelor studies where the change of rooms
is kept to a minimum and the lectures are consecutively timed, focusing on the best
fit of room size where the search is narrowed down to the optimal room regarding
its capacity versus the expected number of attending students..

4.3.8 Behaviour of Rooms

It is possible to cause external events during the simulation that causes a change to
the room structure at any given time during the simulated semester. This includes
the joining or dividing of rooms or the sudden need to close rooms due to technical
problems for a certain time period. Of course this would result in the immediate
need of reassigning the lectures booked in these rooms during this time period.

4.4 Student Numbers - a General Problem

A general problem in formulating the model was the lack of distinct information
regarding the number of students attending each lecture. Due to the lack of
mandatory attendance at most lectures the numbers differ quite strongly from the
number of passed exams or even the number of enrolled students.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

56

Figure 4-4: Course with Mandatory Attendance

It is a common occurrence that the numbers of students that attend a lecture tend to
drop after the initial weeks of a new semester. This effect is especially distinctive
observable in lectures without mandatory attendance. The real number of students
following the course is mostly not matching the number of students really attending
each lecture; the best approximation for this number is 𝑛𝐹 , the number of students
taking the exam for passing the course. But the number 𝑛𝐴𝑡

 of students attending a

lecture at time t depends on several factors:

 The perspicuity of the lecturer – the quality of the lecture influences the
attendance of students considerably. A lecturer that is hard to understand or
whose explications are hard to follow will have fewer students than one who
presents his lectures in a comprehensible and interesting way.

 Of course the topic itself is always a factor as well

 The quality of the accompanying material: a lecture that offers high quality
manuscripts that contain anything the student needs to pass the exam
usually lead to a drop in attendance. The strongest factor for attending a
lecture after it being mandatory is the need for lecture notes. If they are
provided one main factor simply falls away.

 The importance of the lecture: compulsory lectures are usually highest in
priority for they must be done. Some courses are precondition for getting a
place in a tutorial

 Assessment of student‟s performance: if during the semester several interim
tests are done for the assessment of the students this usually leads to a
different behaviour: at the date of the tests most students attend the lecture to
take part in the test. Right before and after these dates the number raises and
drops respectively.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11

nAt

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

57

Figure 4-5: Course with Interim Tests

Figure 4-6: Course without Interim Tests

Using the agent based approach did allow to use the known data as basis for the
number of students. Students have their own behaviour in attending lectures that
recreates the attendance behaviour of the real system.

Known are:

𝑛𝐸 … Number of enrolled students
𝑛𝐹 … Number of students finishing the course by passing the exam

Not known are

𝑛𝐴𝑡
 … Number of attending students at time t

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11

nAt

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11

nAt

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

58

𝑛𝐷𝑡
 … Number of drop out students at time t

𝑛𝑁𝑡
 … Number of not attending students at time t

One may say:

𝑛𝐸 ≥ 𝑛𝐴𝑡 ≥ 𝑛𝐹

Considering the current situation on the TU Vienna one may even be sure to say:

𝑛𝐸 > 𝑛𝐴𝑡 ≥ 𝑛𝐹

𝑛𝐴𝑡

 = 𝑛𝐹 ∗ 𝐹𝑆

𝑛𝐹 = 𝑛𝐴𝑡

+ 𝑛𝑁𝑡
− 𝑛𝐷𝑡

For courses with a mandatory attendance one might say:

𝑛𝐸 > 𝑛𝐴𝑡 = 𝑛𝐹 + (𝑛𝐷𝑡𝐸
− 𝑛𝐷𝑡

)

Figure 4-7: Number of Attending Students

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11

𝑛𝐹

𝑛𝐷𝑡𝐸

𝑛𝐴𝑡
= 𝑛𝐹 + (𝑛𝐷𝑡𝐸

− 𝑛𝐷𝑡
)

𝑡𝐸 𝑡

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

59

4.5 Step I: Simulation Model Assembly

The first step for each simulation run is assembling the simulation model according
to the basic input data transferred from the database. For this the Data Import
Functions are used as well as some internal tables for storing the data that is used
not only during the model assembly but during the simulation run as well. The
MoreSpace Library contains all atoms the model may contain; the Model Template
offers the functions for the data import and the model build-up.
First all buildings are created, based on the BUILDING atom from the library. For
each building its parameters are set to the values defined in the database.
Then the lecture halls are built from the ROOM atom, set into their assigned building
and tagged with their individual parameters.
The last point is the compiling of the list of courses, preparing it for the next step, the
booking procedure.

Figure 4-8: Model Assembly

4.6 Step II: Simulation of Booking Procedure

For the simulation of the booking procedure the Model Template, the GUI and the
Simulation Model work together: the GUI delivers the input from the user regarding
the model behaviour relevant for the booking function. Based on the simulation
model design e.g. the number of rooms and the list of courses the booking of the
rooms is simulated. The simulation is dominated by the booking rules and the
behaviour of the rooms over time. The result is the list of all booked events as well as
the list of unsuccessful booking attempts.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

60

From this the utilisation of the rooms can be derived.
A more detailed description of the booking procedure is given in Chapter 8
Functional Description.

Figure 4-9: Simulation of Booking Procedure

Every Room has the following Parameters:

Room Capacity 𝐶𝑅
Room Setup 𝑆𝑅
Room Environment 𝐸𝑅

Every Course has the following Parameters:

 Number of expected Students 𝑁𝐶
 Required Room Setup 𝑆𝐶
 Course Type 𝑇𝐶
 Course Modus 𝑀𝐶
 Required Environment 𝐸𝐶
 Begin Time of the course 𝑇𝐵𝐶
 End Time of the course 𝑇𝐸𝐶
 Required Environment 𝐸𝐶
 Length of the course 𝐿𝐶 = 𝑇𝐸𝐶 − 𝑇𝐵𝐶

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

61

4.6.1 Sorting

Sorting of courses may happen according to the type of the course 𝑇𝐶 , the modus of
the course 𝑀𝐶 , the number of the expected students 𝑁𝐶 or the length of the course 𝐿𝐶 .
The sorting defines the order in which the courses are booked.

4.6.2 Booking Criteria

The booking procedure tries to find a room to each lecture. The attributes of the
lecture determine exactly what kind of room can be assigned. Certain criteria have to
be fulfilled to enable the assignment of a designated room to the lecture.

Definition 8: Strong Best Fit Criterion

The capacity of the room has to equal the expected number of students:

𝐶𝑅 = 𝑁𝐶

Definition 9: Weak Best Fit Criterion

The capacity of the room has to be equal or greater than the expected number
of students:

𝐶𝑅 ≥ 𝑁𝐶

Definition 10: Optimal Environment Criterion

The environment of the room has to equal the environment of the course:

𝐸𝑅 = 𝐸𝐶

In other words: the appropriation of lecture halls and rooms to the institute that
holds the course has to be taken into consideration during the allocation of a room.
All courses of an institute have to take place as far as possible within the lecture halls
and rooms assigned to this institute.

Definition 11: Room Setup Criterion

The setup of the room has to accord to the requirement of the lecture:

𝑆𝑅 = 𝑆𝐶

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

62

4.7 Step III: Dynamic Simulation

The dynamic simulation involves the student going through the semester and
attending their courses. They allocate space in the assigned room and add to the
capacity utilisation of the room.

External Events:
The system state changes during the simulation due to events caused by the
elements of the simulation model. There are two additional events that influence the
system state but are not triggered by the occurrences within the system:

 Assignment of rooms to lectures

 Blocking of rooms during certain time period due to reservation or
reconstruction

The booking of rooms for lectures will take place before the actual semester begins,
but there will always be a demand of space during the semester as well, resulting in
additional room assignment as well as an adjustment in the student behaviour.
Additional lectures or other events will cause student to attend them and therefore
make them take new or different decisions than they would have before this change
happened.
The blocking of a room for a certain time period due to reconstruction or other
reasons will lead to a reassignment of all lectures booked in this room. This will also
affect the students as they have to be informed about the change in location.

Figure 4-10: Dynamic Simulation

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

63

Figure 4-11 Simulation Model in ED

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

64

Chapter 5: The Simulation
Approach

5.1 Simplify, Simplify! (Henry David Thoreau)

As this simulation sorely focuses on the lecture halls of the Technical University of
Vienna all other rooms and their usage are not regarded here. All events that take
place outside of the lecture halls are not considered and this fact has to be kept in
mind at the evaluation of the simulation results.

A main task of creating a simulation of a real system is simplifying the system as it is
observed in the real world as much as to reach a model that is only as complex as it
is needed to achieve the desired results. In the case of MoreSpace the first focus was
on the different rooms available for the lectures and the long list of events that had
to be booked into them. Only after working with the input data and analysing it the
realisation dawned that one aspect had not yet been taken into account: the students.
Just as important as it is to find the best equipped room with the right size for each
event is it to ensure that students are able to attend this perfectly planned event. The
collision of lectures is a not uncommon problem that forces many a student to decide
with lecture he will not attend. This may be due to overlapping times of lectures but
even more often it is the time it takes to get from one lecture room to the next. This
movement time is often underestimated and causes lectures to interfere with each
other although they are not really taking place at the same time.
But enabling students to attend their lectures as unopposed as possible is one
important factor for keeping the quality of education on the Technical University of
Vienna at its best.
So the focus in the model was also set on the students. In a classic DEVS system the
students would have been regarded as entities that are routed through the system, in
this case through the rooms and the lectures occurring there. In the case of two
overlapping lectures the entity would have always followed its designated path:
attend the first lecture until it is finished and then proceed to the next. But students
are no mindless entities; they have their own priorities and preferences and usually
every student is a unique and to some extent unpredictable person.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

65

So the classical DEVS approach seemed not satisfying and considering a group of
people with certain behaviour quickly leads to the most common approach for
problems of that kind: Agent Based Modelling.
As already described in section … Agent based Modelling works with individual
„agents‟ that have a predefined behaviour that results from an evaluation of their
current situation and a set of rules.
According to this students can be considered as agents, their current situation results
from their list of lectures they have to attend and the decision of where they will go
is derived from the given set of rules. If certain possibilities are entered for certain
decisions the individuality of the single persons simulated can be achieved.

The model that has been developed for MoreSpace is a dynamic model that enables
the user to have all the available data to their disposal as well as all the knowledge
collected during the project time in discussions and tutorials with several people
related to the booking system. The main focus is on the comparison the effect of
different behaviour in regard of the booking of rooms for lectures may have on the
availability and the utilisation of the lecture halls.
The model is designed to ensure the maximum flexibility. Different scenarios can be
calculated and compared quite quickly. This includes changes to the room structure,
the lecture plans or the rules for the booking management.
Basically it is necessary to strictly differentiate between two aspects of MoreSpace:
the model design and the model behaviour.

