
Simulation Based Parameter
and Structure Optimisation
of Discrete Event Systems

FORTSCHRITTSBERICHT

SIMULATION FBS 17

978-3-903347-17-5

Fortschrittsberichte Simulation
FBS 17

ASIM - A Sim

Olaf Hagendorf

Simulation Based Parameter
and Structure Optimisation
of Discrete Event Systems

ARGESIM / ASIM – Verlag, Wien, 2010

ISBN 978-3-901608-67-4

978-3-903347-17-5

FBS - Fortschrittsberichte Simulation

Herausgegeben von ASIM, Arbeitsgemeinschaft Simulation, Fachausschuss der GI im Fachbereich
ILW – Informatik in den Lebenswissenschaften

Betreuer der Reihe:

Prof. Dr.-Ing. Th. Pawletta (ASIM) Dr.-Ing. habil. D.P.F. Schwarz (ASIM)
Hochschule Wismar Fraunhofer-Institut für Integrierte Schaltungen
Phillip-Müller-Str., 23952 Wismar, Germany Zeunerstr. 38, 01069 Dresden, Germany
Tel.: +49-3841-753-406 Tel.: +49-351-4640-730
Fax: +49-3841-753-132 Fax: +49-351-4640-703
Email: pawel@mb.hs-wismar.de Email: schwarz@eas.iis.fhg.de

Prof. Dr. F. Breitenecker (ARGESIM / ASIM)
Technische Universität Wien
Wiedner Hauptstraße 8 – 10, 1040 Wien, Austria
Tel.: +43-1-58801-10115
Fax: +43-1-58801-10199
Email: Felix.Breitenecker@tuwien.at

FBS Band 17

Titel: Simulation Based Parameter and Structure Optimisation of Discrete Event Systems

Autor: Dr. Olaf Hagendorf (ASIM)
Hochschule Wismar
Phillip-Müller-Straße , 23952 Wismar, Germany
Tel.: +49-3841-753-176
Email: Olaf.Hagendorf@hs-wismar.de

Begutachter des Bandes:
Dr Ludmil Mikhailov, University of Manchester;
Prof. Dingli Yu, Liverpool John Moores University

ISBN 978-3-901608-67-4

978-3-903347-17-5

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des
Nachdrucks, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf photomechanischem oder
ähnlichem Weg und der Speicherung in Datenverarbeitungsanlagen bleiben, auch bei nur auszugsweiser
Verwertung, vorbehalten.

© by ARGESIM / ASIM, Wien, 2010
Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt
auch ohne besondere Kennzeichnung nicht zur Annahme, dass solche Namen im Sinne der Warenzeichen- und
Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Simulation Based
Parameter and Structure
Optimisation of Discrete

Event Systems

Olaf Hagendorf

A thesis submitted in partial
fulfilment of the

requirements of Liverpool
John Moores University for

the degree of Doctor of
Philosophy

May 2009

submitted:
21.05.2009

defended:
23.07.2009

Examiners:
Dr Ludmil Mikhailov, University of Manchester
Prof. Dingli Yu, Liverpool John Moores University

I

Abstract
Modelling and simulation based on discrete event systems is used routinely in
research and industrial applications e.g. in the design, planning and real time
control of manufacturing systems. An advanced, but now well established,
technique is modelling and simulation with integrated parameter optimisation to
improve system performance. In using these established approaches model
structure is considered to be fixed as the relationships between model elements
are defined during model development. As model performance is optimised it
may be necessary to redesign the model structure, normally carried out manually
by an analyst using previous simulation results, observations or decisions based
on previous experience.
 With increasingly complex, flexible and reconfigurable discrete event
systems such as manufacturing systems, modelling and simulation methods are
becoming more challenging. As the number of possible structure variants
increases the potential benefit of automatic model structure optimisation
becomes significant. The research reported in this thesis details a new approach
providing automatic reconfiguration and optimisation of both model structure
and model parameters. This is achieved through a combination of simulation,
optimisation and model management methods. Simulation is used to determine
current model performance and an optimisation method, assisted by model
management, searches for an optimal solution with repeated model parameter
and model structure changes. In contrast to conventional modelling and
simulation methods this approach employs a meta-modelling method. It defines
a set of model structure variants and includes a model base with pre-defined
basic components. With this meta-modelling method the model management can
determine specific model structures and create executable models.
 To validate the simulation based optimisation approach a prototype was
implemented. Several variants of a Photofinishing Laboratory part were
modelled. In different experiments the introduced approach and the prototype
were validated.
 This research project extends the work of Pawletta et al. [35]...[46], supports
other projects of the Research Group Computational Engineering and
Automation at Hochschule Wismar University of Applied Sciences Technology,
Business and Design, Germany and follows another collaborative LJMU School
of Engineering / Wismar research project in this field [23] [24].

II

Acknowledgements

It seems impossible to reach the end of this long process without the support
from many others, who have helped me so much along the way.
 First of all, I thank my advisor, Thorsten Pawletta at Hochschule Wismar
University of Applied Sciences Technology, Business and Design, for his
mentoring and support on my research in the PhD program. His insight to
scientific research and the way to carry it out have greatly inspired me and will
continue to guide me through my career path.
 I would like to express my gratitude to my director of studies Dr. Gary. J.
Colquhoun at Liverpool John Moores University for his guidance, help and
support throughout the course of study within the last years. His wisdom,
experience and knowledge, especially of administrative mechanisms, burdens
and resources within the university have proved extremely beneficial for my
work.
 I thank my colleagues in the CEA Research Group: Prof. Dr. Peter Dünow,
Prof. Dr. Sven Pawletta, Dipl.-Ing. (FH) Christina Deatcu, M.Eng. Stefan
Behrendt, M.Eng. Christian Fritzsche, M.Eng. Gunnar Maletzki, Dipl.-Ing. (FH)
Tobias Pingel and M.Eng. Christian Stenzel; and previous group members: Dr.-
Ing René Fink and Dipl.-Ing. (FH) Martin Kremp. We have had a good time
together.
 I would like to sincerely thank my family, especially my daughter Pia, as
well as any friends not mentioned above, for all their support during the writing
of this thesis.
 Finally, I would like to thank for the support given by the School of
Engineering of Liverpool John Moores University.

III

Contents
SIMULATION BASED PARAMETER AND STRUCTURE OPTIMISATION OF
DISCRETE EVENT SYSTEMS .. 1

ABSTRACT ... 1

ACKNOWLEDGEMENTS ... 2

CONTENTS ...III

LIST OF FIGURES.. VI

LIST OF CODING EXAMPLES ... VIII

LIST OF TABLES ... IX

CHAPTER 1 INTRODUCTION ... 1

1.1 PREAMBLE ... 1
1.2 RATIONAL FOR SIMULATION BASED OPTIMISATION .. 2

1.2.1 A Context for Simulation in Manufacturing Systems 4
1.2.2 Aims and Objectives .. 5
1.2.3 Cost Reduction with the Aid of Simulation based Optimisation .. 6

1.3 METHODOLOGY AND STRUCTURE OF THE RESEARCH 7
1.3.1 Simulation based Optimisation ... 8
1.3.2 Modelling and Simulation ... 8
1.3.3 Model Management and Model Generation............................... 9
1.3.4 Implementation and Employment ... 10

1.4 RESEARCH OUTCOMES .. 11
1.5 CONTRIBUTION TO KNOWLEDGE ... 11
1.6 CONTENTS OF THIS THESIS ... 12

CHAPTER 2 SIMULATION BASED OPTIMISATION 15

2.1 INTRODUCTION ... 15
2.2 PARAMETER OPTIMISATION ... 17
2.3 PARAMETER AND STRUCTURE OPTIMISATION ... 19

CHAPTER 3 DISCRETE EVENT SYSTEM SPECIFICATION AND SIMULATION
 25

IV

3.1 INTRODUCTION ... 25
3.2 DISCRETE EVENT SYSTEM SPECIFICATION ... 27

3.2.1 Classic DEVS Modelling .. 28
3.2.2 Formal Concept of Classic DEVS Modelling................................ 30
3.2.3 Classic DEVS Simulation ... 32

3.3 DEVS EXTENSIONS .. 38
3.3.1 DEVS with Ports ... 39
3.3.2 Parallel DEVS ... 41
3.3.3 Dynamic Structure DEVS .. 43

3.4 EXTENDED DYNAMIC STRUCTURE DEVS ... 47
3.4.1 Formal Concept of EDSDEVS Modelling 48
3.4.2 EDSDEV Simulation .. 54

CHAPTER 4 MODEL MANAGEMENT – MODEL SET SPECIFICATION AND
ORGANISATION 59

4.1 CLASSIC SYSTEM ENTITY STRUCTURE/MODEL BASE FRAMEWORK 59
4.2 EXTENSION OF THE SYSTEM ENTITY STRUCTURE/MODEL BASE FRAMEWORK 63

CHAPTER 5 A FRAMEWORK FOR MODELLING, SIMULATION AND
OPTIMISATION 67

5.1 GENERAL FRAMEWORK STRUCTURE ... 67
5.2 INTERFACE: OPTIMISATION MODULE – MODEL MANAGEMENT MODULE 69
5.3 INTERFACE: MODEL MANAGEMENT MODULE – MODELLING AND SIMULATION
MODULE 73
5.4 INTERFACE: MODELLING AND SIMULATION MODULE – OPTIMISATION MODULE 73
5.5 ALGORITHMIC SUMMARY OF THE FRAMEWORK .. 74
5.6 DEFINITION OF A MODEL SET WITH XML SES/MB 75

CHAPTER 6 PARAMETER AND STRUCTURE OPTIMISATION OF
MANUFACTURING SYSTEMS ... 79

6.1 MANUFACTURING SYSTEMS ... 79
6.2 MODELLING AND SIMULATION OF MANUFACTURING SYSTEMS 80

6.2.1 Simulation Model Level of Detail ... 81
6.2.2 Fundamental Components .. 81
6.2.3 Measures of Performance ... 84
6.2.4 Analysis Issues ... 84

6.3 INTRODUCTION TO THE PHOTOFINISHING INDUSTRY 85
6.4 PHOTOFINISHING LAB – AN OPTIMISATION APPLICATION.............................. 87

6.4.1 Problem Description .. 87
6.4.2 Implementation Details ... 89
6.4.3 Results ... 96

V

CHAPTER 7 CONCLUSIONS AND FURTHER WORK 105

7.1 CONCLUSIONS .. 105
7.2 SUGGESTIONS FOR FURTHER WORK .. 107

APPENDIX A. REFERENCES .. 109

APPENDIX B. CODING EXAMPLES ... 115

VI

List of Figures
Figure 1.1 Modelling and simulation of Manufacturing Systems (source [19]) .. 4
Figure 1.2 Research area structure ... 7
Figure 1.3 Structure of the main sections of the thesis 13
Figure 2.1 An example of an conventional simulation experiment.................... 16
Figure 2.2 Classification of optimisation methods .. 17
Figure 2.3 An example of a simulation based parameter optimisation experiment
 ... 18
Figure 2.4 Components and steps of a simulation based parameter and structure
optimisation experiment .. 21
Figure 2.5 Schematic diagram of a simulation based parameter and structure
optimisation framework ... 22
Figure 3.1 A real-world process or system and its model (source [1]) 26
Figure 3.2 Simulation model taxonomy (source [48]) 27
Figure 3.3 DEVS model example .. 28
Figure 3.4 Dynamic behaviour of an atomic model ... 31
Figure 3.5 Coupled model elements .. 32
Figure 3.6 An example of a Classic DEVS model with associated abstract
simulator elements ... 33
Figure 3.7 An example of a Classic DEVS model with associated abstract
simulator elements, messages and model function calls during initialisation and
simulation phases... 36
Figure 3.8 Models with multiple input and output ports 40
Figure 3.9 Dynamic behaviour of an atomic PDEVS model 42
Figure 3.10 Examples of structure changes at coupled model level 43
Figure 3.11 Dynamic behaviour of a coupled DSDEVS model 46
Figure 3.12 Examples of sequential structure changes of a coupled model 46
Figure 3.13 Dynamic behaviour of an atomic EDSDEVS model 50
Figure 3.14 Dynamic behaviour of a coupled EDSDEVS model 53
Figure 3.15 An EDSDEVS model example with associated abstract simulator
elements, messages and model function calls during initialisation phase 56
Figure 4.1 SES/MB formalism based model generation 60
Figure 4.2 A SES example .. 61
Figure 4.3 Detailed pruning and model generation example 63
Figure 4.4 Comparison original pruning – new pruning principle 65
Figure 4.5 SES example with a structure condition ... 66
Figure 5.1 Structure of the simulation based optimisation framework 68
Figure 5.2 Transformation SES set XS and set DS .. 70

VII

Figure 5.3 Transformation XSi + SES PES ..72
Figure 5.4 UML Diagram of SES/MB XML Schema ..77
Figure 5.5 An SES/MB XML example – SES tree with both valid and invalid
model structure variants ...78
Figure 6.1 General assembly system layout (source [5])80
Figure 6.2 Model detail during model validation (source [51])81
Figure 6.3 General product flows of a photofinishing lab86
Figure 6.4 Product flow of the considered example ...87
Figure 6.5 Model parameter and SES of the application91
Figure 6.6 PES of 132th variant ..92
Figure 6.7 Model structure of 132th variant ..93
Figure 6.8 A sequence diagram section of one simulation run94
Figure 6.9 Fitness values of all variants with the optimum at X132...................101
Figure 6.10 Individual fitness, best and average fitness of generations of one GA
run ..103
Figure B.1 A coupled model example ..141

VIII

List of Coding Examples
Listing 6.1 Matlab code section with GA initialisation and execution 96
Listing B.1 Pseudo code skeleton of an atomic Classic DEVS model 115
Listing B.2 Pseudo code skeleton of a coupled Classic DEVS model 116
Listing B.3 Pseudo code of a Classic DEVS root coordinator 117
Listing B.4 Pseudo code of a Classic DEVS simulator 118
Listing B.5 Pseudo code of a Classic DEVS coordinator 120
Listing B.6 Pseudo code skeleton of an atomic Classic DEVS with Ports model
 ... 121
Listing B.7 Pseudo code of a Classic DEVS with Ports simulator 122
Listing B.8 Pseudo code of a Classic DEVS with Ports coordinator 123
Listing B.9 Pseudo code skeleton of an atomic PDEVS model 124
Listing B.10 Pseudo code of a PDEVS simulator .. 125
Listing B.11 Pseudo code skeleton of an atomic EDSDEVS model 127
Listing B.12 Pseudo code skeleton of a coupled EDSDEVS model 129
Listing B.13 Pseudo code of an EDSDEVS simulator 130
Listing B.14 Pseudo code of an EDSDEVS coordinator 133
Listing B.15 DTD describing the structure of SES/MB XML 137
Listing B.16 SES/MB XML example – XML file ... 140
Listing B.17 Two atomic model XML files ... 141
Listing B.18 Coupled model XML file .. 142
Listing B.19 A general GA algorithm ... 143

IX

List of Tables

Table 6.1 Fundamental components of manufacturing systems (source [51])82
Table 6.2 Order handling times ..88
Table 6.3 Production costs ...88
Table 6.4 Simulation results of all model structure and parameter variants with
resulting production time, costs and fitness ..100
Table 6.5 Limits of fitness function parameters and results101
Table 6.6 Optimal and near optimal solutions ..102
Table 6.7 Results of 50 optimisation experiments ..102

1

Chapter 1
Introduction

1.1 Preamble
Often it is of interest to study a system to understand the relations between its
components or to predict how a system is responsive to changes. Sometimes it is
possible to directly experiment with the system. However, this is not always
possible e.g. due to costs when a manufacturing system has to be stopped,
changed or extended. Often the system even does not yet exit. A model, defined
as a representation of the system in order to investigate it, can solve this
dilemma. Generally, it is sufficiently to abstract the system with a view to the
analysing the issues under investigation. In terms of modelling and simulation
this abstract is named the simulation model.
 A system can be classified into discrete or continuous: “Few systems
in practice are wholly discrete or continuous; but since one type of change
predominates for most systems, it will usually be possible to classify a system as
being either discrete or continuous.” [25]. The analysing issue also plays a
decisive role. An analogue printer in a photofinishing lab is a typical example. It
is possible to analyse the machine at a very low level with the continuous
movements of machine components and analogue film material when the
objective is to optimise the component interaction. Another, discrete viewpoint
could be the number of pictures and the length of photographic paper handled in
a specific amount of time when the objective is to plan throughput and the
necessary staff.
 Simulation models as a particular type of mathematical system models
can be classified too, e.g. as being static or dynamic, deterministic or stochastic,
and discrete or continuous. A static simulation model represents a system at a
particular time whereas a dynamic simulation model represents system changes
over time. A deterministic simulation model does not contain any random
variables whereas a stochastic simulation model has in minimum one random
variable as an input. Discrete and continuous models can be discrete and
continuous systems as described above. One specific type of discrete systems is
the discrete event system (DES) where state variables change at discrete points
in time during simulation.

One of the most important applications of modelling and simulation
based on discrete event systems are manufacturing systems. These systems have

Chapter 1 Introduction

2

been modelled since the origins of manufacturing. From the civilisations of the
ancient world to the first industries through to current high-technology
production, managers and engineers have thought about the complexities of
manufacturing systems [27]. As computers developed they became an increasing
important means of modelling and simulation. The expanding capability of
computing systems and the increasing demands of engineers and managers
planning, implementing and maintaining manufacturing systems have been
pushing the boundaries of modelling and simulation research. With the
decreasing costs of computing systems, modelling and simulation applications
have become an integral part of industrial practice.

Simulation has been used widely and successfully to support the
design of new production facilities and material handling systems and to
evaluate variants of existing systems. Applications for production, warehouse-
management and material handling control can incorporate simulation
techniques to evaluate staffing and operating rules, changes of material handling
and system layout or the effect of capital investment. An important advantage in
using modelling and simulation techniques is the possibility of evaluating
changes before making investment decisions and without disturbing the existing
system.

Recently, with increasing globalisation, the competition conditions for
manufacturing have been changing fundamentally. A key shift is the need to
move from increasing product quantity to a combination of increasing quantity
and a drive for manufacturing flexibility. As the number and the speed of
product innovations increase, the time to market and the marketing life of a
product decreases. As a consequence manufacturers have to extend the general
objective “cost saving” to “time and cost saving” [29]. To support this market
trend manufacturing systems will increase in complexity with increasing
automation, flexibility and degree of computerisation. This also implies
increased requirements for production planning. For many companies modelling
and simulation together with a combined optimisation is a strategy to fulfil these
requirements. Because of the increasing production planning requirements
modelling and simulation environments have to meet these increasing needs.

1.2 Rational for Simulation based Optimisation
Successful systems have been stable over a long time, solved real problems and
demonstrated return-on-investment (ROI). New, identical copies of such systems
are not risky because they are proved. However, it is not possible to guarantee
that innovative system changes will ever generate their ROI. Simulation enables
system analysis with time and space compression, provides a robust validation
mechanism under realistic conditions and can reduce the risk of implementing
new systems. Validation is achieved using a series of qualitative and quantitative
experiments with changes of system variables and structures. Pilot projects using
real systems with reduced size and/or implemented in a low-risk laboratory
environment, can provide analysis results. Such real experiments take time and

1.2 Rational for Simulation based Optimisation

3

cost. Hence, a large number of alternatives imply an initial pre-selection.
Modelling and simulation can lower the number of alternatives analysed in real
experiments as the final step [8].

One reason for system changes is the search for a better overall
performance. Under the focus of simulation this means the search for a set of
model specifications e.g. input parameters and/or structural assumptions, that
leads to an optimal model performance. For all possible variants the range of
parameter values and the number of parameter combinations may be too large to
implement and simulate manually. A method to automate this is needed. The
example described in chapter 6 demonstrates this problem. Even though only a
fraction of the complete manufacturing system is modelled the number of
possible variants is overwhelming.

Many real word systems are too complex to be expressed by
mathematical models. But mathematical models are a precondition of
optimisation methods. This leads to a contradiction [2]:

Pure optimisation models are not able to handle the complexity of both
system behaviour and structure.
Pure simulation cannot find an optimal solution.

 Simulation based optimisation resolves this contradiction through a
combination of both methods.

Research and application of simulation based optimisation has seen a significant
development in recent years. A Google search on ‘Simulation Optimisation’ in
2006 found ca. 4.000 entries [2] in comparison to a search in 2008 with almost
80.000 entries among others articles, conference presentations, books and
software.
 Until a relative short time ago, the simulation community was resistant
to the use of optimisation tools. Optimisation models seem to over-simplify the
real problem and it was not always clear why a certain solution was the best [8].
The situation changed at the end of the 90s. An ACM Digital Library [57] search
on ‘Simulation Optimization’ found 16.000 articles between 1960 and 2008. A
significant number (15.500) of articles has been published during the last 20
years and only 500 articles in the 28 years before. Two reasons for this change
may be the advances in modelling and simulation methods and increase of
computing power over the last two decades that has enabled simulation based
optimisation.
 Currently there are several algorithms to change simulation model
parameters to establish solutions with good performance and methods to
compare different solutions in terms of quality. Many commercially available
discrete event or Monte Carlo simulation software packages contain
optimisation methods to search for optimal input and system parameter values
[3] e.g. WITNESS with the optional optimisation packages WITNESS
Optimizer, ARENA with the additional package OptQuest for Arena [7],
SIMPROCESS and SIMUL8 with OptQuest optimisation technology [8].

Chapter 1 Introduction

4

1.2.1 A Context for Simulation in Manufacturing
Systems

The application of manufacturing simulation focuses on modelling the behaviour
and the structure of manufacturing organisations, processes and systems.
Simulation in a manufacturing system can be used at different phases of
manufacturing system lifetime and at different system levels as depicted in
figure 1.1. Traditionally, simulation has been used in the planning and design
phase dating back to the beginning of the 1960’s [26]. Today simulation models
are used in all phases of life cycle and at all system levels (see figure 1.1) [19].
Recent developments indicate approaches that also use simulation as an integral
part of real time machine control [23] [24] [28].

Figure 1.1 Modelling and simulation of Manufacturing Systems (source [19])

A broad variety of simulation tools are available for manufacturing systems.
Historically they can be classified into two major types: simulation languages
and application-oriented simulators [26]. Simulation languages are very general.
Models are created by coding their behaviour and structure and are similar to a

1.2 Rational for Simulation based Optimisation

5

general computer language. Simulation languages provide very high flexibility
in model creation but are complex in use for non-scientists and non-engineers.
Application-oriented simulators specialise in a given application class. Models
are often developed with a graphical user interface based on components, dialog
boxes, context menus etc. This eases model development for non-technical users
but could lead to reduced flexibility for specific problems [26]. Recent
developments indicate that both types are adapting typical characteristics of the
other e.g. a simulation language can use a graphical modelling user interface to
internally produce code which can be manually altered later.
 In summary it is possible to differentiate between general purpose and
application-oriented simulation packages. The first are general packages but may
have special features for certain application. Examples of general-purpose
simulation packages are Arena, AweSim, Extend, GPSS/H, Micro Saint,
MODSIM III, SIMPLE++, SIMUL8, SLX and Taylor Enterprise Dynamics
Developer. Examples of application-oriented simulation packages for
manufacturing are Arena Packaging Edition, AutoMod, AutoSched, Extend +
MFG, ProModel, QUEST, Taylor Enterprise Dynamics Logistics Suite and
WITNESS. Short overviews about the above packages and their main feature
can be found e.g. in [7] [25] [26].
 Other classifications of simulation packages exist, e.g. the
differentiation between continuous and discrete simulation. Few systems are
completely discrete or continuous but in many systems one is dominant or
analysis objectives require the use of a specific simulation type. Due to the
stochastic nature of systems continuous processes can be approximated by
stochastic distributions with start and stop events. Hence, a continuous system or
sub system can be described by a discrete event system. For example, in an
automobile assembly line simulation discrete events dominate but of course it
would be possible to continuously describe sub systems e.g. work piece
movements. In contrast in a chemical plant continuous state changes prevail but
the switch of a valve could be modelled discretely.
 In this research a general, theoretical established, discrete modelling
and simulation approach is used. Hence the research results are general
statements and applicable to generic simulation approaches and application
specific systems respectively. The Discrete Event System Specification (DEVS),
used in this research, is a formalism based on discrete event models. It supports
a modular, hierarchical model construction and claimed to be a general and
powerful approach in the field of discrete event simulation. The formalism can
describe models with a formal specification and simulation model execution
with generic simulation algorithms.