5.2 Simulation Peoples Movement in ED

Discrete Event Simulation (DEVS) is a widely used approach for modelling and
simulation of dynamic discrete systems. The modern object-oriented DEVS world
view regards active objects (entities) passing passive objects (stations) along given
path. An event mechanism updates movement of entities, being capable also of
collisions and other state-dependent phenomena. Consequently; DEVS can be used
for simulation of pedestrian and evacuation dynamics. Classical straightforward
modelling approaches, based on abstract classical queuing systems, do not take into
account the spatial distributions primarily – only for animation a spatial component
is used. But modern object-oriented tools allow modelling of a spatial distribution
primarily by means of topological attributes as well in active and passive objects at
the modelling level. This contribution discusses the “spatial” features of DEVS
simulation systems The chosen simulation tool, Enterprise Dynamics, offers a high
flexibility due to its programming language 4d script that allows adding further
functionality to the provided elements as well as creating completely new ones.
At present there exist a lot of software tools for modelling and simulation of discrete
dynamic systems. Almost all tools are based on a modern object-oriented DEVS
world view regarding active objects (entities) passing passive objects (stations) along
given path. A time event mechanism updates movement of entities, being capable

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

66

also of collisions and other state-dependent phenomena. Some of these tools can look
back at a long tradition, now offering also any kind of object-oriented features, etc.
Some of the tools are results of new research projects, starting with object-oriented
approach from the first release.
All these tools are more or less similar at the basic modelling level where general
entities are passing general stations. But big differences are met in application
libraries: some tools have specialised for a certain application, like network
modelling, offering preconfigured stations like network routers. Other tools offer
different modelling levels, from a library with basic elements to high specialised
modelling libraries.
The basic Elements of a DEVS are Servers and Queues. In this first approach of
modelling the movement of people through a given area toward an exit a model
consisting of servers and queues is build.
Classic DEVS as Enterprise Dynamics do offer only basic routines and functions to
describe the movement of elements. For usually the way of such an element is given
by its passing through other elements as servers and queues.
ED offers the travelto and the movingto function to let an element (atom) move from a
starting position (𝑥0 , 𝑦0 , 𝑧0) to a destination (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑).

What is not taken into account when using this functions are two important things:

 Due to the event based handling an agent cannot easily change its movement
towards another destination

 Several elements may take up the same position in space without causing a
conflict in the system.

So when using a DEVS based simulation system especially the possibility of
collisions has to be given special consideration.

The basic idea is to cover the area of interest by a “field” of servers (and queues),
adding up to form the topology of the given area. The area is cut into single places
and each of them represented by a server. Each place has eight adjoining places,
building a structure similar to a honeycomb (Figure 5-1: Places represented by
servers).

Figure 5-1: Places represented by servers

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

67

The cycle time of each server is given by the time a person needs to pass through and
depends on their individual attributes as well as the position of the cell in regard to
the exits. People walking through the area pass through these places, choosing the
next place to go to according to certain rules.

In principle, this modelling approach for the spatial topology is similar to modelling
approaches with cellular automata, whereby a server mirrors a cell. Here, the entities
are active objects, changing the state of a server or cell, respectively, on the basis of a
time event mechanism. A classical state update of cellular automata works on an
equally spaced time pattern, here the update happens at the time of entering and
exiting the cell.
Time in discrete event simulation systems does not pass continuously but in
irregular time steps that correspond to the changes in the system state. So the
movements of a person can be reduced to be a sequence of events. We can identify
two different events: entering a place and exiting a place

Between entering and exiting will always pass a certain time, depending on the
persons walking speed as each place does represent a certain walking distance, but
exiting one place and entering another happens instantaneous.
These two events will be consecutively repeated until the person has reached its
destination.
Parts of the area where people are not supposed to pass through due to obstacles or
other reasons can be easily marked. It is only necessary to set the capacity of the
corresponding places to zero to ensure they cannot be entered.

Figure 5-2: Pseudo-3D Visualisation of an area with obstacles

Modern simulation tools like Enterprise Dynamics allow generating this and other
topologies automatically from databases.
Each person is modelled as a single element (entity) within the simulation, carrying
their own attributes as size, speed, and the current spatial position.
They choose the exit they wish to use depending on the distance between their own
position and the position of the exits. This decision is repeatedly done, so a change of
direction might occur if the way to the chosen exit is blocked.
On this way, they are passing through the (fixed) places, each step depending on
their decisions and the state of the surrounding places.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

68

As the capacity of each passable place is set to 1 and each place represents exactly
one position in space it is not possible for two elements to share the same position. If
the next place a person would need to pass through to continue its way towards the
exit is already occupied it will enter the next free place instead, rerouting itself. If
none of the adjoining places is free the person is unable to move until one is vacated.

Using servers to represent each single position in the two dimensional space has one
major drawback: to represent an area of even small size a huge amount of servers is
needed. That slows down simulation time. In principle, the spatial distribution of a
server equals the area a person needs to stand.
The first approach was based on using the classic features of Enterprise Dynamic: it
has its own programming language developed to offer a high flexibility in using and
expanding its functionality. This language allows creating and moving spatial
objects, extending the capabilities of classical entities dramatically.

Figure 5-3: Spatial Attributes of an Atom in Enterprise Dynamics

The basic modelling idea is now, to model the pedestrian by such spatial objects,
which are moving and allocating places. The topology is similar to the one used in
the first approach but instead of using servers to build up the walking area only the
area itself is regarded now. It is once more cut into small places; once more each
place has eight adjoining ones.

But now the information whether these places are free or occupied is stored in a
table where each cell corresponds to one of these places.
Instead of setting capacities to zero to ensure a certain place may not be entered now
it only needs to be marked as unavailable.

Movements of people are now reduced to only one reoccurring event: the next step.
Time between these events once more depends on the walking speed. The
continuous movement of a walking person is now broken down in jerky leaps from
one position to the next.
The person no longer moves from one server into another. Instead it only changes its
location, moving from its current position to the next. This is done with the

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

69

setloc(e1,e2,e3,e4) command that sets the x, y, z coordinates of the object (atom)
referenced with e4 to e1, e2, e3 within the current spatial space.
The decision in what direction the next step is going to be taken is now based on the
calculation of a direction vector that is calculated each time another step is taken.
Additionally it has to be checked whether the destination is already occupied by
another person. In the first approach this was not necessary due to the usage of the
servers – their basic functionality already covered this problem.
In the first approach, using servers to represent each single position in the two
dimensional space had one major drawback: to represent an area of even small size
a huge amount of servers is needed. That slows down simulation time. In this
approach, simulation time could be reduced significantly.

The MoreSpace Model is designed to simulate the behaviour of about 20 000
students. Even though the second approach discussed here is a lot less demanding
in regard of computational time the high number of agents to be simulated proved
to be too much to remain within reasonable computing time of a simulation run.
Therefore the simulation of the exact movements of each agent based on the layout
of rooms and corridors was not implemented in ED but in an external simulation
model developed in JAVA based on cellular automata. The ED model is able to use
average travelling times or to interact with the JAVA model by sending the student
agents to the external model of corridors and have them re-entering the system as
soon as they have reached their destination. The agent based approach is the key for
the successful interaction of both models as the agent simply crosses the borders to
the other system and returns to the ED model at a later time. The development of the
JAVA based model is not focus of this work, therefore only a short overview is given
in the following remaining chapter.

5.3 Hybrid Model: Connection to the CA Model

The simulation of the exact movement of students through and between the TU
buildings is technically possible in Enterprise Dynamics. A system of coordinates is
ingrained into the ED structure; every element in ED has its spatial position in x, y, z
coordinates as well as its speed, acceleration and translation. The atoms build to
represent the agent student are handed over to the external model in JAVA for
processing and calculation of the travelling time between buildings in different areas
but also vacation times within the buildings itself. This system is furthermore backed
up with a dynamic computation of vacation and room clearance times in ED, as for
static values (i.e. areas were the vacation times to not differ influenced by dynamic
parameters) values can be computed in the discrete simulator itself.
Implementing the hybrid system different problems occur. For example questions of
solving interface problems between ED and the CA implemented in JAVA had to be
solved. Hybrid Model

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

70

The main elements of the hybrid model are the "Students", that are moving through
the existing structure of the CA i.e. the “Building structure”. The building structure
is processed on basis of CAD plans of the buildings.
The whole structure of the systems is very simple. This simplification was a main
goal in planning and structuring the whole simulation set.

Figure 5-4 GUI in JAVA with CA of the currently simulated level

On one hand the data interface for getting information is complicated as plans
change very often. For this reason the interface should be very easy to use not only
for members of the research group but also for architects or other persons working
with the plans.
On the other hand the simulation has to handle a huge amount of data. Vienna
University of Technology has to coordinate over 9.000 rooms in about 26 objects
spread over the whole inner city of Vienna. A total floor area of about 276.000 square
meters would result in a total matrix size for the CA of about 17.700.000 cells. To
handle those sizes two strategies were implemented. First of all the size of the
matrices are not constant but variable to reduce the amount of cells. Second for this
reason and for future parallelisation reasons the plans were cut into a lot of different,
small sub-planes to process them in an easy way.
For speed values of individuals the speed results of the different grounds particles
can walk over. While on stairs the upstairs velocity is approximately 0.61 m/sec an
individual can move downstairs with about 0.71 m/sec. On corridors particles can
cross with 1.34 m/sec. But the ground is not the only influence on speed of
individuals. Another influence is the density of particles in an area. This is well
known from simulation tools for escape routes in emergency situations and was also
taken and integrated in the model.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

71

Figure 5-5: About 276.000 Square Meters have to be integrated into the CA

5.3.1 Interface between JAVA and ED

Because the JAVA program for Cellular Automata is of course only a part of the
simulation system, it is necessary for data exchange to establish a connection
between the two simulations. This interface was implemented with the aid of the
Transmission Control Protocol and the Internet Protocol, or short TCP/IP.
For a more detailed description see Section 6.5.