1.2.2 Aims and Objectives
The research addresses a fundamental problem of simulation based optimisation.
The technique is well established but is restricted to the optimisation of system
parameters. In using these established techniques model structure is considered

Chapter 1 Introduction

6

to be fixed as the structure of model elements is defined during model
development before an optimisation experiment. As model performance is
optimised it may be necessary to redesign the model structure. This would
conventionally be done manually by an analyst using previous simulation
results, observations or decisions based on previous experience. This manual
process cannot guarantee the global optimal solution. The aim of this research is
to develop an approach to discard the manual changes i.e. to develop a
combined, simulation based parameter and structure optimisation.
The objectives are:

Carry out a literature analysis on simulation based optimisation and search
methods
Carry out a literature analysis on the specification and simulation of
modular, hierarchical discrete events systems, particularly the Discrete
Event System Specification (DEVS) and DEVS extensions
Advance the established approach of a simulation based parameter
optimisation to a simulation based parameter and structure optimisation
Develop a modelling and simulation method based on DEVS and DEVS
extensions to create a merging formalism which combines advantages of
different approaches
Investigate model management and model generation methods
Investigate appropriate optimisation and search algorithms
Validate the research and developed approach using an industrial
application
Publish the results in peer reviewed journals, at conferences or in other
research publications

1.2.3 Cost Reduction with the Aid of Simulation
based Optimisation

The results of this research enable two different possibilities for cost reduction:
1. With increasingly complex, flexible and reconfigurable manufacturing

systems the number of possible structure variants increases. In using
established approaches it may be necessary to redesign the model structure
between two parameter optimisation runs, normally carried out manually
by an analyst using previous simulation results, observations or decisions
based on previous experience. This is time consuming and potentially error
prone. With this new approach providing automatic reconfiguration and
optimisation of both model structure and model parameters the process
becomes shorter and the ability to find an optimal solution increases.

2. Many manufacturing systems have the potential to be optimised. Using
existing machines, facilities and processes, optimisation could be used to
find a new layout and system dimension with improved performance.

The application of this research described in the thesis demonstrates both
aspects.

1.3 Methodology and Structure of the Research

7

1.3 Methodology and Structure of the Research
The four main areas investigated in this research are:
1. Introduction of simulation based optimisation approaches with regard to

an extension to a structure optimisation method
2. Modelling and simulation method based on the Discrete Event System

Specification (DEVS)
3. Model management and model generation method using the System Entity

Structure/Model Base (SES/MB) framework
4. Employing the approach with a real life manufacturing problem

A new approach was established based on the methods 1, 2 and 3. Through the
linking of the methods and the definition of appropriate interfaces between them
they constitute a new approach to a combined and automatic simulation based
parameter and structure optimisation. Figure 1.2 depicts the connections
between the investigated areas.

{ {
Simulation based
Optimisation

Optimisation
Method

Real System

Model
Simulator

Optimised
Model

Model
Management

Set of Model
Variants

Model
Generation

Figure 1.2 Research area structure

Chapter 1 Introduction

8

1.3.1 Simulation based Optimisation
Modelling and simulation with integrated parameter optimisation to improve
model performance is an established technique. In using these established
approaches model structure is considered to be fixed as the relationships
between model elements (machines, facilities, conveyors etc.) are defined during
model development before the optimisation experiment. As model performance
is optimised it may be necessary to redesign the model structure after the
optimisation experiment. This is normally carried out manually and repeatedly
by an analyst with subsequent optimisation experiments.
 In established parameter optimisation methods the number of
parameters and their domains specify the search space. Depending on the
optimisation method the search space is traversed i.e. the optimisation method
needs a specific knowledge about the search space bounds. Certain points of the
search space are analysed. Each point defines a certain parameter value set. The
model is initialised with this parameter value set and subsequently simulated.
 The extension using a structure changing facility means broadening
the technique to a parameter and structure optimisation. Additional variables
with their associated domains are describing possible model structure variants.
The combination with the set of parameters defines the new search space of the
extended optimisation problem. Methods to transform the set of parameters and
structures to a search space definition and vice versa a search space point to a
model structure and model parameter values are an integral part of the
broadened technique.

1.3.2 Modelling and Simulation
Many different concepts and methods of modelling and simulation exist. This
research is restricted to the discrete event system specification formalism,
characterised by continuous time and discrete state changes and modular,
hierarchical modelling and simulation. The investigated und further developed
discrete event system approach is based on DEVS introduced by Zeigler [66]
[67] [68]. This approach is one of the most developed, theoretical well-founded
discrete event approaches. DEVS supports the definition of modular,
hierarchical systems and incorporates well-defined simulator algorithms.
 A crucial part of the research is the analysis of the discrete event
system specification and the existing extensions with regard to simulation based
parameter and structure optimisation and its application in a prototype
implementation. Based on the Classic DEVS formalism [66] a broad range of
publications with several extending approaches are available. For the application
of this research within the manufacturing systems domain certain Classic DEVS
extensions were incorporated to establish the Extended Dynamic Structure
Discrete Event System specification formalism (EDSDEVS). Consequently a
formal concept for this unified specification was developed. The formalism was

1.3 Methodology and Structure of the Research

9

verified with examples from [66], a benchmark application [18] and industrial
applications [16] [17].
 This research is a key element of a major search project of the
Research Group of Computational Engineering (RG CEA), Hochschule Wismar
University of Applied Sciences Technology, Business and Design1.

1.3.3 Model Management and Model Generation
In a further crucial area of the research the following key features of a model
management as part of a simulation based structure optimisation were
developed:

Declarative specification of different model structures
Definition of a method for external controlled model structure selection
Definition of an interface between model selection and model generation

To specify a set of modular, hierarchical models an approach has to be able to
describe three relationships: (i) decomposition, (ii) taxonomy and (iii) coupling
[52] [66] [69].
(i) Decomposition means the approach has to be able to decompose a system
called entity into sub-entities.
(ii) Taxonomy means the ability to represent several, possible variants of an
entity called specialisations.
(iii) To compose an entity from sub-entities these have to be connected. This is
the meaning of a coupling relationship.
The System Entity Structure/Model Base (SES/MB) approach is able to describe
these three relationships [52], [66], [69]. The original SES/MB approach was
developed to assist a manual model design process for modular, hierarchical
models using a tree like definition with different node and edge types and a
model base containing basic components. An essential demand for an
appropriate model management method is the external controllability. The
SES/MB approach has to be changed to comply with this demand.
 Based on the adapted SES/MB approach three interfaces around the
model management method were designed. The first interface is a model set
definition based on a XML file structure. This interface is deployed to create a
specific SES/MB structure. In future extensions the development of a graphical
SES/MB modeller based on this interface would be possible. The second
interface delivers model generation information to a model generator. It is based
on a XML file structure definition. This interface represents the connector to the
modelling and simulation method. The third interface communicates with the
optimisation methods during the initialisation and the optimisation phases:

1 Research Group Computational Engineering and Automation,
http://www.mb.hs-wismar.de/cea/

Chapter 1 Introduction

10

1. In the initialisation phase it delivers information about the search space
defined by the set of all possible model structure and model parameter
variants to the optimisation method.

2. During the optimisation phase it receives information from the
optimisation method about the currently investigated search space point.
This information is used to select the corresponding model structure and
initialises the model parameters. A subsequent model structure validation
is a crucial part of the model structure selection.

1.3.4 Implementation and Employment
In this research methods and algorithms were implemented using the MATLAB
Scientific Computing Environment [58].
1. The modelling and simulation toolbox was not started from scratch. A pre-

release of the modeller and simulator published in [41] was the starting
point. These sources were adapted to the current MATLAB version with a
new object-oriented programming principle and were extended step-by-
step. Each extension was validated with test models for example those
introduced in [66]. Each important stage of the research was published and
subject to peer review [16] [17] [18] [34].

A simulation model was implemented as a basis for later
optimisation. This model uses results, observations, structures, parameter
etc. gathered by the author of this thesis during several projects which
were realised by the supporting company Syntax Software2. The company
is a leading production and machine control software developer for the
photofinishing industry. The final model was validated with original
production data taken from photofinishing applications implemented by
the author.

2. The model management toolbox was developed and tested using
conventional software engineering techniques.

3. The optimisation method used the commercial available Genetic
Algorithm Toolbox [59].

4. The research application is based on industrial experience of the author.
The germ of the idea to optimise structure comes from a project enquiry
made by the Kodak Photofinishing Department to Syntax Software 6 years
ago. The project was not realised because Kodak closed their European
photofinishing business.

 To validate the new approach all possible model variants were
simulated. The simulation results are compared with the result of the automatic

2 SyntaX Software Inh. Jörn Satow formerly SyntaX Software
O.Hagendorf J.Satow GbR, Schweinsbrücke 9, 23966 Wismar,
www.syntaxsoft.de

1.4 Research Outcomes

11

structure and parameter optimisation. This procedure and its results are
described and discussed in chapter 6.

1.4 Research Outcomes
The outcomes of this research can be divided into four parts:
1. Development of an approach for a combined, simulation based model

parameter and model structure optimisation
The extension of the established simulation based parameter optimisation
by a controllable model management is the fundamental idea behind this
research. Through this inclusion of a model management the optimisation
method can simultaneously control parameter changes as well as model
structure changes to find an optimal system configuration.

2. Development of an Extended Dynamic Structure DEVS Formalism
Classic DEVS and DEVS extensions has been a research topic since more
than 30 years. The extensions have one joint attribute: they are based on
the Classic DEVS formalism. Hence, the decision on one DEVS extension
inhibits the use of advantages of another one. In this research selected
extensions are combined to create to a merging formalism to combine the
advantages of different approaches.

3. Validation of the new approach
The approach was successfully validated with a simulation based
optimisation experiment using an industrial application. All variants of the
application were calculated and the results compared with the optimisation
experiment. The global optimal result was found with a probability of
47%. With an error of 3% of the system performance an optimal result was
found with a probability of 68%. To find an optimal result, on an average
70% of the search space were analysed. With a second experiment the
dependency of optimisation results on search method configuration was
shown. However, the finding of an optimal search method configuration
was not within the scope of this research.

4. Publication of results
Results and intermediate steps have been published in a peer-reviewed
journal and as a book chapter and have been presented at international
conferences.

1.5 Contribution to Knowledge
This research has resulted in two novel formalisms:
1. an approach to extend the established simulation based parameter

optimisation to a combined simulation based parameter and structure
optimisation which automatically change system structure and parameter
values to improve the overall system performance

2. an Extended Dynamic Structure Discrete Event System Specification
(EDSDEVS) as an enhancement and combination of the Discrete Event

Chapter 1 Introduction

12

System Specification and some of its different extensions. The EDSDEVS
formalism is used as one component of the simulation based parameter and
structure optimisation approach.

The contribution and the advantages of this approach are:
The approach establishes a structure and parameter optimised model based
on the definition of a set of model variants. The previous manual steps of
changing structure to find an optimal system model are now incorporated
into an optimisation algorithm and thus are automated.
Through automation the probability of finding the optimal solution grows
significantly in comparison to a manual search.

The contribution and the advantages of the EDSDEVS approach are summarised
as follows:

fusion of different extensions of the Classic Discrete Event System
Specification
implementation of modelling and simulation environment for research and
teaching

1.6 Contents of this Thesis
The thesis is organised into three main sections as depicted in figure 1.3. In
chapter 2 the simulation based optimisation is introduced, limitations are
outlined and the idea of an extension of the established technique is developed.
Based on this new concept of a simulation based parameter and structure
optimisation the requirements of several algorithms, methods and interfaces are
brought out. Essential components of the optimisation concept are appropriate
model management and modelling and simulation methods.
 Chapter 3 starts with a short presentation of simulation and simulation
model taxonomy. The Classic DEVS formalism with the associated formal
modelling concept and simulation algorithms is introduced. Concepts of selected
extensions of the DEVS formalism are subsequently shown. The last part of
chapter 3 introduces the EDSDEVS formalism as it was developed in the scope
of this research. The formal concept of EDSDEVS, the dynamic behaviour of its
components in different situation and simulation algorithms are shown.
 Chapter 4 introduces the System Entity Structure/Model Base
framework as an approach to organise a set of model structure variants based on
meta-modelling. In chapter 5 all aspects of this approach for a simulation based
parameter and structure optimisation are described in detail.

1.6 Contents of this Thesis

13

1. Introduction

3. Discrete Event
System Specification 4. Model Management

5. Framework for
Modelling, Simulation

and Optimization

6. Application of the
Research

7. Conclusion

2. Simulation based
Optimisation

Figure 1.3 Structure of the main sections of the thesis

 Chapter 6 demonstrates application of the approach with an
optimisation example. The problem is taken from the industrial experience of the
author. The general structure of a photofinishing lab i.e. a company for industrial
production of photos and related products is described together with a daily
problem and how this could be solved with the new approach of a simulation
based optimisation.
 The thesis concludes with a summary and suggestions for further
work.

14

15

Chapter 2
Simulation based Optimisation
Optimisation is an important research topic and has the potential for significant
commercial application. At the ACM Digital Library [57] the first publications
on optimisation were published in the early 1950s, ca. 118.000 to date. They
cover a very broad range of optimisation methods and optimisation applications.
In general, the aim of an optimisation method is to find an optimal problem
solution in a given search space whereas the often multidimensional search
space defines the complete set of possible problem solutions.
 Research and application of simulation based optimisation has seen a
significant development in recent years. A Google search on ‘Simulation
Optimisation’ in 2006 found over 4.000 entries [2] in comparison a search in
2008 found almost 80.000 entries among others articles, conference
presentations, books and software.
 The integration of optimisation techniques into simulation packages
has been an important requirement for commercial modelling and simulation
tools, shown for example in comparing two popular simulation textbooks [7] and
[25] with previous editions. The third edition of Law and Kelton [25], published
in 2000, lists five commercial available simulation based optimisation tools
which did not exist at the time of the second edition of the book, published 1991
[15].
 The following chapter introduces the ideas of combining modelling
and simulation with optimisation methods. It concludes with the introduction of
the new simulation based parameter and structure optimisation approach
developed in this research.

2.1 Introduction
In retrospect a disadvantage of modelling and simulation is the missing
optimisation capability. For many years, simulation experiments as shown in
figure 2.1 have been state of the art. An analyst creates a model e.g. based on a
real system, transforms the model to an executable model and executes a
simulation with it. After a review of simulation results the model configuration,
i.e. model parameters and/or model structures has to be manually changed by an
analyst, when necessary. Using a manual procedure only a relative small number
of system configurations can be examined until a suitable solution is chosen. It is

Chapter 2 Simulation based Optimisation

16

not possible to guarantee the detection of an optimal or near optimal system
configuration and the manual effort to find a solution can be considerable.

Real System

Model

Executable Model

Modelling

Programming

Simulation

Result
OK?

Yes

No

Solution

Components Steps

manual step nonmanual step

m
an

ue
lC

ha
ng

es
of

M
od

el
C

on
fig

ur
at

io
n

Figure 2.1 An example of an conventional simulation experiment

Through the combination of modelling and simulation with optimisation
methods to a simulation based optimisation method this manual procedure can
be partly automated. Mathematical optimisation generally means establishing a
function minima or maxima. Simulation based optimisation means finding the
best model configuration by minimising a function of output variables estimated
with a simulation method [56]. Important prerequisites are the availability of:

suitable modelling and simulation methods
Modelling and simulation as well as model and model parameter have to
be strictly separated. With the combination of optimisation and simulation
an optimisation method needs capabilities to influence the model
configuration.
suitable optimisation methods
Figure 2.2 shows a classification of optimisation methods, identified
during this research, many others and more completed classifications
exists in the optimisation literature. Enumerating or calculus based
optimisation methods are suitable when the search space is small enough
and the problem is analytically solvable respectively. If the problem
complexity is large, often search based algorithms are more appropriate.
Problem descriptions with a stochastic component are another crucial
reason to use a search based optimisation method. Because of the typical

2.2 Parameter Optimisation

17

stochastic character of a simulation calculus based optimisation methods
are not appropriate for a simulation based optimisation.
sufficient computing power
Simulation based optimisation is typically used when the number of
different model configurations is large. This is often accompanied with
complex model structures. Both results in considerable quantity of
computing time while searching for the optimal model configuration.

Descriptions of established and new simulation based optimisation approaches
follow in sections 2.2 and 2.3.

optimisation method

enumerating calculus
based

search based

stochastic gradient search nature analogue

chemical / physical biological
• Simulated Annealing •

• Evolutionary Strategy
• Particle Swarm Optimisation

• • Genetic Algorithm (GA)
•
•

Figure 2.2 Classification of optimisation methods

2.2 Parameter Optimisation
An established approach to simulation based optimisation is simulation based
parameter optimisation. The overall goal of this optimisation approach is the
identification of improved settings of user selected model parameters under
control of performance measures. There is a extensive and varied body of
literature on this topic that includes several tutorials, reviews and summaries of
the current state of the art (e.g. [4], [6], [14], [32], [55], [56]). Law and Kelton
describe in [25] commercial available simulation tools with integrated
optimisation techniques using this approach of simulation based parameter
optimisation. Figure 2.3 shows a principle example of a simulation based
parameter optimisation experiment. The procedure to create an executable model
follows the procedure described in figure 2.1. A crucial difference is the
detachment of model and model parameters. Based on this detachment the
optimisation method is able to alter the model parameter set to improve the
result of an objective function. The objective function measures the model
performance with current model parameters i.e. improving the objective function
result means improving the model performance. Model parameter adjustments
are carried out in a loop until a stop criteria is fulfilled. Examples of stop criteria
are (i) going below a minimum alteration rate or (ii) exceeding the maximum
number of optimisation cycles. The result of a successful optimisation
experiment (example criterion (i) fulfilled) is a parameter optimised model.

Chapter 2 Simulation based Optimisation

18

Objective
Function Parameter

Changes

Optimisation
Method

Modelling

Programming

Simulation

Result
OK?

Yes

No

Parameter Optimised Model

Real System

Model

Executable Model

No

Yes

Solution

O
pt

im
is

at
io

n
Lo

op

Components Steps

Result
OK?

manual step nonmanual step

m
an

ue
lC

ha
ng

es
of

M
od

el
S

tru
ct

ur
e

Simulation
Results

Perfrr of rmance
Measurement

Result

Figure 2.3 An example of a simulation based parameter optimisation experiment

According to [56], a simulation based parameter optimisation problem O with a
set of m deterministic model parameters X = {x1, ... xm} can be formally
described as follows:

A parameter set X = {x1, ... xm} has the domain set D = {d1 … dm}
The multidimensional (one for each parameter) search space S is defined
by S = {s = {v1 . . . vm} | vi di}
A set Y is the output set defined by Y = {y1 . . . yn} = Y(X) and estimated by

2.3 Parameter and Structure Optimisation

19

simulation. Simulation experiments are often based on stochastic model
properties. Hence the output set Y is stochastic.
The objective function F establishes a single stochastic value from
stochastic output set Y : F = F(Y(X)) +. The result of the objective
function is a measure of the current model performance.
Because of the stochastic nature of Y and consequently of F, an estimation
function R, the simulation response function defined by R(X)=E(F(Y(X))),
is optimised, i.e. in the scope of this approach it is minimised.
Depending on optimisation problem and analysis required the exchange of
the last two steps, evaluation of objective function F and simulation
response function R, can save computational effort. Hence, the simulation
response function is defined by R(X) = E(Y(X)) and subsequently the
objective function by F(X) = F(R(X)).

Each parameter set Xi S can be seen as a possible solution of O. The
optimisation method has to search the search space S to find the parameter set
Xopt S with E(F(Y(Xopt))) E(F(Y(Xi))) Xi S. The resulting parameter set
Xopt is considered the global optimum of O.

This approach is restricted to automated parameter optimisation. It is
important to note that automatic structure changes during optimisation are not
possible with this approach. Instead, structure changes are carried out manually
by an analyst and each manual structure change requires a repetition of the
automated parameter optimisation.

2.3 Parameter and Structure Optimisation
The extension of the optimisation approach with the ability to also change model
structures to improve system performance is a development of the idea
introduced in section 2.2. This extension is mainly directed towards a simulation
based structure and parameter optimisation as presented in figure 2.4. The
approach of a simulation based parameter and structure optimisation differs in
the following extensions or modifications from the simulation based parameter
optimisation depicted in figure 2.3:

An analyst does not generate a single model of the real system. In this case
he has to organise a set of models. One way of achieving this is to define a
model that describes a set of model variants instead of one single model of
the system under analysis. Models that define the creation and
interpretation of a set of models are named meta-models. If a model is the
abstraction of an aspect of the real world, a meta-model is yet another,
super-ordinate abstraction of the model itself. That is when a model
describes the behaviour and structure of a real system then a meta-model
describes the behaviour and structure of different models that all describe
the behaviour and structure of the same real system in a slightly different
way.

Chapter 2 Simulation based Optimisation

20

The model management organises the set of model structures and provides
a model selection method.
The model selection is controlled by a superior optimisation. The selection
method delivers the selected model structure information to a model
generator which generates an executable model. The parameter transfer
and the simulation match the simulation based parameter optimisation
depicted in figure 2.4.
The objective function receives simulation results to estimate the
performance of current model structure and parameters similar to the
approach depicted in figure 2.4. Information generated by the model
selection method can be additionally used to establish the model
performance.
The optimisation method investigates the search space with simultaneous
model parameter and model structure changes without a manual
involvement. The intention of the optimisation method is the finding of a
model structure and model parameter set where the objective function
delivers the global optimum value, in most instances the global minimum.

2.3 Parameter and Structure Optimisation

21

Objective
Function Parameter

Changes

Optimisation
Method

Metamodel
Modellling

Model Selection

Simulation

Solution:
Parameter&Structure Optimised Model

Real System

Model
Management

Model Generator

No
Yes

Optimisation
Loop

Components Steps

Result
OK?

Structure
Changes

S
tru

ct
ur

e
In

fo
rm

at
io

n

manual step nonmanual step

S
tru

ct
ur

e
S

el
ec

tio
n

V
al

ue
s

P
ar

am
et

er
V

al
ue

s

S
ea

rc
h

R
oo

m
In

fo
rm

at
io

n

Model Generation

Simulation
Results

Perfrr of rmance
Measurement

Result

Figure 2.4 Components and steps of a simulation based parameter and structure
optimisation experiment

A prerequisite for an optimisation is the definition of a search space. In the
approach presented here, the search space is multi-dimensional as a result of the
combination of model structure and model parameter variants. During the
optimisation loop several points of the search space are examined. Each point
defines a model structure with an appropriate parameter set. The extension of the
formal description of a simulation based parameter optimisation problem O,
defined in section 2.2, to a combined simulation based structure and parameter
optimisation leads to O*:

The model parameter set XP and its domain set DP, in section 2.2 defined
as X and D, are extended by structure parameter set XS and its domain set
DS. The extended set definitions are:
X* = XP XS = {xP1 . . . xPm, xS1 . . . xSn} and

Chapter 2 Simulation based Optimisation

22

D* = DP DS = {dP1 . . . dPm, dS1 . . . dSn} with m model parameters in set
XP and n structure parameters in set XS. The sets XP and DP are defined by
the current model. The model management has to provide the sets XS and
DS by analysing the meta-model.
The multi-dimensional (one for each parameter) search space S = SP SS
is spanned by sets of model parameter and structure variants.
The objective function F* is defined by F*(Y(X*),P(XS)) with simulation
results Y(X*)=Y(XS XP) and results based on structure related variables
P(XS) which are established during the model selection. Because of the
stochastic nature of the simulation results Y(X*) an estimation function R,
the simulation response function, is calculated. The results based on
structure related variables P(XS) are not stochastic. Hence, the simulation
response function is defined by R(Y(X*)) and subsequently the objective
function by F*(R(Y(X*)), P(XS)).