5.3.2 Problems

The approach of sending a TCP/IP message for each student from ED to the CA
model proved to have two major disadvantages:
First the amount of messages for larger models with a few hundred students quickly
became too much to handle in a reasonable time. For each student at least four
messages are sent between the two models: the message from ED to the CA for the
movement request, the according response and then the message to transmit the
result of the CA calculation for the walking time of the student plus the according
acknowledgment message from ED. This adds up to a very heavy traffic of messages
between the two models and results into quite a time delay for processing them.
The second problem that arises is synchronizing the two models. To achieve a time
synchronization of the two independent models that may even run on different
computers it is necessary to use a fixed time interval for updating the system. During

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

72

times of student movement ED has to wait for the CA Model where the exact
simulation of the movement takes some calculation time and causes it to run
significantly slower than the ED model. The time interval used is 5 minutes
assuming that walking distances of 5 minutes and less have no significant impact on
the system. Lectures tend to start and end at times that are on a 5 minute grid.
During times of no movement the CA model is empty and no synchronization has to
be done.
Breaking down the simulation time of one semester that consists of at least 16 weeks
into 5 minute intervals slows down the simulation run considerably. Assuming a
lecturing time of five days a week, ten hours a day where at least half of the time
student movements take place results in 4800 synchronization events. Considering
the whole TU campus it even has to be assumed that at any given time there will be
some kind of student movement. This would result in 9600 events.
The first problem can be solved by no longer using single messages for each student
but one message for each time point where any new student movement is started.
All students that want to change their position at the same time point are collected
and the according data is transferred to the CA model using a simple text file. The
message sent to the CA model will now contain the reference to the text file. This
solution has a great impact especially for lectures with a high number of students as
no longer four messages per student is needed - for a lecture with 150 students
attending this would mean 600 messages - but four messages for the whole group.
This proves to be a far more efficient way of communication between the two
models.
The problem of time synchronization remains. The main idea of reducing the
amount of events is to use a more flexible time interval between the synchronization
points. This is based on the fact that in a discrete system nothing changes between
one event and the next. So the update within the ED model is only necessary at the
time of the next event in the event list. Due to the fact that the arrival of a student in
the lecture room triggers no other event but the collecting of result data, this arrival
can be delayed until the end of this lecture or the next occurring event. So it would
be possible to set the next time of synchronization either to the time until the next
event or 5 minutes, depending on the higher value.
This idea has not been fully realized yet so the actual decrease of synchronization
events cannot yet be determined.
Overall it has to be said, that using this hybrid model for the simulation of the whole
TU campus will require a high amount of resources and time. It is not planned to use
this approach for every future simulation run but only for the special analysis of
certain critical time periods within the semester.
The CA model is able to calculate realistic walking times to be used in the ED model
for regular simulation runs. Only if the results of these runs show a problem the
hybrid model can be used for further, much more detailed runs.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

73

5.3.3 Impact on the MoreSpace Model

One thing the CA model was able to show was the dependency of the time needed
to reach a certain lecture room from the „student traffic‟. It seems logical that the time
will increase if a lot of people move through the same corridors, obstructing each
other. The extent of the delay due to a high density of people is shown in Figure 7.
This result could not have been calculated in the ED model.

Figure 5-6: Walking time from room HS1 to room HS2

.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

74

5.4 The MoreSpace Simulation Environment:

Enterprise Dynamics

At present there exist a lot of software tools for modelling and simulation of discrete
dynamic systems. Almost all tools are based on a modern object-oriented DEVS
world view regarding active objects (entities) passing passive objects (stations) along
given path. A time event mechanism updates movement of entities, being capable
also of collisions and other state-dependent phenomena. Some of these tools can look
back at a long tradition, now offering also any kind of object-oriented features, etc.
Some of the tools are results of new research projects, starting with object-oriented
approach from the first release.
All these tools are more or less similar at the basic modelling level where general
entities are passing general stations. But big differences are met in application
libraries: some tools have specialized for a certain application, like network
modelling, offering preconfigured stations like network routers. Other tools offer
different modelling levels, from a library with basic elements to highly specialized
modelling libraries.
In this investigations the software tool Enterprise Dynamics is used, an object-
oriented dynamic analysis and control system. The system consists of an
Enterprise Dynamics (e.D.)-engine® and many building blocks grouped into e.D.-
Suites®. An e.D.-Suite is configured for a specific field of expertise, to assist the
modelling of a specific problem, branch or area.
Animations can range from 2D flowcharts to true 3D Virtual reality models that
empower imagination and creativity. Building blocks can be easily created,
customized and added.
For developing the later discussed simulation model Enterprise Dynamics 7.0 has
been used. The model can be run in the currently newest version 8.0 without any
compatibility problems.
Enterprise Dynamics can be regarded as a discrete event simulation program with a
graphical user interface. In regard to the pyramid of simulators it can be attributed to
two different levels: by using the very specialized E.D.-Suites Enterprise Dynamics
becomes a simulation tool for a specific area of interest.
Using the 4d script Enterprise Dynamics can be used to develop new applications,
thus putting it on the level of discrete simulation programming languages as it
becomes a development environment as well as a simulator.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

75

Figure 5-7 Simulation Environment of ED

5.4.1 Everything is an Atom

The Atom is the most important element in Enterprise Dynamics. The atom‟s main
characteristics are:
An atom is something with 4 dimensions: its location and speed in 3D space (x,y,z)
plus its dynamic behaviour (time).

 Everything is an atom: an application, a model, a library, a resource, a
product, etc.

 Every atom can contain other atoms

 Atoms can inherit properties from other atoms

 Atoms can be created and destroyed

 Atoms can be moved from one atom into another.

 The atoms are hierarchically structured. At the top of the tree is the main
atom. This is the only atom that is always present and it s automatically
created when the program starts. The Main Atom is the only atom that is not
contained by another atom.

 Normally, the main atom will contain at least three atoms: the application
atom, the library atom and the model atom.

 The library atom generally contains a number of atoms with predefined
functionality to be used when building a model.

All Atoms have exactly the same structure. With the atom editor you can access all
existing functionality of an atom, add and delete functionality and even build
completely new atoms from scratch.
The most important characteristics of an atom are:

 Description and identification (Name, ID, Colour, Icon, Info, Mother)

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

76

 Display settings (defining how the atom is animated)

 Channels (each atom can have input and output channels)

 Behaviour (each atom can have a description of its behaviour)

 Attributes (each atom can have one or more attributes)

 Table (each atom can have its own table with data)

 Spatial (each atom has a location, size, speed, etc)

 Label fields (also referred to as Dynamic Database or ddb)

5.4.2 Of Mothers and Daughters

When an atom is created it is always a daughter of another atom. This other atom
will mostly be an existing atom from the library, but can also be a baseclass atom. A
baseclass atom is an empty atom that has no functionality and only has default
settings like: no attributes, no behaviour, no tables and its colour is black.
The atom that is created, copies all the characteristics and parameter values of the
mother as they are at the time of creation. From that point on, these parameter
values are independent of the mother. The parameters of the mother can be changed
without affecting the parameters of the copy (whether it‟s a daughter or a duplicate)
and the copy‟s parameters can be changed without affecting the mother. Only in the
event handlers, the description of the atom‟s behaviour is not copied but
dynamically inherited. This means that if you change the behaviour of the mother,
the existing daughters will automatically also change their behaviour, except when
you have overruled the mothers behaviour on the daughter explicitly.
Atoms can be displayed in tree structures or in animation windows. In these views
you can generally double-click the atoms: most atoms will have an action associated
with it.
The easiest way to create an atom is to drag an atom from the tree view into an
animation window, but of course one can also use 4DScript commands.

5.4.3 The Atom Editor

Figure 5-8: The Atom Editor

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

77

The atom editor allows defining the complete functionality and appearance of an
atom. It can be activated from the tree windows by selecting it from the menu or by
pressing the function key F9. The atom editor consists of a number of sheets:

Atom: general properties of the atom and its appearance
Visualization: colours, icons and VR appearance
Events: definition of the atom functionality in 15 event handlers
Editor: a text editor for editing 4DScript statements
Attributes: number and content of the atom‟s user-defined attributes
Table: an alpha-numerical table that is local to the atom
File: file attachments to atoms
Spatial: location and spatial parameters of the atom
Channels: style and name of channels

5.4.4 Events

The 15 event handlers on this sheet define the complete behaviour logic of an atom.
The first column indicates the event type. The second column indicates if an atom
inherits logic from its mother, otherwise it is blank. The third column displays the
4DScript logic that has been defined. Use the 4DScript edit field below the event
handler fields, or the editor sheet, to actually edit the 4DScript code. The
functionality of the 4DScript editor applies to both the edit field and the editor sheet.
The inherited behaviour of an event handler can be displayed by double-clicking on
the third column of the row.
The event handlers are:

 Event

 Entering

 Entered

 Exiting

 Exited

 Creation

 Destruction

 Reset

 User

 OcReady

 IcReady

 2dDraw

 3dDraw

 Message

 Init

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

78

5.4.5 Eventlist

Enterprise Dynamics works event-oriented: The eventlist as shown in Figure 5-9
contains all future events sorted by their time of occurrence. Each event contains the
atom reference for the atom that triggered it as well as an involved atom that may be
affected by it. It is also possible to set a priority value to ensure the correct order of
events that are scheduled at the same time.

Figure 5-9: ED Eventlist

5.4.6 Attributes

The number of attributes per atom can be defined in the attributes field. If more than
0 attributes have been defined a table will appear. The first column shows the
attribute number.
Attribute values can be strings, numbers or 4DScript statements.
Attributes can be called by their name or number using the 4DScript command att.
The attributes of the current atom (c) can also be called directly by their name.

Figure 5-10 Attributes

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

79

5.4.7 Tables

The table of an atom can be used to store data that is either used by the simulation
(input data) or produced by the simulation (output data).
The table can be dimensioned using the Rows and Columns edit fields or with the
4DScript command settable. Table cells can contain values or numbers. As text that is
typed as a valid 4DScript expression can be executed using the execstring command,
table cells can in this way also contain 4DScript.

5.4.8 The 4d Script

4DScript is the programming language of Enterprise Dynamics. Everything that is
executed in the Enterprise Dynamics software is or can be done via 4DScript. This
openness allows the user to manipulate (parts of) the atoms as well as the complete
user interface. 4DScript is a simple structured language that is interpreted by the
engine when it is executed.

5.4.9 Enterprise Dynamics Simulation Environment

The Enterprise Dynamics Simulation Environment is subdivided into several parts;
the ED.exe file is the lowest level, as shown in Figure 5-11 Basic ED Organisation. It
contains the ED engine, the central core of the simulation environment. This file is
the only one that must not be changed by the user. Using the ED.exe the *.app file
can be opened. This file contains the information about which further files need to be
loaded.

Figure 5-11 Basic ED Organisation

5.4.9.1 Application File

The ED Application file contains calls to *.usr, *.btn, *.mnu, *.fnc, *.4ds at the start-up
of the ED Environment and therefore defines the layout and the included
functionality of the ED application.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

80

5.4.9.2 User File

The user file contains predefinition of certain functions and variables that are
already needed at the start-up of the model file.

5.4.9.3 Buttons File

The Buttons file specifies the layout of the shortcut bar as well as the functionality
behind it. For each button a function can be defined to execute a section of 4d script.

5.4.9.4 Library File

The library file contains the 4d script to load a list of atoms into the application
library at the start-up of the model. Only atoms contained in the library can be used
for the building of the simulation model. Of course it is possible to add additional
atoms after start-up. The possibility to create atoms, save them and ass them to
libraries makes the concept of reusable models executable. Atoms can be single
atoms as well as more complex constructs, even complete submodels.

5.4.9.5 4ds File

The 4ds file contains 4d script commands that can be executed in the simulation
environment.

5.4.9.6 Fnc File

The 4ds file contains functions that can be executed in the simulation environment.

5.5 MoreSpace Application and Model file

The MoreSpace application file morespace.app loads the MoreSpace model file
morespace.mod as well as the MoreSpace library file morespace.lib. The MoreSpace
model file contains data tables to contain the simulation relevant data as well as a list
of functions.
These functions can be grouped into several areas:

 Functions for model build-up and initialisation

 Functions for booking

 Functions for data import from database

 Functions for data export to database

A more detailed description is given in Chapter 6:.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

81

5.6 MoreSpace GUI

The implementation of the simulation tool MoreSpace was designed in a way to
ensure the maximum flexibility, not only in choosing the parameters for the booking
procedure but in leaving the design of the simulation model itself as modifiable as
possible. To achieve this strict diversion between the simulation model relevant data
and the simulation environment is necessary. Input data does contain the list of all
buildings on the TU Campus, all rooms and their individual parameters and the list
of courses. All simulation input data is pre-processed in an external database, only at
the time of the model assembly it is transferred to the simulation environment where
it defines the design of the model build-up as well as the basic design of the scenario.
Only the data needed during the simulation run is stored in ED tables to keep the
amount of memory needed for the data storage to a minimum.
The assembly of the simulation model is part of the simulation run itself.
The simulation environment consists of four separate parts that interact with each
other; at start-up three of these components are immediately available:
The Library that contains all atoms to build the simulation model, the Model
Template that contains functions and tables and the Graphical User Interface (GUI)
for choosing the parameters for the model behaviour.
Out of these three components two are needed to generate the MoreSpace
Simulation Model.
The MoreSpace GUI has been developed to offer a clear overview over the
parameters that can be set for a simulation run. All parameters entered are saved to
the database table that is used for the simulation run to document the parameter set
used and enable the user to repeat the run at a later time.

5.7 MoreSpace Library

5.7.1 Building

The building atom does not contain any functionality. Its main purpose is to group
the room atoms to achieve a hierarchical structure.

5.7.2 Room

5.7.2.1 Room Atom Structure

The Room Atom is build from four atoms to model the clearance time. The room
atom itself with the given capacity and the category that defines the kind of
equipment the room offers. This is essential for the type of courses that can be held.
To model the act of entering and leaving the room a server – queue combination is
used consisting of two queues – one for the people leaving the room, another for
those who want to enter – and a multi-server that represents the doorway. A multi-

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

82

server in Enterprise Dynamics is a server with capacity greater than one. A regular
server in ED is also able to process several entities at once but only in a so called
batch-run. This means all entities are processed simultaneously. The multi-server is
able to handle several entities even with deferred entry times. The capacity of the
multi-server representing the door corresponds to the size of the doorway. A small
door where only one person at a time can pass through will have capacity 1; larger
doors an accordingly higher capacity.
Entering and leaving has no fixed priority. Both queues are connected to the Server.
A student entering the Queue_In will pass through the Door atom and enter the
Room. A student leaving the room will enter the Queue_Out, pass through the Door
atom and leave for their next destination.

Each room is represented as a single object within the simulation with its own
attributes capacity, category and divisibility as well as its list of events with their
date and time.

Figure 5-12 Lecture Hall with Attributes

5.7.2.2 Capacity

The capacity of a room defines the maximum number of people it is able to
accommodate under optimal conditions. This means that if more people use this
room than the capacity states, the quality of this event will suffer. For example
during a lecture the surplus people will not have a seat. More dramatic is the
consequence for labs: the capacity gives the number of workplaces; if more people
attend they cannot participate in the laboratory course.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

83

5.7.2.3 Category

The category of a room defines its equipment and therefore the type of lectures that
can be held. For example there are very different requirements for classrooms for
drawing for architects and laboratory rooms for chemists.

 Lecture halls: for more than 60 people

 Seminar rooms: < 60

 Laboratory rooms

 Computer rooms

 Drawing rooms

5.7.2.4 Divisibility

The concept of dividable rooms is generally not a new idea. At the Technical
University it has not been used so far due to the old design of most rooms. During
the course of renovation the possibility is given to remodel some rooms in a way that
they may be united to one large room or separated with dividing walls to be used as
several smaller rooms

5.7.2.5 List of Events

Each room has a list of events that will take place in it. This list contains the exact
time and date of the event, as well as the information about the event.

Figure 5-13 Simulation Model 3D in ED

5.7.3 Courses

The list of all courses is interpreted and processed. This list is the main basic data
input that for simulation of the booking procedure as well as the semester run.
The course atom contains at least one sub atom; in case the course is split into several
parallel groups it will contain one sub atom per group. The sub atoms main use is to

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

84

hold the list of lectures for each group, complete with time and place they are held as
well as the number of students that are expected to attend. This information is
crucial for the generation of students.

5.7.4 Student

The student atom contains the behaviour of the student as well as their list of
lectures they have to attend. This list is generated at the time of creation of the
student and results from their semester as well as field of study. The generation is
based on probability functions to achieve a wide variety of lecture combinations to
represent the inhomogeneous groups of students that occur especially in courses in
higher semesters.
The behaviour of the students is based on their goals – attending their lectures – as
well as on the overall situation. In case of collision of events they wish to attend
students have to make a decision.

5.7.4.1 Event Matrix

Each student atom owns a matrix of lectures it will attend. The size of the matrix n x
4 is given by the number of lectures n the student is assigned to.
This matrix L contains the basic information for the behaviour of the student s
during the simulation.

𝐿𝑠
=

𝑙1,1 … 𝑙1,4

⋮ ⋮ ⋮
𝑙𝑖 ,1 … 𝑙𝑖,4

The element 𝑙𝑖,1 contains the begin time of the lecture i.

The element 𝑙𝑖,2 contains the end time of the lecture i.
The element 𝑙𝑖,3 contains the ID of the course attended at lecture i.
The element 𝑙𝑖,4 contains the pointer to the room of the lecture i.

5.7.4.2 Attending a Lecture

Here the event for the attending of a lecture is set. The time the student will need to
reach the location of the lecture hall has to be taken into consideration.

𝑇𝑐 current time

𝑇𝑖 start time of the lecture

𝑇 𝑖 end time of the lecture

𝑇 𝑖 = 𝑇𝑒 + 𝑡𝑤 start time of the lecture considering walking time

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

85

𝑇𝑒 time for the student to start walking

𝑡𝑤
Time it takes the student to reach the lecture hall
from their current position

𝑡𝑒 time until 𝑇𝑛

𝐼𝑓 𝑖 ≤ 𝑛:

 ∃ 𝑇𝑖 = 𝐿𝑠 𝑖, 1 = 𝑙𝑖 ,1

∃ 𝐶𝑖 = 𝐿𝑠 𝑖, 3 = 𝑙𝑖,3

∃ 𝑅𝑖 = 𝐿𝑠 𝑖, 4 = 𝑙𝑖 ,4

With

𝑙𝑖 ,1 ≥ 𝑇𝑐
𝐶𝑖 ≠ 𝐶𝑐

Hence:

𝑡𝑒 = max(𝑇𝑒 − 𝑇𝑐 ,0)

Figure 5-14: Calculation of the time of event

If i > n the students have finished their list of lectures and can leave the simulation.

5.7.4.3 Queuing

During this activity the student moves into the queue in front of the lecture hall.

𝑇𝑒

𝑇𝑐

𝑇𝑐

𝑇𝑒 𝑇𝑖 = 𝑇 𝑖

𝑇𝑖

𝑇 𝑖

tw

tw te

tw

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

86

The according event for leaving a room is set by evaluating the next lecture the
student will visit.

𝑇𝑖 = 𝐿𝑠 𝑖, 1 = 𝑙𝑖 ,1

𝑇 𝑖 = 𝐿𝑠 𝑖, 2 = 𝑙𝑖 ,2

Under the following condition:

𝑇𝑖 ≥ 𝑇𝑐
𝐶𝑖 ≠ 𝐶𝑐

𝑇𝑖+1 < 𝑇 𝑖

 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ‼!

According to probability ℙ =
1

2
 the student will chose one of the two possibilities for

the time 𝑇𝑒 when he will leave the current lecture:

𝑇𝑒 =
𝑇 𝑖

 max(𝑇𝑖 − 𝑡𝑤 , 0

And:

𝑡𝑒 = max(𝑇𝑒 − 𝑇𝑐 ,0)

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

87

Chapter 6: Functional
Description of MoreSpace

MoreSpace is developed in Enterprise Dynamics, a Discrete Event Simulation
Environment. This indicates that all changes in the system are regulated via events
that take place at certain points of time. For modelling the individual students the
concept of Agent Based Modelling is used, a concept that has to be integrated in the
DEVS environment of ED.
Each student is represented as an atom, sharing the common structure of all
elements in ED.
The behaviour of the students is not a complex one: they have a couple of courses
they want to attend and have to move from one lecture to the next. Only in the case
of consecutive lectures the aspect of the walking time has to be taken into
consideration as well. If the time between two lectures considerably exceeds the
average walking time to cross the distance between the two locations they take place
in the walking time itself is not so much of interest as the effect the number of people
in the building may have.

A student may be in one of the following states:

 Waiting for the next lecture

 Moving to the location of the next lecture

 Entering a room

 Attending a lecture

 Leaving a room

6.1 Booking Procedure

The Booking Procedure encompasses all functions concerning the booking of rooms
for lectures.
To carry out all options that may be activated for the booking procedure it is parted
into three loops:

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

88

6.1.1 Best Fit Loop

In this loop a room is only booked if all four booking criteria hold:

 Strong Best Fit Criterion: 𝐶𝑅 = 𝑁𝐶

 Weak Best Fit Criterion: 𝐶𝑅 ≥ 𝑁𝐶

 Optimal Environment Criterion: 𝐸𝑅 = 𝐸𝐶

 Room Setup Criterion: 𝑆𝑅 = 𝑆𝐶

Basically this means that only a room that has the required setup and environment
as well as the exact capacity needed. A room with higher capacity than required for
this lecture will not be booked in this loop.