Figure 2.5 depicts the above formal description of a simulation based parameter
and structure optimisation framework O* in a schematic diagram.

Optimisation
Module

Computer Model
(Model+Simulator)

Objective
Function

Optimisation
Method

Model Selection

Model Generator

Model Selection Results
Pi(XSi)

Modeling &
Simulation Module

Model Management Module

Simulation Results
R(Yi (XSi,XPi))

Meta-Model Analysis

Executable
Model

XS DS XP DP
Model Structure &

Parameters Information

XSi XPi XSi

XPi
Model

Structure
Information

F*(R(Yi), Pi)

Optimisation PhaseInitialisation Phase

Meta-Model and Model
Parameter Definition

Figure 2.5 Schematic diagram of a simulation based parameter and structure
optimisation framework

Further prerequisites of the introduced approach are:

2.3 Parameter and Structure Optimisation

23

The modelling and simulation method with support of modular or
modular, hierarchical models and a flexible simulation engine are essential
parts of the framework. A powerful modelling and simulation method is
fundamental in two different aspects: (i) A strict separation between model
and simulator are necessary due to the crucial management of a model
structure set with a downstream model generator and a model parameter
transfer. (ii) A flexible and modular, hierarchical modelling and simulation
method can incredible enlarge the application field and ease its use.
The cooperation between optimisation, model management, and modelling
and simulation modules has to be comprehensive. The aim of the
cooperation is to establish control of both model parameters and model
structures by an optimisation method. The objective function evaluates
simulation results but can also incorporate further information, generated
by model management, into the evaluation. The additional parameters can
be provided by optional variables, summarised during model selection as
described in section 4.2. The search space definition used by the
optimisation module is established by the model management module.
These information exchanges require comprehensive cooperation between
the above modules.
Using combined simulation based structure and parameter optimisation the
number of variants of different system configurations can be considerable
higher than in a pure simulation based parameter optimisation and will
need more computing power than the approach described in section 2.2.

Through the inclusion of a model management method, the optimisation method
can simultaneously control parameter changes as well as model structure
changes to find an optimal system configuration. This new approach
significantly enhances the application of simulation based optimisation. The
extension of the simulation based parameter optimisation by a controllable
model management and subsequent automatic model generation is a
fundamental idea behind this research.
 The modelling and simulation and model management methods take a
crucial role in this approach. The description of a discrete event modelling and
simulation method, and a model management method based on meta-modelling
follow in the next two chapters.

24

25

Chapter 3
Discrete Event System Specification and
Simulation
After a short, general introduction to modelling and simulation this chapter
explains the DEVS formalism. The Classic DEVS formalism will be introduced
together with several extensions which are combined to form an Extended
Dynamic Structure DEVS (EDSDEVS) approach. The chapter concludes with
the introduction of the EDSDEVS formalism. The EDSDEVS modelling and
simulation approach with its advanced, modular, hierarchical model definitions
and flexible simulation algorithms plays a major role in the new simulation
based optimisation approach.

3.1 Introduction
A simulation is the imitation of the behaviour and the structure of a real-world
system. The behaviour and the structure of the system are studied by developing
a simulation model and performing experiments with it. During an experiment
the model is executed within a simulation environment by a simulator. The
model is usually created by taking assumptions concerning the function of the
system, its attributes and structures. The complete system is split into several
entities with relationships defining connections between them. A more complex
system can be split in a hierarchical manner i.e. an entity can be segmented into
sub-entities which themselves can be again segmented into sub-entities. The
entities are expressed in a mathematical, logical or symbolic form. Once
developed and validated a model can be used to perform a variety of analysis
concerning the real-world process or system. Analysing experiments can change
the behaviour or the attributes of a certain entity, the relationship between
entities or sending changed inputs to the model.
It is possible to summarise as follows and as shown in figure 3.1:

Modelling and simulation is the imitation of a real-world system.
The model tries to describe real-world behaviour through states, state-
transitions and attributes.
The model tries to describe the real-world structure throughout partitioning
into sub-entities. Subject to the modelling formalism, the structure can be
defined hierarchically.
The model interacts with its environment based on inputs and outputs.

Chapter 3 Discrete Event System Specification and Simulation

26

environs

states
s1, s2, …, sn

a1

a2

a3 an. . .attributes

i1

i2system system
o2

inputs outputs

i1

i2

o2subsystem
subsystem

subsystem

structure hierarchy

real-world
process or

system

environs

environs environs

input

output

input
function

output
function

Figure 3.1 A real-world process or system and its model (source [1])

 Under some circumstances, a model can be developed based on
mathematical methods only e.g. by the use of differential equations, algebraic
methods or other mathematical techniques. However, many real world systems
are to complex to be modelled using mathematical expressions. In these cases,
numerical, computer based modelling and simulation can be used to analyse the
behaviour and the structure of real word systems [7].
 Many different concepts and methods for modelling and simulation
exist. Ören [33] classifies different types of simulation models with several
criteria. One of the various possible classifications is to use the two criteria -
time change and state change [48]. Discrete event models are a combination of
continuous time and discrete state changes as shown in figure 3.2. The choice of
whether to use discrete state changes, continuous state changes or a combination

3.2 Discrete Event System Specification

27

of both depends on the characteristics of the system under investigation and the
objectives of the study.

time base state change

discretecontinuous continuous discrete

simulation models

differential
equations

difference
equations

discrete event
models

finite state
machines

Figure 3.2 Simulation model taxonomy (source [48])

The Discrete Event System Specification (DEVS) is a formalism based on
discrete event models. It supports a modular, hierarchical model construction
and claimed to be a general and powerful approach in the field of discrete event
simulation [66] [67].
 For modelling and simulation and particularly with DEVS the term
formalism is used with a specific meaning. A modelling formalism can be
described by two parts: (i) formal model specification and (ii) simulation
algorithms to execute the model [53]. The formal mathematical specification
describes model structure and behaviour. The simulation algorithms specify
methods to execute any model that is described in accordance with the formal
model specification.

3.2 Discrete Event System Specification
The DEVS formalism was first introduced by Zeigler [68] in the 1970s. In [66]
the authors classify this formalism, position and compare it with other, more
established modelling and simulation formalisms. Several international research
groups are working on the DEVS formalism and are regularly publishing results
at the annual DEVS Symposium at Spring Simulation Conferences. Wainer [62]
maintains a list of available DEVS tools. The DEVS formalism is, in contrast to
other modelling and simulation formalisms, not very widely used in industrial
practice. This situation exists despite the fact that the theory is a well-founded,
general formalism. It can only be assumed that one reason of the marginal
acceptance is the type of available software tools [34].

Chapter 3 Discrete Event System Specification and Simulation

28

 Since its first publications, in [68] the formalism has been enhanced
and many extensions have been introduced. To differentiate among them the
original formalism is termed Classic DEVS.

3.2.1 Classic DEVS Modelling
DEVS is a modular, hierarchical modelling and simulation formalism. Every
DEVS model can be described by using two different model types, atomic and
coupled. Both model types have an identical, clearly defined input and output
interface. An atomic model describes the behaviour of a non-decomposable
entity via input/output events and event driven state transition functions. A
coupled model describes the structure of a more complex model through the
aggregation of several entities and their couplings. These entities can be atomic
models as well as coupled models. Due to the identical interfaces and the
complete encapsulation of a model, a coupled model cannot differentiate
between the different model types of its sub components. A coupled model does
not need and does not even have any information about the type of its sub-
entities. The internal structure of each sub model is completely encapsulated and
separated from its parent. Due the possibility that several entities together create
a new entity which itself can be again part of another super-ordinate entity the
formalism is termed ‘closed under coupling’. Thus, the construction of modular,
hierarchical models is possible [66].

CM1

am1

CM2

am atomic model
CM COUPLED MODEL

CM1

CM2

am2 inputoutput am3

input output

ext
ta int

ext ext

ta int ta int

Figure 3.3 DEVS model example

3.2 Discrete Event System Specification

29

Figure 3.3 shows a DEVS model example:
Structure description:
The structure of the real-world system is depicted by the structure of the
DEVS model i.e. the aggregation of entities and sub-entities and their
directed coupling relations. The top most model i.e. the root model depicts
the real-world system with an interface to its environment. This external
interface is defined by the input and output ports of the root model. The
environment is modelled in an Experimental Frame as described in [11]
[66]. An Experimental Frame makes the analysis of the modular,
hierarchical model possible, generates input events and analyses the output
events. The sub-entities input and output ports are connected over directed
couplings with other sub-entities input and output ports and with the
output port of the super-ordinate coupled model, respectively. Each atomic
and coupled model has one input and one output port. Depending on
source and destination port the coupling relations are named:
o external input coupling (EIC) with the input port of a super-ordinate

coupled model as source and one or more sub-entities as destination
o external output coupling (EOC) with the output port of a sub-entity

as source and the output port of a super-ordinate coupled model as
destination

o internal coupling (IC) with output and input port of sub-entities as
source and destination

Example:
The coupled model CM1 in figure 3.3 is the top most model i.e. the
root model. The root model has an external interface with input and
output ports to handle or create external input and output events
received by or sent to the experimental frame. It contains one atomic
model am1 and one coupled model CM2. The coupled model CM2
consists of two atomic models am2 and am3. As an EIC the input port
of CM1 is connected to the input port of am1. As an EOC the output
port of CM1 forwards events sent from the output port of am1. ICs are
the connections between the output port of am1 and the input port of
CM2, output port of CM2 and the input port of am1 and output port of
am3 and the input port of am2.

Behaviour description:
The behaviour of a real-world system and sub system, respectively, is
depicted by an atomic model and its internal states, input/output events
and event driven state transition functions. At its input port it can receive
external input events. An input event is handled by an external state
transition function. This function can immediately but indirectly induce an
internal event and subsequently an internal transition. With time controlled
internal transitions an atomic model can react to time events. Internal
events are scheduled by a time advance function and their state transitions
are handled by an internal state transition function. After each external and
internal event the time advance function is called to schedule the next

Chapter 3 Discrete Event System Specification and Simulation

30

internal event. With output events send from an output port the atomic
model can influence other entities connected to this port or create the
output event of the super-ordinate coupled model. Output events are
created by an output function which is firstly executed during internal
event handling before calling the internal state transition function.
Example:

The atomic model am1 in figure 3.3 executes the external state
transition function ext when it receives an input event. After
initialisation and after each event handling the next internal event is
scheduled with the time advance function ta. During the internal event
handling by model am1 the internal state transition function int is
called. Before the function int is called an output event can be created
by executing the output function .

Event handling:
All input events are received over the input port regardless of event source
and type. All output events are sent over the output port regardless of
event type. An event received at an input port of a coupled model is
forwarded to the connected sub-entity(s). An event send to an output port
of a coupled model by a sub-entity is received and handled by the super-
ordinate coupled model. An event send by a sub-entity to one or more sub-
entities of the same coupled model is routed by this coupled model from
sending output to receiving input port.
Example:

When CM1 in figure 3.3 receives an event at its input port it is
forwarded over the EIC to am1. When CM2 forwards an output event
to its output port, the event is forwarded to the input port of am1 over
the IC. When am1 generates an output event at its output port this
event is forwarded to CM2 due to an IC and simultaneously it
represents an output event of CM1 due to an EOC.