6.1.2 Optimal Environment Loop

In this loop a room is booked if three of the four booking criteria hold:

 Weak Best Fit Criterion: 𝐶𝑅 ≥ 𝑁𝐶

 Optimal Environment Criterion: 𝐸𝑅 = 𝐸𝐶

 Room Setup Criterion: 𝑆𝑅 = 𝑆𝐶

Any room that has at least the capacity that is required available can be booked now.

6.1.3 Room Setup Loop

In this loop a room can be booked if only two of the four booking criteria hold:

 Weak Best Fit Criterion: 𝐶𝑅 ≥ 𝑁𝐶

 Room Setup Criterion: 𝑆𝑅 = 𝑆𝐶

Any room that has the setup and at least the capacity that is required available may
be booked now.

If certain options are not activated the according loop is not executed. If e.g. the best
fit option is set to OFF the booking procedure will start with Loop 2, looking only for
a room with an optimal environment but not for the best fit.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

89

Figure 6-1: UML Diagram: Booking Procedure

6.2 Student Creation Procedure

This function generates the students at the beginning of a dynamic simulation run.
The number of students is a result of the number of courses and the number of
students that are expected to attend each of them.
Each student is created as an individual copy of the student atom in the MoreSpace
library. It has a set of rules ingrained that defines the behaviour of the student in
their reaction to certain situations.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

90

As soon as it is created the student atom its attributes study and semester are
accordingly set to 𝑠𝑡𝑢𝑑𝑦𝑠 and 𝑠𝑒𝑚𝑠. The function loops over all studies and
semesters, so these values are increasing during the generation procedure.

The number of mandatory courses 𝑚𝑠 for a student s is derived as

𝑚𝑠 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, min 𝑚𝑚𝑎𝑥 , 𝑚(𝑠𝑡𝑢𝑑𝑦𝑠 , 𝑠𝑒𝑚𝑠))
where

 mmax is the maximum number of compulsory courses a student may attend. This
value may be changed by the user.

 m(studys , sems) is the number of compulsory courses for this study and this
semester still available. It depends on the number of students already assigned
to the courses.

The number of non mandatory courses 𝑛𝑠 for a student s is derived as

𝑛𝑠 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, min 𝑛𝑚𝑎𝑥 , 𝑛(𝑠𝑡𝑢𝑑𝑦𝑠))
where

 𝑛𝑚𝑎𝑥 is the maximum number of elective courses a student can attend. This
value may be changed by the user.

 𝑛(𝑠𝑡𝑢𝑑𝑦𝑠) is the number of elective courses still available for 𝑠𝑡𝑢𝑑𝑦𝑠 . It
depends on the number of students already assigned to the courses.

The number of free courses for a student 𝑓𝑠 is derived as

𝑓𝑠 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, min 𝑓𝑚𝑎𝑥 , 𝑓)
where

 𝑓𝑚𝑎𝑥 is the maximum number of optional courses a student can attend. This
value may be changed by the user.

 𝑓 is the number of compulsory courses still available. It depends on the
number of students already assigned to the courses.

𝑁𝑆 is the number of all different studies that are offered at the TU Vienna.
𝑁𝑚 is the number of all compulsory courses for all studies and all semesters:

𝑁𝑚 = 𝑁𝑚 (𝑖, 𝑗)

10

𝑗 =1

𝑁𝑠

𝑖=1

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

91

𝑁𝑛 is the number of all non mandatory courses for all studies:

𝑁𝑛 = 𝑁𝑛 (𝑖)

𝑁𝑠

𝑖=1

Figure 6-2: UML Diagram: Student Generation Procedure

Assigning lectures to students is done according to certain rules. The number of
different courses is determined according to a probability function within given
values that may be entered via the MoreSpace GUI. Each course has a schedule of
several lectures. The number depends on the modus the course is held: weekly
courses have an average of 14 lectures, blocked courses far less but longer lectures.
I.e. course Number 111.222 is held weekly, each lecture takes 90 minutes. During the
semester the number of students attending each lecture goes slowly down.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

92

Lecture 1 25

Lecture 2 23

Lecture 3 22

Lecture 4 19

Lecture 5 20

Lecture 6 18

Lecture 7 19

Lecture 8 17

Lecture 9 18

Lecture 10 17

Lecture 11 17

Lecture 12 19

Lecture 13 18

Lecture 14 12

Figure 6-3 Student Numbers

The maximum number of students is 25, so 25 students will be assigned to attend
this course. Due to the varying number of attending students not all of them will be
assigned to all lectures.

6.2.1.1 Assignment of Compulsory Courses

Compulsory courses are specific for the study and the semester of the student s.
The number of these mandatory courses for a certain study and semester
is 𝑚 𝑠𝑡𝑢𝑑𝑦𝑠 , 𝑠𝑒𝑚𝑠 . Let M be the set of mandatory courses with power #M =
𝑚(𝑠𝑡𝑢𝑑𝑦𝑠 , 𝑠𝑒𝑚𝑠).

M = C1 , … , Cn

Each course Ci is split into g groups G where g ≥ 1; each group contains 𝑙 lectures L.

Ci = Gi1, … , Gig

Gij = Lij1 , … , Lijl

where

𝐿𝑖𝑗𝑘 = 𝑙𝑖𝑗𝑘 1 , … , 𝑙𝑖𝑗𝑘 5

With

0

5

10

15

20

25

30

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

93

 𝑙𝑖𝑗𝑘 1 ID number of the course

 𝑙𝑖𝑗𝑘 2 Begin time of the lecture

 𝑙𝑖𝑗𝑘 3 Length of the lecture

 𝑙𝑖𝑗𝑘 4 Room

 𝑙𝑖𝑗𝑘 5 Expected number of students

Let Ms be the set of groups the current student s is assigned to. The number of
groups equals #Ms = 𝑟; at the end of the procedure it has to be: 𝑟 = 𝑚𝑠.

Ms = Gs1, … , Gsr
with

Gsi ≠ Gsj ∀ i, j ∈ 1, … , r

Let Mu be the set of courses the current student s is not assigned to with

#Mu = 𝑚(𝑠𝑡𝑢𝑑𝑦𝑠 , 𝑠𝑒𝑚𝑠) − 𝑟

Mu = Ci #Ci > 0 ∧ Gij  Ms ∀Gij ∈ Ci , ∀i ∈ 1, … , #Mu

For assigning a course random variables 𝑣, 𝑤 are derived as

𝑣 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, #Mu)
𝑤 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, #Cv)

𝑣 is uniformly distributed between 1 and the number of available courses.
𝑤 is uniformly distributed between 1 and the number of groups the course Cv
consists of.
The student is assigned to the group Gvw ∈ Cv ∈ Mu . This means:

Ms = Ms ∪ Gvw
With

Gvw = Lvw 1 , … , Lvwl

The group Gvw has 𝑙 lectures; for each lecture k 𝑙𝑖𝑗𝑘 5 contains the number of expected

students. For each student assigned this number is decreased by one. If 𝑙𝑣𝑤𝑘 5 = 0 the
number of expected students has been reached and the according lecture will no
longer be assigned to students.

Gvw = Lvw 1, … , Lvwl \ Lvwk

If the group does not contain any lectures any more, it will be removed from the set.

if #Gvw = 0: Cv = Cv \ Gvw = Gv1, … , Gvg \ Gvw

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

94

If the course Cv does not contain any groups any more it is removed from the set of
available mandatory courses:

if #Cv = 0: M = M\ Ci = C1, … , Cn \ Cv

Figure 6-4: Assignment of Compulsory Courses

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

95

6.2.1.2 Assignment of Elective Courses

Elective courses are courses that are specific for the study of the student s but not for
the semester. They are usually attended during the last segment of the studies and
have to amount to a certain number of semester hours. They can be chosen from a
pool of courses where compulsory courses that are mandatory for some studies may
be elective for others.
The number of elective courses for a certain study and semester is 𝑛 𝑠𝑡𝑢𝑑𝑦𝑠 . Let N
be the set of available non mandatory courses with power #N = 𝑛 = 𝑛(𝑠𝑡𝑢𝑑𝑦𝑠)

N = C1, … , Cn

Each course Ci is split into g groups G where g ≥ 1; each group contains 𝑙 lectures L.

Ci = Gi1, … , Gig

Gij = Lij1 , … , Lijl

where

𝐿𝑖𝑗𝑘 = 𝑙𝑖𝑗𝑘 1 , … , 𝑙𝑖𝑗𝑘 5

With

 𝑙𝑖𝑗𝑘 1 ID number of the course

 𝑙𝑖𝑗𝑘 2 Begin time of the lecture

 𝑙𝑖𝑗𝑘 3 Length of the lecture

 𝑙𝑖𝑗𝑘 4 Room

 𝑙𝑖𝑗𝑘 5 Expected number of students

Let Ns be the set of groups the current student s is assigned to. The number of
groups equals #Ns = 𝑟; at the end of the procedure it has to be: 𝑟 = 𝑚𝑠.

Ns = Gs1 , … , Gsr
with

Gsi ≠ Gsj ∀ i, j ∈ 1, … , r

Let Nu be the set of courses the current student s is not assigned to with

#Nu = 𝑛 𝑠𝑡𝑢𝑑𝑦𝑠 − 𝑟.

Nu = Ci #Ci > 0 ∧ Gij  Ns ∀Gij ∈ Ci , ∀i ∈ 1, … , #Nu

For assigning a course random variables 𝑣, 𝑤 are derived as

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

96

𝑣 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, #Nu)
𝑤 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, #Cv)

 𝑣 is uniformly distributed between 1 and the number of available courses.

 𝑤 is uniformly distributed between 1 and the number of groups the course Cv
consists of.

The student is assigned to the group Gvw ∈ Cv ∈ Nu . This means:

Ns = Ns ∪ Gvw
With

Gvw = Lvw 1 , … , Lvwl

The group Gvw has 𝑙 lectures; for each lecture k 𝑙𝑖𝑗𝑘 5 contains the number of expected

students. For each student assigned this number is decreased by one. If 𝑙𝑣𝑤𝑘 5 = 0 the
number of expected students has been reached and the according lecture will no
longer be assigned to students.

Gvw = Lvw 1, … , Lvwl \ Lvwk

If the group does not contain any lectures any more, it will be removed from the set.

if #Gvw = 0: Cv = Cv \ Gvw = Gv1, … , Gvg \ Gvw

If the course Cv does not contain any groups any more it is removed from the set of
available elective courses:

if #Cv = 0: N = N\ Ci = C1, … , Cn \ Cv

6.2.1.3 Assignment of Additional Courses

Additional courses can be chosen freely with no regard to the studies. They are
usually attended during the last segment of the studies and have to amount to a
certain number of semester hours. They can be chosen from the pool of all courses
available at the TU Vienna. As there is no rule how to choose these courses in the
simulation model only those courses are regarded, that do not already appear in the
group of elective or compulsory courses.
The number of freely selectable courses is 𝑓 . Let F be the set of freely selectable
courses with power #F = 𝑓

F = C1 , … , Cn

Each course Ci is split into g groups G where g ≥ 1; each group contains 𝑙 lectures L.

Ci = Gi1, … , Gig

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

97

Gij = Lij1 , … , Lijl

where

𝐿𝑖𝑗𝑘 = 𝑙𝑖𝑗𝑘 1 , … , 𝑙𝑖𝑗𝑘 5

With

 𝑙𝑖𝑗𝑘 1 ID number of the course

 𝑙𝑖𝑗𝑘 2 Begin time of the lecture

 𝑙𝑖𝑗𝑘 3 Length of the lecture

 𝑙𝑖𝑗𝑘 4 Room

 𝑙𝑖𝑗𝑘 5 Expected number of students

Let Cs be the set of groups the current student s is assigned to. The number of groups
equals #Cs = 𝑟; at the end of the procedure it has to be: 𝑟 = 𝑚𝑠.

Cs = Gs1, … , Gsr
with

Gsi ≠ Gsj ∀ i, j ∈ 1, … , r

Let Fu be the set of courses the current student s is not assigned to. #Fu = 𝑓 − 𝑟.

Fu = Ci #Ci > 0 ∧ Gij  Fs ∀Gij ∈ Ci , ∀i ∈ 1, … , #Fu

For assigning a course random variables 𝑣, 𝑤 are derived as

𝑣 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, #Fu)
𝑤 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, #Cv)

 𝑣 is uniformly distributed between 1 and the number of available courses.

 𝑤 is uniformly distributed between 1 and the number of groups the course Cv
consists of.

The student is assigned to the group Gvw ∈ Cv ∈ Fu . This means:

Fs = Fs ∪ Gvw
With

Gvw = Lvw 1 , … , Lvwl

The group Gvw has 𝑙 lectures; for each lecture k 𝑙𝑖𝑗𝑘 5 contains the number of expected

students. For each student assigned this number is decreased by one. If 𝑙𝑣𝑤𝑘 5 = 0 the

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

98

number of expected students has been reached and the according lecture will no
longer be assigned to students.

Gvw = Lvw 1, … , Lvwl \ Lvwk

If the group does not contain any lectures any more, it will be removed from the set.

if #Gvw = 0: Cv = Cv \ Gvw = Gv1, … , Gvg \ Gvw

If the course Cv does not contain any groups any more it is removed from the set of
available not mandatory courses:

if #Cv = 0: F = F\ Ci = C1, … , Cn \ Cv

At the end of the procedure each student owns a set of groups that contains the list
of all lectures to attend:

Ss = Ms ∪ Ns ∪ Fs

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

99

6.3 Simulation Run

Figure 6-5: UML Diagram: Operational Sequence of MoreSpace

The UML diagram shown in Figure 6-5: UML Diagram: Operational Sequence of
MoreSpace demonstrates the sequence of functions executed to start the MoreSpace
Simulation Tool and run a scenario. A more detailed description of the different
steps is given in the following sections.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

100

6.4 Functions regarding Data Exchange

MoreSpace_ADOConnect: This function established and tests the connection to the
database. The database can be selected via the GUI.

6.4.1 Interface between ED and the Simulation Database

Enterprise Dynamics has an ADO (ActiveX Data Objects) Interface for
communication with external programs integrated in its environment. Using this
interface ED is able to connect with the MoreSpace simulation database that has been
developed in Microsoft Access.
The ADO data model consists of three major components:

 Connection – it must contain the place and name of the database and
establishes the connection

 Recordset – the construct that contains data in form of tables and/or queries

 Command – is used to transmit SQL commands to the database

6.4.2 Interface to TUWIS++ / TISS

The interaction between the TUWIS++ database and the simulation database is kept
as simple as possible. The future development will include the switch from
TUWIS++ to TISS but it will most probably not be necessary to change the current
way of interaction. Until now TUWISS++ data was exported in CVS files that can be
imported into a database table without much effort. The major future change will be
to add a function to the database to import the file from a given location on
command that may even be triggered from the ED environment.
Mandatory for a useful simulation is the high quality of input data, something that
has up to now only been given with lots of additional work to ensure the data about
courses has been complete. The newest developments for TISS should ensure a good
quality without additional adding or editing of data.
The premise for complete data is a clear definition of the data requirement for the
simulation model.

6.5 Interface from ED to the CA Model

Because the JAVA program for Cellular Automata is of course only a part of the
simulation system, it is necessary for data exchange to establish a connection
between the two simulation models.
This interface was implemented with the aid of the Transmission Control Protocol
and the Internet Protocol, or short TCP / IP.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

101

Basically, the communication is divided into two different parts sending and the
receiving data. Differences between these two states are the allocation of server and
client functions. In the implementation of this interface it is only a unidirectional
traffic towards server possible, however, for this simulation bidirectional data traffic
is required, so both JAVA and ED act as server and client at the same time.
The red area in the picture shows the most important information for
communicating. From starting above the first three lines contains information about
the JAVA client. In the case that both programs are running on the same computer
JAVA can send data to the ED server using the "local host", the loopback address
"127.0.0.1" and the port 7122. Conversely JAVA acts as a server and receives data on
port 7123. The underlying two yellow boxes with the content “JAVA” and “ED”
represent the two programs, which are connected via a network. The status of the
connection is symbolized by the two bars in the middle: red signals a faulty
connection; green indicates the status is ok. The status check is done using a message
("PING") by sending from the JAVA environment to ED that must be countered with
the message ("ALIVE") within a given response time interval.
ED offers several interfaces to communicate with external programs, for example
DDE and ADO for communication with databases.

 4d script commands for execution of DDL functions

 Exchange of socket messages to allow communication via the TCP/IP ports

 Sending and receiving emails to communicate worldwide

For this particular simulation the communication using socket messages is used. It
allows exchanging ASCI messages via a TCP/IP port. These messages are sent and
received by a specified atom in ED; incoming messages trigger, the so called
ONMESSAGE-Event Handler of this atom that contains the code sequence to be
executed.

Figure 6-6: Screen Shot of Code sending a socket message

Enterprise Dynamics sends a message containing the students ID, the current
position and the room the student has to move to, to the JAVA model.

[student 123456 HS1 HS2]

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

102

The corresponding student is ‚frozen„in the ED model. A confirmation message
ensures that the message was received; The JAVA model creates the student with ID
123456 and places it in HS1. The destination is given as HS2, so the student starts
moving through the cellular automata towards HS2. After reaching the destination
the JAVA model sends a return message that contains the ID of the student as well
as the description of their movement: the current position as well as the time needed
to cover the distance between former and current position is sent to ED:

[Student 123456 HS1 HS2 67, 8]

The frozen student is reactivated and updated.

Figure 6-7: Screen shot of reacting on an incoming socket message in ED

So the interface is implemented with a few lines of code. As the system has to be
called for every change for every student at the moment a kind of pulsing was
integrated to collect requests.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

103

6.6 Functions regarding Alternative Scenarios

6.6.1 Reduction of Not Booked Lectures

The system checks the result data and is able to identify a shortcoming of a certain
room category during a distinct period of time. A new scenario is created that tries to
outbalance the difference between required room and available room by using the
divisibility of rooms to rearrange the room structure. I.e. a large room for capacity >
300 is needed but not available the system will try to join several smaller rooms
during that time to fulfil the requirement.

Figure 6-8: Creation of alternative scenario for Room Structure

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

104

6.6.2 Increase of Utilisation – Keeping of ‚Free‘ Rooms

The system evaluates the utilisation of the rooms with each room setup category. In
case of low utility scenarios are created where less rooms of this setup category are
available for booking. This allows reducing the available room until the first cases of
not successful booking arise.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

105

Chapter 7: Experimenting with
MoreSpace

To create scenarios the two aspects of MoreSpace – design and behaviour – can be
modified to test different strategies.
The results of each simulation run are stored in a database. The current version uses
Microsoft Access databases and due to its limitations each database does contain the
data of only one simulation run. Several databases can be compared in regard to
certain key data using Microsoft Excel. Switching to another database system like
Oracle would allow keeping all result data in one database and managing the result
aggregation without an extern tool but. This is planned for the future development,
and the database interface using ADO would need only minimal adapting, but it is
not implemented yet.

7.1 MS GUI

The MoreSpace GUI has been developed to offer a clear overview over the
parameters that can be set for a simulation run. All parameters entered are saved to
the database table that is used for the simulation run to document the parameter set
used and enable the user to repeat the run at a later time.
The parameters to be set are:

Database - The database to be used for the simulation run must be selected from a
pull down menu. If the database in question does not appear it has to be added to
the list of available databases using the „NEW DATABASE‟ Button. The Tracer
Window in the simulation environment shows a message that either confirms the
successful connection to the chosen database or reports an error message if the
connection could not be established.

Booking Management Rule - The strategy to be used in this simulation run for the
assignment of rooms to the courses can be selected from a pull down menu.
 It is possible to combine two of these rules. The tracer window shows an affirmation
of the selected rules.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

106

Walking Time - The walking time for students from one lecture to the next can be
determined in MoreSpace in two different ways: the cellular automata model can be
activated and connected to the ED model or the walking time is calculated from a
matrix that contains an average value for walking from one room to another. This is
set using the according parameter in the GUI. If the cellular automata model is used,
the port number and the IP address of the computer running the CA model needs to
be entered. If it is not used the probability function for calculating the walking time
from the average value can be selected from a pull down menu.

Simulation Run Control – The GUI offers several buttons for starting the simulation
run, stopping and resuming. The ED environment does have a run control window,
but the simple run command executed there does not involve the model build-up
and initialisation required for the successful run of the MoreSpace simulation model.

AutoSim Modus – to use the automatic generation of scenarios as described in
section Chapter 6: the AutoSim Modus has to be enabled. The simulation model will
automatically evaluate the results of the simulation run and decide if another
scenario with altered input data needs to be run. There are three options to choose
between: a variation of booking strategies, the reduction of the not successful room
assignments and the increase of room utilisation. Depending on this selection the
new scenario is created based on the original input data but slightly altered to gain
better results. This is done repeatedly, until no improvement can be achieved any
more.