3.2.2 Formal Concept of Classic DEVS Modelling
The Classic DEVS formal description defines coupled and atomic models as a
combination of sets and functions. The description of an atomic model is a 7-
tuple [66]:

AM = (X, Y, S, ext, int, , ta)

X, Y and S specify the sets of discrete inputs, outputs and internal states.

ext: Q × X S where Q = {(s,e) | s S, 0<e<tnext , elapsed time e = t -
tlast}
The external state transition function ext handles external input event at
time t. It can induce an internal transition with a rescheduling of the time
of the next internal event. The time of the external input event is stored in
tlast.

3.2 Discrete Event System Specification

31

int: S S
The internal state transition function int can establish a new internal state.
The execution of output function and internal state transition function

int is induced by a time driven internal event. The time of an internal
event is established by the time advance function ta. The time of the
internal event is stored in tlast.

: S Y
The output function can generate an output event. If and which output
event is generated depends on the internal state S.
ta: S
The time advance function ta schedules the time of the next internal event
after each state transition.

Figure 3.4 shows the dynamic behaviour of an atomic model. Listing B.1 in
appendix B shows a pseudo code skeleton of an atomic model.

atomic model
X={x1,...xm} Y={y1,...yo}

si,sk S={s1,...sn}

t

external
event
xi X at ti

ti

directly
induces

si+1= ext(xi,si,e)
with e=(ti-tlast)

t

internal
event at tk

tk

yk = (sk)
and
sk+1 = int(sk,tk)

directly
induces

can induces
when ta(si+1)=0

yi+1 = (si+1)
and
si+2 = int(si+1,ti)

X

xi

Y

yi+1

Yyk

tlast
time of
last event

Figure 3.4 Dynamic behaviour of an atomic model

The description of a coupled model is a 9-tuple [66]:

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC, SELECT)

dn specifies the name of the coupled model.
X and Y specify the sets of discrete inputs and outputs.
D specifies the set of sub component names.
Md | d D

Chapter 3 Discrete Event System Specification and Simulation

32

Md is the model of the sub component d
EIC, EOC and IC are the sets of external input, external output and
internal couplings.
The SELECT function prioritises concurrent internal events of sub
components.

The figure 3.5 depicts the relations of the elements of a Classic DEVS coupled
model. Listing B.2 in appendix B shows a pseudo code skeleton of a coupled
model.

COUPLED MODEL CM

X={x1,...xm} Y={y1,...yn}Comp3Comp1
EIC EOCIC

Comp2 Comp4

EIC = {{CM.X,Comp1.X} {CM.X,Comp2.X}}
IC = {{Comp1.Y,Comp3.X} {Comp1.Y,Comp4.X}}
EOC = {{Comp3.Y,CM.Y} {Comp4.Y,CM.Y}}
D = {“Comp1“, “Comp2“, “Comp3“, “Comp4“}
{Md | d D} = {MComp1, MComp2, MComp3, MComp4}
SELECT : priority_order(MComp1, MComp2, MComp3, MComp4)

Figure 3.5 Coupled model elements

The Classic DEVS approach supports the specification of behavioural system
dynamics in atomic systems and the specification of static component
aggregations in coupled systems. It is not possible to describe structural system
dynamics at the coupled model level, i.e. the deletion or creation of components
and couplings or changes of interfaces, although all necessary structural
information is also available during simulation time as is described in section
3.2.3. The only possibility to realise a structural system dynamic is to specify it
with logical constructs at the atomic model level. However, this removes the
advantages of reusability and model clarity and increases modelling complexity.

3.2.3 Classic DEVS Simulation
Beside the formal definition the second part of the Classic DEVS formalism is
the description of abstract simulator algorithms for the execution of DEVS
models. The algorithms are named abstract because they are implemented as a
general pseudo code. The abstract simulator has a modular, hierarchical structure
matching exactly the modular, hierarchical structure of a DEVS model. A DEVS
model can be directly transformed into an executable simulator model using
abstract simulator elements e.g. as in [48] [66] [67] shown. The abstract

3.2 Discrete Event System Specification

33

simulator approach consists of three different elements namely root coordinator,
coordinator and simulator. The structure corresponds to the hierarchical DEVS
model structure except the root coordinator added as the topmost entity. Each
atomic model is associated with a simulator element and each coupled model is
associated with a coordinator element.
 Figure 3.6 shows the transformation of a DEVS model to an
executable simulation model using associated abstract simulator elements. The
two coupled models CM1 and CM2 are mapped to two coordinator elements.
The three atomic models am1...am3 are mapped to simulator elements.

atomic model

COUPLED MODEL

CM1

am1 CM2

am2

coordinator

simulator coordinator

simulator

root coordinator

am3
simulator

CM1

am1

CM2

am2

input output

am3output input

am

CM abstract simulator element

Example Classic DEVS model

Executable simulation model

Figure 3.6 An example of a Classic DEVS model with associated abstract
simulator elements

The communication between root coordinator, coordinator and simulator
instances is message based. On top of the hierarchy the root coordinator
initiates, controls and ends a simulation cycle with different messages. It holds
the simulation clock. Each coupled model is associated to a coordinator
instance. The coordinator instance forwards messages to its subordinated

Chapter 3 Discrete Event System Specification and Simulation

34

coordinator and/or simulator instances. It holds the minimum time of the next
internal transition event of its sub components in tnext. Each atomic model is
associated with a simulator instance. It holds the time of its own next internal
events in tnext. It is important to note that both coordinator and simulator
instances have the same interfaces and receive the same messages. Hence, a
super-ordinate coordinator does not have to distinguish the type of subordinate
instances.
 With this concept one prerequisite of a parameter and structure
optimisation approach as introduced in section 2.3 is fulfilled. The modular
modelling and flexible simulation play a crucial role in model management and
subsequent model generation.

Furthermore this concept enables that the modular hierarchical
structure of a model remains an unchanged part of the computational model
during simulation runtime. The preservation of the model structure is an
essential prerequisite to the dynamic structure modelling and simulation concept
introduced later in this chapter. This dynamic structure modelling and simulation
concept fulfils another prerequisite of parameter and structure optimisation
approach.
 Figure 3.7 depicts the structure of a Classic DEVS model with the
corresponding abstract simulator instances. Moreover, the figure presents the
different messages types passed between the several instances of abstract
simulator elements and the subsequent DEVS model function calls. Because of
complexity and clarity selected situations are shown in sections:
i. (Figure 3.7a) initialisation phase with i-message handling:

During the initialisation phase model component’s init functions are called
because of an i-message handling.

ii. (Figure 3.7b) *-message handling created due to internal event of model
am3 with a subsequent x-message within the same coupled model:
The root coordinator advances the simulation clock and a *-message is
firstly created. The message is sent to the successor coordinator instance of
coupled model CM1. This coordinator instance determines that the sub
component CM2 is responsible for handling this event. Hence, the event is
forwarded to the successor coordinator instance of CM2. The coordinator
instance determines that one of its sub components scheduled the event.
The simulator instance of model am3 initiates the internal message
handling. Due to the current internal state of am3 an output message is
generated. With the internal coupling am2-am3 the message is received as
an x-message by simulator instance/model am2.

iii. (Figure 3.7c) *-message handling created due to an internal event of model
am1 with a subsequent x-message at different model levels:
The beginning of the message handling is similar to ii except the generated
output message is forwarded to another model level over internal and
external input couplings.

iv. (Figure 3.7d) *-message handling created due to concurrent internal events
of models am2 and am3:

3.2 Discrete Event System Specification

35

The root coordinator advances the simulation clock and a *-message is
firstly created. The message is sent to the successor coordinator instance of
coupled model CM1. This coordinator instance determines that the sub
component CM2 is responsible for handling this event. Hence, the event is
forwarded to the successor coordinator instance of CM2. The coordinator
instance determines that two sub components scheduled the event. The
coordinator instance will then call the select() function to decide which sub
components has a higher priority and forward the message to the
appropriate simulator instance. The simulator instance calls the model
functions and int. A result of calling could be a y-message sent back to
the subordinate coodinator instance of CM2.

Chapter 3 Discrete Event System Specification and Simulation

36

message routing

f() Classic DEVS model
function callExample Classic DEVS model

Executable simulation model
CM1 CM2

am2 am3

am1

atomic model

COUPLED MODEL

abstract simulator element

am

CM

am1

Coordinator
of CM1

CM1

root coordinator

Coordinator
of CM2

*-msgx-msg y-msg

simulator
of am1

(s)
int(s,t) and ta()

simulator
of am3

x-msg

t=ti
tend

CM2

tlast
tnext>ti

tlast
tnext=ti

tlast
tnext=ti

am3ext(s,e,x)
and ta()

tlast
tnext>ti

*-msg at t=ti

c)

Coordinator
of CM2

simulator
of am3

*-msg
y-msg

CM2
select()

tlast
tnext=ti

am3(s)
int(s,t) and ta()

tlast
tnext=ti

simulator
of am2

am2(s)
int(s,t) and ta()

tlast
tnext=ti

*-msg at t=ti

y-msg

*-msg at t=ti

root coordinatort=ti
tend

Coordinator
of CM1

CM1

tlast
tnext=ti

d)

Coordinator
of CM2

simulator
of am3

simulator
of am2

*-msgx-msg y-msg

CM2

tlast
tnext=ti

am2ext(s,e,x)
and ta()

tlast
tnext>ti

am3(s)
int(s,t) and ta()

tlast
tnext=ti

*-msg at t=ti

root coordinatort=ti
tend

Coordinator
of CM1

CM1

tlast
tnext=ti

*-msg at t=ti

b)

am2

am1

Coordinator
of CM1

root coordinator

Coordinator
of CM2

i-msg

i-msg

start-msg

simulator
of am1

simulator
of am2

i-msg

t
tend

tlast
tnext

tlast
tnext

init()

tlast
tnext

init()

tlast
tnext

am3init()

simulator
of am3

tlast
tnext

CM2

a)

CM1

Figure 3.7 An example of a Classic DEVS model with associated abstract
simulator elements, messages and model function calls during initialisation and

simulation phases

3.2 Discrete Event System Specification

37

The execution of the simulation model can be subdivided into two phases:
initialisation phase and simulation phase. Each phase is started and proceeded by
several messages passed between root coordinator, coordinator and simulator
instances:

The initialisation phase starts with an initialisation message (i-msg)
generated by the root coordinator. This message is redirected and handled
by each coordinator instance and handled by each simulator instance,
respectively. Each simulator instance initialises the internal states S of the
associated atomic model and estimates the time of the first next internal
event tnext. Each coordinator estimates the minimum time of the first next
internal events of all sub components. Due to the hierarchical structure of
the simulation model the root coordinator instance gets the minimum time
of the first internal event of all model components from its direct successor
coordinator after a complete i-msg handling.
The simulation phase is started with the first *- message (*-msg) at the
minimum time of next internal event tnext estimated by the root coordinator
as described above. The consequence of a *-message are subsequent input
and output messages (x and y-msg). All simulator instances which
received a *- or x-message can change the time of their next internal event
tnext. All coordinator instances redirecting a *-, x- or y-message estimates
the minimum time of next internal events of their sub components. Due to
the hierarchical structure of the simulation model the root coordinator
instance gets the minimum time of next internal events after a complete *-
message handling. The root coordinator instance advances the simulation
clock to that time and repeats the complete process by sending the next *-
message. Advancing the simulation clock and message handling is
repeated in a loop until the simulation end time tend is reached or exceeded.