Figure 7-1 MoreSpace GUI

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

107

7.2 Changes to Design

7.2.1 Room Structure

Rooms may be added or removed
Buildings may be added or removed
Rooms may be grouped and assigned to different faculties

7.2.1.1 Assigning Rooms to Groups

Rooms and courses can be assigned to groups (institutes, faculties, buildings) in
order to resrict certain courses into certain lecture rooms.

7.2.2 Courses

List of Courses may change
Modus of courses may change: more blocking,

7.2.3 Students

Number of students may rise or fall

7.3 Tables for Input Data

7.3.1 Studies

This table contains the list of all studies offered at the Technical University of Vienna
as well as their IDs as they will be used in ED. These IDs are unique
and consecutively and necessary for correctly and easily addressing in ED.

7.3.2 Courses

This table contains the list of all courses to be held at the TU Vienna, complete
with their attributes and the date and time they should take place.

 Course number

 Course category: weekly, blocked, single …

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

108

 Semester

 Begin date

 End date

 Begin time

 End time

 Institute

 Type of course

 Number of expected students

 Number of student exams last year

 Field of study

 Building

 Setup required

7.3.3 Building

This Table contains the list of all Buildings related to the TU Vienna. This list may be
changed if needed to achieve certain changes in the simulation model. The object
BUILDING can be regarded in a more abstract way as a mean to group rooms
together and assign them to certain Faculties or Institutes. It is only essential to also
assign the courses accordingly.

 Building ID

 Name

7.3.4 Room Structure

This table contains the list of all lecture halls and their attributes:

 Name

 ID

 Capacity

 Setup

 Institute

 Building

7.3.5 Room Reservation

This table is used to control the availability of rooms during the semester. It contains
the information if a room is not available during a certain period of time. The
divisibility of rooms can be handled from here as well: the time a large room
consisting of several smaller joined rooms is available is noted here as well. This
automatically disables the according smaller rooms.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

109

 Name

 ID

 Room

 From Date

 To Date

7.4 Changes to Behaviour

7.4.1 Behaviour of Rooms

7.4.1.1 Locking of Rooms

es können zeitliche Perioden angegeben werden, in denen bestimmte Räume nicht
verfügbar sind.

7.4.1.2 Joining and Splitting of Rooms

At certain times rooms can be joined to a bigger room , or a big room can be split
into smaller rooms available for two or more lectures in parallel.

7.4.2 Behaviour of Students

Collision of schedule: decision where to go

7.4.3 Booking Behaviour

7.4.3.1 Sorting of Courses for Booking a Room:

The sorting rules have been explained in previous chapters. For experimenting
the selection of the sorting order can be variegated to achieve comparable results
and allow the analysis of the effect changes have on the utilisation and
assignment of rooms.

7.4.3.2 Weekly Courses stay in the same Room

One preference is quite commonly shared by all lecturers at the TU Vienna:
the option of keeping the same room for weekly lectures. The additional effort to
keep up with the information where the lecture will be held the next week is
unwanted by all, lecturer as well as student.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

110

7.4.3.3 Bachelor Studies stay in the same Room

The attempt to keep the students during their first years of study as much as possible
in the same room leads to the effect of very good utilization of these rooms. But it
also makes the according rooms unavailable for any other lectures. The pro and
contras of this approach can be analyzed using MoreSpace.

7.4.3.4 Looking for Best Fit

The strong best fit criterion allows the assignment of a room only if it fists the
required capacity perfectly. A room to big or too small is not booked. If this
requirement is really of much benefit can be tested by activating the according
option.

7.5 Alternative Scenarios

7.5.1 Comparison of Booking Rules

The comparison of the different rules for the assignment of rooms can be tested
against each other. The system automatically copies the scenario database and
adjusts the parameters to achieve a new scenario with a different set of rules. This is
done repeatedly until all possible combinations of rules are simulated.

7.5.2 Reduction of Not Booked Lectures

The system checks the result data and is able to identify a shortcoming of a certain
room category during a distinct period of time. A new scenario is created that tries to
outbalance the difference between required room and available room by using the
divisibility of rooms. I.e. a large room for capacity > 300 is needed but not available
the system will try to join several smaller rooms during that time to fulfil the
requirement.

7.5.3 Increase of Utilisation – Keeping of ‚Free‘Rooms

The system evaluates the utilisation of the rooms with each room setup category. In
case of low utility scenarios are created where less rooms of this setup category are
available for booking. This allows reducing the available room until the first cases of
not successful booking arise.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

111

7.6 Tables for Simulation Results

7.6.1 Documentation

The Documentation Table is used to store the parameters given over the GUI to
ensure the simulation run can be reproduced. It contains

 the space management rules

 percentage of students

 CA modus

 Probability function for the travelling time calculation

 Simulation begin and end time

7.6.2 Not Successfully Booked Lectures

This table contains the list of all lectures the system was not able to book into any
rooms.

 Course number

 Begin date

 End date

 Required Capacity

7.6.3 Room Utilisation

 Room

 Utilization

7.6.4 NichtExact

This list does contain the lectures the system was not able to book into a room with
optimal size. This list is used for the second loop in the booking procedure.

 Course number

 Begin date

 End date

 Length

 Type of lecture

 Modus if lecture

 Required capacity

 Required setup

 Number of field of study

 Building

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

112

7.6.5 NichtGebäude

This list does contain the lectures the system was not able to book into a room with
optimal size. This list is used for the second loop in the booking procedure.

 Course number

 Begin date

 End date

 Length

 Type of lecture

 Modus if lecture

 Required capacity

 Required setup

 Number of field of study

 Building

7.6.6 List of Booked Lectures

This list does contain the lectures the system was able to successfully book into a
room during the booking procedure.

 Course number

 Begin date

 End date

 Length

 Type of lecture

 Modus if lecture

 Required capacity

 Required setup

 Field of study

 Building

7.7 Results: Database Reports

7.7.1 Utilisation of Lecture Rooms

This data shows the number of hours each lecture room was booked by the booking
procedure. This shows the theoretical utilisation, the time the room is booked, but
not the time the room is truly used. As past experiences have shown sometimes
rooms may be booked for a lecture that does not take place. This happens if i.e. the
lectures of this particular course only take place at the beginning of the semester to
be continued by practical work done by the students at home but the room is booked
for a weekly lecture. The system allocates the lecture room for the whole semester
even though it would only be needed for the first five weeks.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

113

U
ti

li
sa

ti
o

n
 i

n
 %

Figure 7-2: Utilisation

Monday Tuesday Wednesday Thursday Friday

U
ti

li
sa

ti
o

n
 i

n
 %

Monday

Tuesday

Wednesday

Thursday

Friday

Time: 8.00 – 18.00

Time: 8.00 – 18.00

Average Utilisation during the Day (in %)

Average Utilisation per Day of Week (in %)

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

114

Figure 7-3 Average Utilisation of a Lecture Room per Day of Week

Sometimes rooms are booked at the beginning of the semester for courses that never
take place but the reservation is not cancelled.
Sometimes two rooms are reserved in expectation of a high number of students but
only one is needed after some time due to a drop in the number of students
attending the lecture, but again the reservation is not changed.

Figure 7-4: Utilisation of Rooms

7.7.2 Capacity Utilisation of Lecture Rooms

This data shows how many students did attend a lecture in the simulation. The
number expected is given; the according number of students is assigned. If the
number of attending is lower than that it hints at a problem at the accessibility of the
course.

7.7.3 Not Successful Booking

The booking procedure tries to find a lecture room for each lecture planned. If it is
not able to assign a room the according lecture is listed in this data. For the
comparison of several simulation runs one has to make a distinct decision on which
aspect to focus the attention.
Depending on this the key data has to be selected.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

115

The following example illustrates how easily data can be misinterpreted in the
comparison of two scenarios:

Scenario 1: 1 lecture from 11.00 to 15.30 for 56 students could not be booked in any
lecture room.
Scenario 2: 2 lectures from 10.00 to 11.30 for 23 students and from 15.00 to 16.00 for
41 students could not be booked in any lecture room.

 Scenario 1 Scenario 2

Not Booked Lectures 1 2

Not Booked Hours 4.5 2.5

Not Booked Students 56 23 + 41 = 64

Hours*Students 4.5*56 = 252 1.5*23 + 1*41 = 75.5

Figure 7-5: Key Data for Not Successful Booking

Figure 7-5: Key Data for Not Successful Booking shows the importance of defining
the correct key data; Depending on which value is considered the assessment of the
simulation results can be interpreted completely different.
Considering the number of not booked lectures Scenario 1 seems to deliver the better
result. The number of not booked hours quickly shows another picture: where in
scenario 2 both lectures together result in 2.5 hours that could not find a room,
Scenario 1‟s 1 lecture requires 4.4 hours of time.
The picture again changes if one looks at the number of students that cannot attend a
lecture without a room: Scenario 1 is the better one in this regard. But taking the

1 4.5

56

252

2 2.5

64
75.5

unbooked lectures unbooked hours unbooked students hours*students

Scenario 1 Scenario 2

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

116

hours of lecture each student misses into account Scenario 1 suddenly looses highly
against Scenario 2 again.

7.8 Accessibility of Lectures

The accessibility of lectures can be interpreted in two different meanings:
Temporal accessibility: this indicates if a lecture overlaps with another lecture.
The spatial accessibility indicates if a lecture can be reached in time: this considers
lectures that take place after each other, even with a time gap between them but the
location of the rooms is such, that it is not possible to reach the second lecture on
time.
While the first kind can be easily determined by evaluating the given data, the
second is much more difficult to estimate: the real time it takes from one lecture hall
to another depends on far more than the spatial distance: The density of people
moving through the corridors, the waiting time at elevators, the distance to
staircases influences the walking time. This makes the evaluation of the spatial
accessibility to one of the simulation results as it is able to deliver far more accurate
results than estimation by distance.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

117

Chapter 8: Conclusion

Using an agent based approach for simulating the students in the MoreSpace project
proved to be a good approach to cover several demands:

 The possibility to model the exact movement of students during the corridors
and across the TU Campus, even covering the eventuality of travelling
between buildings that are further apart or emergency evacuation simulation.

 Students have to be regarded as entities with individual preferences and
decisions based on their previous behaviour and state.

 The need to hand control over their actions to the students themselves. They
are not routed through the system via a course of server and queues but
move on their own.