The different message types created and handled during initialisation and
simulation phase have the following characteristics:

start-msg(tend)
The start-message is created and sent only once. It starts the simulation
model execution with the generation of an i-message.
i-msg()
The i-message starts the model component initialisation at time t=0. The
root coordinator instance sends one i-message to its direct successor
coordinator instance to initialise all model and simulation components.
Each coordinator instance sends further i-messages to its sub components.
*-msg(t)
A *-message received by a simulator instance starts the processing of an
internal event by calling the output function , internal state transition
function int and time advance function ta of the corresponding atomic
model. The time of the *-message is stored in tlast of the simulator
instance. The output of function is sent up to the parent coordinator
instance as a y-message. The final execution of function ta can cause a

Chapter 3 Discrete Event System Specification and Simulation

38

new time of the next internal event depending on the internal state S of the
atomic model and stored in tnext of the simulator instance.
A *-message received by a coordinator instance is sent to the successor
simulator or coordinator instance with the appropriate time tnext. For this
purpose the coordinator instance compares the actual simulation time with
a list of tnext-instance pairs. The time-instance-pairs of all next internal
events of all sub components are stored in an event chain of the
coordinator instance. Concurrent internal events i.e. different sub
components have the same tnext are resolved by the select function of the
parent coupled model. After a complete handling of the *-message the
coordinator instance estimates the minimum time of next internal events of
all sub components and stores it in tnext.
x-msg(t, x)
An x-message received by a simulator instance calls the external state
transition function ext and time advance function ta of the corresponding
atomic model. The time of the x-message is stored in tlast of the simulator
instance. The final execution of function ta can cause a new time of next
internal event stored in tnext of the simulator instance.
An x-message received by a coordinator instance is redirected to all sub
components with an appropriate EIC. After a complete x-message
handling the coordinator instance estimates the minimum time of next
internal events of all sub components and stores it in tnext.
y-msg(t, y)
The y-message is created by an atomic model/simulator instance. It is
routed by the super-ordinate coordinator instance according the coupling
relations to other successor simulator and/or coordinator instances or to the
parent of the super-ordinate coordinator instance. Receiving simulator or
coordinator instances get this message as an x-message.

Listings B.3, B.4 and B.5 in appendix B show pseudo codes of Classic DEVS
root coordinator, coordinator and simulator.

3.3 DEVS Extensions
Extensions of the Classic DEVS formalism expand the classes of system models
that can be represented by DEVS. Several DEVS extension are introduced e.g.
in [9] [38] [48] [60] [62] and [66]. At the regular DEVS symposium held at the
annual Spring Simulation Multi Conferences the current development of DEVS,
DEVS extensions and DEVS related developments are published. An incomplete
list of DEVS extensions recently presented are:

DEVS with Ports
The port extension adds additional input and output ports to atomic and
coupled models. The approach is introduced later in more detail.
Parallel DEVS

3.3 DEVS Extensions

39

Parallel DEVS (PDEVS) considers concurrent transition events. The
approach is introduced later in more detail.
Dynamic Structure DEVS
Dynamic Structure DEVS (DSDEVS) enables model structure changes
during a simulation run. Several partial very different approaches exist.
Dynamic structure extensions introduced by Barros [9] and Pawletta et.al.
[38] preserve the general structure of Classic DEVS modelling and
simulation with additions to coupled model definitions but unchanged
atomic model definitions. Other dynamic structure extensions e.g.
Uhrmacher with an agent based DEVS [60] introduce more extensive
modifications. The approach of Pawletta et.al. is introduced in more detail
in section 3.3.3.
Symbolic DEVS
It represents occurring events in a symbolic definition [12]. In
conventional DEVS, the time base, its operations and relations are
performed with real numbers. In Symbolic DEVS, the objective is to
explore multiple model behaviours simultaneously e.g. with a symbolic
result of the time advance function [66].
Real Time DEVS
The DEVS model is developed in a conventional simulation environment.
But it is executed in real time rather than in model time. The time advance
function delivers time intervals rather than single values. The interval
allows uncertainty when an internal event has to take place.
Fuzzy DEVS
Provides another possibility to enable uncertainty into the model set and
model function definitions.

The next sections introduce three DEVS extensions in more detail. The chosen
extensions are used as a basis of the subsequent unifying DEVS formalism
introduced as a key element of this research.

3.3.1 DEVS with Ports
The introduction of ports into the Classic DEVS formalism makes modelling
easier and the representation of information flow more clearly [66]. In Classic
DEVS each model has only a single input and a single output port. All events are
received and sent over these ports. With the port extension, a model has several
input and output ports each dedicated for a specific employment i.e. event type.
A model can have several output ports which can be connected to input ports of
other models as shown in figure 3.8. Hence, each event can use a dedicated, well
defined routing path. The modelling becomes more structured; a model can
become clearer and better understandable through differentiated interfaces.

Chapter 3 Discrete Event System Specification and Simulation

40

X0 Y0

Xn Yp atomic model
or

COUPLED MODEL

atomic model
or

COUPLED MODEL

...
...

...
...

...

.

.

.

.

.

.

...

atomic model
or

COUPLED
MODEL

atomic model
or

COUPLED MODEL

atomic model
or

COUPLED MODEL

Figure 3.8 Models with multiple input and output ports

The formal description of Classic DEVS with Ports largely remains the same
except the extended definitions of X, Y for atomic and coupled models [66]:

X = {(p,v) | p InputPorts, v Xp}

Y = {(p,v) | p OutputPorts, v Yp}

p is the input or output port of the model
v is a discrete value
Xp and Yp specify the sets of discrete inputs and outputs at port p

Whereas in Classic DEVS the coupling definitions consist of a sub model name
as destination and source, respectively, for EIC and EOC and a pair of sub
model names for IC the port extension necessitate a coupling definition
extension, too:

EIC = { (input_port, d.input_port) | input_port InputPorts, d D,
d.input_port InputPorts of Md }
The external input coupling definition of a coupled model is a set of pairs
of an input port name of the coupled model itself and an input port name
of the destination sub model.
IC = { (di.output_port, dk.input_port) | di,dk D, di.output_port
OutputPorts of , dk.input_port InputPorts of , i<>k }
The internal coupling definition is a set of pairs of an output port name and
an input port name of sub models.
EOC = { (d.output_port, output_port) | d.output_port OutputPorts of
Md, d D, output_port OutputPorts}
The external output coupling definition of a coupled model is a set of pairs
of an output port name of source sub component and an output port name
of the coupled model itself.

Listings B.6, B.7 and B.8 in appendix B show pseudo codes of an example
Classic DEVS with Ports atomic model and pseudo codes of simulator and

3.3 DEVS Extensions

41

coordinator. Differences to the Classic DEVS pendants are marked in bold face
type.

3.3.2 Parallel DEVS
Parallel DEVS (PDEVS) was introduced by Chow and Zeigler [13]. It adds new
elements and functions to the Classic DEVS formalism. It allows all imminent
components to be activated and enables sending their output to other
components at the same time concurrently. Multiple outputs are combined in a
bag which is sent as a whole to a model’s external state transition function. A
bag is similar to a set, containing an unordered set of elements, but allows
multiple occurrences of an element. In Classic DEVS by contrast events are
handled individually. In PDEVS during the *-message handling firstly all
outputs are established before calling external and internal state transition
functions. Each receiving component is responsible for examining and
interpreting its combined inputs in the correct order. PDEVS gives the atomic
model more control over the handling order of concurrent external and internal
events. In Classic DEVS a super-ordinate component, the coupled model, is
responsible for the execution order of concurrent internal events of different sub
components using the select function. In PDEVS the order of simultaneous
events is locally controllable at atomic model level with an additional, third state
transition function, the confluent transition function con. Hence, it merges the
decision logic of execution order of concurrent events with the event handling
functions at same level. Apart from that, there is no difference in the principle of
event handling to that described in section 3.2.
According to the extensions of PDEVS an atomic model is defined by the
following 8- tuple [13]:

AM = (X, Y, S, ext, int, con, , ta)

X, Y and S specify the sets of discrete input events, output events and
sequential states.

ext: Q × Xb S where Xb is a bag covering elements of X and Q = { (s,e)
| s S, 0<e<tnext, elapsed time e = t - tlast }
The external state transition function ext handles a bag covering external
inputs Xb = {xi | xi X}.

int: S S
The internal state transition function int establishes a new internal state.
The execution of output function and internal transition function int is
induced by a time driven internal event. The time of an internal event is
established by the time advance function ta.

con: S × Xb S
The confluent transition function con handles the execution sequence of

int and ext functions in case of concurrent external and internal events.

Chapter 3 Discrete Event System Specification and Simulation

42

o The definition con (s, Xb) = ext(int(s), 0, Xb) with ext(s, e, Xb) of the
confluent transition function is equivalent to the Classic DEVS
behaviour with a higher prioritised internal event handling.

o The alternative defintion con(s, Xb) = int(ext(s, ta(s), Xb)) with int(s)
of the confluent function firstly handles external events.

o The execution of the confluent function with an empty bag con(s, null)
calls directly the internal transition function int.

: S Yb where Yb is a bag covering elements of Y
The output function can generate a bag covering outputs Yb = { yi | yi
Y }. The generated output depends on the internal state S.
ta: S
The time advance function ta schedules the time of the next internal event
after each state transition.

The figure 3.9 shows the dynamic behaviour of an atomic PDEVS model in a
situation with concurrent external and internal events. Due to the concurrent
events the confluent transition function con is called. Depending on the specific
implementation of function con sequence a) or sequence b) is executed.

atomic model
X={x0,...xm}

Yb={yj | yj Y}

su,su+1,su+2 S={s0,...sn}

ttu

concurrent
external and
internal
event at tu

tnext=tu

su+2 = con(su, Xb, e)

Xb={xi | xi X}
Y={y0,...yo}

},,{ cba
b
u xxxX

a)

b)

calling a) or b) depends on
specific implementation of con

su+1 = int(su, tu)

su+2 = ext(Xb,su+1,e)

su+1 = ext(Xb, su, e)
with e = (tu - tlast)

su+2 = int(su+1, tu)

},{ ed
b

u yyY

example input bag:
example output bag:

Figure 3.9 Dynamic behaviour of an atomic PDEVS model

The definition of a coupled model for PDEVS is the same as for Classic DEVS
except for the absence of the select function [13]:

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC)

The generation of an executable PDEVS model is carried out similarly to Classic
DEVS i.e. the same coupling of atomic models with simulator instances and
coupled models with coordinator instances and the perpetuation of the original

3.3 DEVS Extensions

43

hierarchical model structure. Listings B.9 and B.10 in appendix B show pseudo
codes of an example PDEVS atomic model and a PDEVS simulator. Differences
to the Classic DEVS pendants are marked in bold face type.