The implementation in ED did result in a hybrid agent atom: it has the basic
attributes that describe an agent:

 Autonomy: each agent acts on its own and decides its own behaviour

 Social ability: agents are able to communicate with each other

 Reactivity: agents react to their environment and changes therein

 Pro-activeness: Agents do not only react to their environment but act on their
own as well

But due to the ED configuration the agent atom still holds the basic functionality that
relates to the DEVS concept. This enables the interaction with the ED model at
certain points according to the general input/output procedure. This is the case
every time a student enters the queue in front of a door leading to a lecture hall: the
basic configuration of any atom is also present in the agent, thus making it able to
react to the event of entering and exiting another atom. This is used to update the
state of the agent
For the specific project MoreSpace this solution was the best combination as the
atomic agent belongs to both worlds, making it some kind of double agent that is
able to use the resources of DEVS as well as ABM.
The agent based approach provides a very detailed insight into the movements and
activities of the single students and therefore of the state of the lecture rooms. The

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

118

amount of data that can be collected is enormous; the key data extracted has to be
clearly defined to allow a useful comparison of several scenarios.

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

119

Table of Definitions

Definition 1: Discrete Event System Specification (DEVS).. 20
Definition 2: Coupled Model ... 21
Definition 3: Cellular Automaton (CA) .. 22
Definition 4: Agent Based Model (ABM) ... 26
Definition 5: Agent ... 26
Definition 6: Environment .. 26
Definition 7: Utility Function ... 52
Definition 8: Strong Best Fit Criterion ... 61
Definition 9: Weak Best Fit Criterion ... 61
Definition 10: Optimal Environment Criterion .. 61
Definition 11: Room Setup Criterion .. 61

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

120

Table of Figures

Figure 1-1 Predator – Prey Relationship ... 19
Figure 1-2 Simple Server – Queue Model ... 19
Figure 1-3: von Neumann Neighbourhood ... 22
Figure 1-4: Moore Neighbourhood .. 23
Figure 1-5: Torus ... 23
Figure 2-1 Flexibility contra User Friendliness .. 29
Figure 2-2 : Life Cycle of a Simulation Model ... 30
Figure 2-3 User Interaction via GUI .. 32
Figure 3-1: Map of the TU Campus .. 39
Figure 3-2 Original Building on Karlsplatz .. 41
Figure 3-3 Keeping larger Timeslots ... 43
Figure 4-1 MoreSpace ... 46
Figure 4-2 Entity Relationship Model... 48
Figure 4-3 Structure of Room Model .. 48
Figure 4-4: Course with Mandatory Attendance .. 56
Figure 4-5: Course with Interim Tests .. 57
Figure 4-6: Course without Interim Tests ... 57
Figure 4-7: Number of Attending Students .. 58
Figure 4-8: Model Assembly ... 59
Figure 4-9: Simulation of Booking Procedure ... 60
Figure 4-10: Dynamic Simulation .. 62
Figure 4-11 Simulation Model in ED ... 63
Figure 5-1: Places represented by servers .. 66
Figure 5-2: Pseudo-3D Visualisation of an area with obstacles .. 67
Figure 5-3: Spatial Attributes of an Atom in Enterprise Dynamics ... 68
Figure 5-4 GUI in JAVA with CA of the currently simulated level ... 70
Figure 5-5: About 276.000 Square Meters have to be integrated into the CA 71
Figure 5-6: Walking time from room HS1 to room HS2 ... 73
Figure 5-7 Simulation Environment of ED .. 75
Figure 5-8: The Atom Editor ... 76
Figure 5-9: ED Eventlist ... 78
Figure 5-10 Attributes .. 78
Figure 5-11 Basic ED Organisation .. 79
Figure 5-12 Lecture Hall with Attributes ... 82
Figure 5-13 Simulation Model 3D in ED ... 83
Figure 5-14: Calculation of the time of event .. 85

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

121

Figure 6-1: UML Diagram: Booking Procedure.. 89
Figure 6-2: UML Diagram: Student Generation Procedure ... 91
Figure 6-3 Student Numbers .. 92
Figure 6-4: Assignment of Compulsory Courses .. 94
Figure 6-5: UML Diagram: Operational Sequence of MoreSpace .. 99
Figure 6-6: Screen Shot of Code sending a socket message ... 101
Figure 6-7: Screen shot of reacting on an incoming socket message in ED... 102
Figure 6-8: Creation of alternative scenario for Room Structure .. 103
Figure 7-1 MoreSpace GUI ... 106
Figure 7-2: Utilisation ... 113
Figure 7-3 Average Utilisation of a Lecture Room per Day of Week .. 114
Figure 7-4: Utilisation of Rooms ... 114
Figure 7-5: Key Data for Not Successful Booking ... 115

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

122

References

[1] Breitenecker, F. and Solar, D.: Models, Methods, Experiments - Modern aspects of simulation

languages. In: Proc. 2nd European Simulation Conference, Antwerpen, 1986, SCS, San
Diego, 1986, 195 - 199.

[2] Emrich S., et al., Simulation of Influenza Epidemics with a Hybrid Model - Combining Cellular
Automata and Agent Based Features, In: Proc. of the ITI 2008 30th Int. Conf. on Information
Technology Interfaces, 2008

[3] Tauböck S., Breitenecker F.: Features of Discrete Event Simulation Systems for Spatial
Pedestrian and Evacuation Dynamics. In: Proc. PED 2005, Third International Conference
on Pedestrian and Evacuation Dynamics 2005, Vienna, Austria

[4] Bernhard P. Zeigler, Herbert Praehofer, Tag Gon Kim (2000). Theory of Modeling and
Simulation - Integrating Discrete Event and Continious Complex Dynamic Systems, Academic
Press.

[5] Bauer Heinz. Wahrscheinlichkeitstheorie, Walter de Gruyter, Berlin; New York.

[6] Barry L. Nelson.(1995). Stochastic Modeling – Analysis & Simulation, McGraw-Hill Inc.

[7] F.E. Cellier: Continuous System Modeling. Springer-Verlag, New York, 1991. ISBN 0-387-
97502-0

[8] Robert G. Sargent, Verification And Validation Of Simulation Models, Proceedings of the
1998 Winter Simulation Conference, D.J. Medeiros, E.F. Watson, J.S. Carson and M.S.
Manivannan, eds

[9] Mosteller, Frederick and Tukey, John (1977), Data Analysis and Regression, Addison-
Wesley.

[10] V. Volterra. Variations and fluctuations of the number of individuals in animal species living
together. In Animal Ecology. McGraw-Hill, 1931

[11] Jennings, R., Wooldridge M., Agent Technology: Foundations, Applications, and Markets,
Springer Verlag

[12] Stan Franklin and Art Graesser, Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents; Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer Verlag, 1996

[13] Bakthi Satyabudhi, Stephan Onggo, Running agent-based models on a discrete event
simulator, Department of Management Science, Lancaster University

[14] Bernhard P. Zeigler, Arizona Center for Integrative Modelling and Simulation, DEVS
Today: Recent Advances in Discrete Event Based Information Technology

http://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0387975020
http://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0387975020

Integration of ABM in DEVS for Utilisation Analysis: The MoreSpace Project at TU Vienna

123

[15] Gray, L. A Mathematician Looks at Wolfram's New Kind of Science. Not. Amer. Math. Soc.
50, 200-211, 2003.

[16] Goodchild, Longley, Geospatial Analysis - a comprehensive guide. 3rd edition, 2006-2009 de
Smith

[17] A.M.Uhrmacher, B.Schattenberg, Agents in Discrete Event Simulation, European
Simulation Symposium - ESS'98, Nottingham, October 1998.

ISBN print
ISBN 978-3-903024-85-4
TU Verlag, Vienna, 2019

www.tuverlag.at

ISBN ebook DOI ID
ISBN 978-3-903347-19-9 DOI 10.11128/fbs.19

ARGESIM Publisher, Vienna, 2016
www.argesim.org

About the Author
Shabnam Michèle Tauböck studied Technical Mathematics at the Vienna
University of Technology. She very quickly got into the field of discrete,
event-driven simulation and gained great experience in the development of
computer-aided simulation models in the field of process optimization and
logistics with a special focus on database-driven adaptive simulation mod-
els. She worked for several years as a simulation expert for the Austrian
Research Centers Seibersdorf and for Profactor Research GmbH. During this
time she specialized in the development of hybrid simulation approaches to apply them in various
fields from biomedical engineering, clinical studies and supply chain management to production
plants and business processes. In 2007 she returned to the Institute for Analysis and Scientific Com-
puting of the Vienna University of Technology. In 2010 she completed her dissertation as part of a
research project on the optimal utilization of lecture room resources at university, using a hybrid
modelling approach combining agent-based modelling with discrete event simulation systems.

About the Book
This ambitious PhD-thesis is an outcome of the MoreSpace Project of TU Vienna, which is aiming for
a better utilization of the lecture rooms. The author, key researcher in this project - introduced dy-
namic simulation at various levels in order to solve veritable bottleneck problems and lecture room
shortages. This volume presents the complex overall simulation model, the generation of this simu-
lation model from databases, and experiments with the model for better lecture room utilization
and other system improvements. The simulation model consists of a combination of an agent-based
model, describing the behaviour of the students when attending lectures, and a process model for
the lecture rooms, including pathways within and between university buildings. The simulation
model is gene-rated automatically from university databases: inscription data and curricula data
drive the agent-based model, and building maps and lecture room data drive the process model.
The prototype implementation in Java and Enterprise Dynamics is controlled by a graphical experi-
mentation interface, allowing various simulation frames: classical semester investigations, long-
term simulations over years for planning of university building construction, and short-term simula-
tions for rescheduling in case of interruptions of the schedules - and can be used also for other
teaching institutions due to the database parametrization.

About the Series
The ASIM series Advances in Simulation / Fortschrittsberichte Simulation (FBS) presents new and
recent approaches, methods, and applications in modelling and simulation. The topics may range
from theory and foundations via simulation techniques and simulation concepts to applications. As
the spectrum of simulation techniques and applications is increasing, books in these series present
classical techniques and applications in engineering, natural sciences, biology, physiology, produc-
tion and logistics, and business administration, upcoming simulation applications in social sciences,
media, data management, networking, and complex systems, and upcoming new simulation tech-
niques as agent-based simulation, co-simulation, and deep learning, etc.
The series puts emphasis on monographs with special character, as PhD theses, habilitation trea-
tises, project reports and overviews on scientific projects. ASIM - Arbeitsgemeinschaft Simulation,
the German Simulation Society (part of GI - Gesellschaft für Informatik) has founded the series
Advances in Simulation / Fortschrittsberichte Simulation together with ARGESIM Publisher Vienna in
order to provide to the international simulation community a quick and cost-efficient print and e-
book series with open access.

	Leere Seite
	Leere Seite