3.3.3 Dynamic Structure DEVS
Several approaches extend the Classic DEVS to Dynamic Structure DEVS
(DSDEVS). Barros [9] [10] and Pawletta et.al. [42] introduce two DSDEVS
variants with an extension of the coupled model definition while the atomic
model definition remains unchanged. With theses extensions the coupled model
is able to change its structure during simulation time. Uhrmacher et.al. [60]
introduce an agent based approach. It defines extensions for both atomic and
coupled systems. Another approach is Cell-DEVS, a combination of cellular
automata with the DEVS formalism where each cell consists of a single DEVS
model [63].
 The different types of extensions are carried out due to different
application fields or problem definitions e.g. a typical Cell-DEVS application
field is social and environmental modelling and simulation. The approaches of
Barros and Pawletta are extending the classic formalism without changing its
overall principle and thus the general application field of Classic DEVS. This
research is restricted to and continues the research of Pawletta. This DSDEVS
approach is introduced in detail in the following.
DSDEVS by Pawletta enables several types of structural dynamics:

creation, destruction, cloning and replacement of sub components
exchange of a sub component between two coupled models
changing coupling definitions of a coupled system

Figure 3.10 shows an example of structure changes, the creation of a sub model
with an additional extension of the coupling definition.

am atomic model CM coupled model

CM1

am3
am1

am2CM1

am1 am2

tt1

Figure 3.10 Examples of structure changes at coupled model level

Pawletta et.al. have introduced an extension of Classic DEVS to enable structure
variability during simulation time [38] ... [45] firstly named Variable Structure
DEVS. To avoid name and abbreviation confusions the name of this approach
was changed to Dynamic Structure DEVS (DSDEVS) in later publications [34]
et seqq. The approach extends the coupled model definition but the atomic
model definition stays unchanged. During the simulation time a coupled model

Chapter 3 Discrete Event System Specification and Simulation

44

can change its structures. Each structure can be seen as a structure state si with
s0, s1, ...,sn SDS. A single structure state si describes the structure relevant
elements of a coupled model i.e. it defines sub components with their couplings,
the sets of input and output events together with the concurrent internal event
handling function select. A structural change of a coupled model means the
modification of the current structure state. Additionally a structural state set HDS
can store further structure information e.g. the number of structure changes at
the present time or the current structure number. External or internal events,
handled by the additional state transition functions x&s and int at coupled model
level, induce structure state changes and as a result model structure changes.
This dynamic structure extension of Classic DEVS was developed with a regard
to hybrid systems, i.e. systems with continuous and discrete event dynamics. In
the following only the relevant aspects for discrete event systems are taken into
account.
A DSDEVS coupled model is defined by the following 6-tuple [38]:

CMDS = (dds , SDS , x&s , int , , ta)

dds specifies the name of the coupled model.
According to the above definition of a coupled model, its structure consists
of sets of sub components and coupling relations. Structure changes means
modifications of these sets. Obviously, the sets of sub systems and
coupling relations could be interpreted as a structure state. The set of
sequential structure states {s0, s1, ...,sn} = SDS defines all structure variants
of the variable structure coupled model CMDS. Structure state changes can
be induced by handling external or internal events of the coupled model
itself or by state events i.e. output events of subordinated components. A
structure state is defined by a 9-tuple:

si = (X, Y, HDS, D, { Md }, EIC, EOC, IC, select)

X and Y specify the sets of discrete input and output events. The sets
exactly match the sets X and Y in Classic DEVS.
The set HDS represents additional structure related state variables.
They are equivalent to the state set S of an atomic model.
D specifies the set of sub component names.
Md | d D
Md is the model of the sub component d of the coupled model CMDS.
The set { Md } defines all sub components of CMDS.
EIC, EOC and IC are the external input, external output and internal
couplings.
The function select prioritises concurrent internal events of the
coupled model itself and its sub components.

x&s: QDS × X HDS where QDS = {(h,e) | h HDS, 0<e<tnext,
elapsed time e= t-tlast}

3.3 DEVS Extensions

45

The external and state transition function x&s handles external input
events and state events i.e. output events of sub components. However it is
unreasonable to make changes in the set of sub components or the
coupling relations by this function directly. This could lead to ambiguous
event handling because external events could simultaneously influence the
dynamic of sub components and the structure state. Consequently the x&s
function is only allowed to modify structure related state variables in the
set HDS. However, it can induce a structure state change i.e. a change of
the model structure by scheduling an immediate internal event.

int: SDS SDS
The internal transition function int can change the structure state si to si+1
and as a result induce a structure change of CMDS. The execution of output
function and internal transition function int is induced by a time driven
internal event. The time of an internal event is established by the time
advance function ta.

: SDS Y
The output function can generate output events.
ta: SDS
As with the dynamic of atomic models, internal events are scheduled by
the time advance function ta. After each state transition the next internal
event is established by the time advance function.

The dynamic behaviour of an atomic model is identical to the behaviour in
Classic DEVS. Figure 3.11 shows the dynamic behaviour of a variable structure
coupled model. The figure depicts two external input events and one internal
event. Reasons for an input event handling can be an external input event at the
input port of the coupled model itself or an external output event at the output
port of a sub component Md of the coupled model. The handling of both events
by the coupled model is identically. As a result of an event the structure related
state variable set HDS can be changed and with the concluding call of the time
advance function an immediate internal event can be induced. An internal event
is handled by a coupled model similar to the internal event handling of an atomic
model, i.e. the event handling can induce a change of the structure state set SDS,
and in this case a change in the set of sub components {Md} and/or the coupling
sets EIC, IC and EOC.

Chapter 3 Discrete Event System Specification and Simulation

46

Coupled Model

X=
{x0,… xm}

Y=
{y0,… yo}

t

external input
event xu at tu

tu

hu+1 = x&s(xu, su, e)

with e =(tu - tlast)

t

internal
event at tv

tv

yv = (sv) and
sv+1 = int(sv, tv)

after internal
event at tv

tlast

xu X

t

output event
Md.yu at tu

tu

hu+1 = x&s(Md.yu, su, e)

with e = (tu - tlast)

directly
induces

directly
induces

Md.yu Md.Y

tlast

Coupled Model

or

X=
{x0,… xm}

Y=
{y0,… yo}

},...{ 0 nDSu ssSs },...{ 01 nDSv ssSs

directly
induces

Figure 3.11 Dynamic behaviour of a coupled DSDEVS model

Examples of sequential model structure changes are shown in figure 3.12 a-d.
The following definitions of the structure state set describe the insert and change
of sub components and couplings as a result of internal events and changes of
the sequential structure state set si SDS by the function int. The subsets X, Y
and HDS and the select function of a structure state si SDS will not be detailed.

CM CM
am1

CM
am1

CM
am1 am2

a)

c)

d)

b)

EIC EOC

EOCEIC IC

Input

Input

Input

Input

Output Output

Output

Output

Figure 3.12 Examples of sequential structure changes of a coupled model

a) Figure 3.12a depicts a coupled model CM without sub components.

3.4 Extended Dynamic Structure DEVS

47

D, { Md }, EIC, EOC and IC are empty sets.
b) In figure 3.12b the coupled model contains one sub component, the atomic

model am1, created as a result of the handling of an internal structure event
i.e. the execution of function int.

D = { am1 }

Md = { Mam1
 }

EIC, EOC and IC are empty sets

c) Figure 3.12c depicts external input and output couplings created as a result
of the handling of an internal structure event i.e. the execution of function

int.

D = { am1 }

Md = { Mam1
 }

EIC = { (CM.Input,am1.Input) }

EOC = { (am1.Output,CM.Output) }

IC is an empty set

d) Figure 3.12d depicts the insert of sub component am2 and the
change/creation of several couplings as a result of the handling of an
internal structure event i.e. the execution of function int.

D = { am1, am2 }

Md = { Mam1
 , Mam2

 }

EIC = { (CM.Input,am1.Input) }

EOC = { (am2.Output,CM.Output) }

IC = { (am1.Output, am2.Input)}

3.4 Extended Dynamic Structure DEVS
Sections 3.2 and 3.3 introduced the Classic DEVS formalism and several DEVS
extensions. Every extension has its advantages and widens the application field
of DEVS in a different direction, PDEVS generalises the specification and
handling of concurrent events, DEVS with Ports enables a more structured
modelling and DSDEVS introduces dynamic structure changes at coupled model
level during simulation time and significantly eases the modelling of larger real
systems. The extensions have one joint attribute: they are based on the Classic

Chapter 3 Discrete Event System Specification and Simulation

48

DEVS formalism. Hence, the decision on one DEVS extension inhibits the use
of advantages of another one. This principle leads to the idea of a merging
formalism to combine the advantages of different approaches and widen the
application field of the resulting formalism. In [66] a first step into this direction
is undertaken, the introduced PDEVS formalism is a combination of the original
PDEVS and DEVS with Ports. Further steps into this direction are not known.
The Extended Dynamic Structure DEVS (EDSDEVS) combines Classic DEVS
with the extensions: PDEVS, DSDEVS and DEVS with Ports. The fusion results
in a DEVS formalism with the following main characteristics:

Formal model description by sets and functions
Exact definition of simulation algorithms
Modular, hierarchical and dynamic structure modelling and simulation
formalism
Dynamic behaviour description at atomic model level
Dynamic structure description at coupled model level
Exact behaviour definition at critical situations with concurrent events
Substantial similarity between real system and model

The next section introduces the formal concept of EDSDEVS modelling with
formal descriptions and dynamic behaviour of atomic and coupled models.
Section 3.4.2 goes into detail of the EDSDEVS simulation concept with abstract
simulator algorithms, message handling and model function calls.

3.4.1 Formal Concept of EDSDEVS Modelling
The EDSDEVS formal descriptions of coupled and atomic models as a
combination of sets and functions are similar structured as the Classic DEVS
formal description as introduced in section 3.2.2.
An atomic EDSDEVS model is a fusion of PDEVS with DEVS with Port atomic
model definitions. The atomic EDSDEVS model AMEDS is defined as an 8-
tuple:

AMEDS = (X, Y, S, ext, int, con, , ta)

X = {(p,v) | p InputPorts, v Xp}

Y = {(p,v) | p OutputPorts, v Yp}

The definitions of both sets are identical to the definitions in DEVS with
Ports as introduced in section 3.3.1.
S specifies the set of internal states and is identical to internal state set S of
an atomic Classic DEVS model.

ext: Q × S with Xb = {xi | xi = (p,v), p InputPorts, v Xp } and
Q = {(s,e) | s S, 0 < e < tnext , elapsed time e = t - tlast }
The external state transition function ext handles a bag covering external
inputs. Each input consists of a pair of a discrete input v Xp and an input

3.4 Extended Dynamic Structure DEVS

49

port p InputPorts. The set XP is the set of discrete inputs at port p and
InputPorts is the set of input ports of model AM. The function ext can
induce an internal event with a rescheduling of the time of the next internal
event.
This extended definition of ext is a fusion of the ext definitions of PDEVS
and DEVS with Port.

int: S S
The internal state transition function int can establish a new internal state.
The execution of output function and internal state transition function

int is induced by a time driven internal event. The time of an internal
event is established by the time advance function ta.
The definition is identical to definition in Classic DEVS.

con: S × S
The confluent transition function con handles the execution order of int
and ext functions during concurrent external and internal events. In spite
of the same function signature con(s, Xb) the parameter Xb is different to
that in the PDEVS definition as described in section 3.3.2. Anyhow the
three con definitions also apply here.
This extended definition of con is based on the PDEVS con function
definition. Unlike in PDEVS the function has to handle a bag covering
inputs. Each input consists of a pair of discrete input and input port.

: S Yb with Yb = {yi | yi = (p, v), p OutputPorts, v Yp}
The output function can generate a bag covering outputs Yb. In spite of
the same function signature Yb = (s) the function result Yb is different to
that in the PDEVS definition as described in section 3.3.2. The function
result is a bag covering outputs Yb={ yi | yi = (p, v) } each consisting of a
pair of discrete output v Yp and output port p OutputPorts. The set YP
is the set of discrete outputs at port p and OutputPorts is the set of output
ports of model AM. If and which outputs are generated depends on the
internal state S.
This extended definition of is based on the PDEVS function definition.
Unlike in PDEVS the function generates a bag covering outputs each
consisting of pairs of discrete output and output port as introduced in
DEVS with Ports.
ta: S
The time advance function ta schedules the time of the next internal event
after each state transition. The definition is identical to the definition in
Classic DEVS as introduced in section 3.2.2.

The figure 3.13 shows the dynamic behaviour of an atomic EDSDEVS model
amEDS. At time tu the confluent transition function con handles two concurrent
events. The first event contains a bag covering external inputs received by the
atomic model amEDS. The figure depicts an example bag covering three external
inputs received at two different input ports. A concurrent internal event at tu was

Chapter 3 Discrete Event System Specification and Simulation

50

scheduled by the previous execution of the time advance function ta. Depending
on the specific implementation of function con sequence a) or sequence b) is
executed. The execution of the output function creates a bag covering outputs.
The depicted example bag covers two outputs at two different output ports.

amEDS

ttu

concurrent
external and

internal
event at tu

tlast

.

.

.

.

.

.

},...{ 00 minport xxX },...{ 00 poutport yyY

},...{ 0 qoutport yyY
j

i,j number of input and output ports
m,n,p,q number of different X and Y events per port
r number of internal states
Xb bag of input events
Yb bag of output events

Xb
u bag of input messages at tu

tu time of concurrent external and internal message
su state at time tu

su,su+1,su+2 S = {s0, ...sr}

inport0

inporti

Xb={xk | xk = (v,p),
v Xp,
p InputPorts}

},...{ 0 ninport xxX
i

Yb={yk | yk = (v,p),
v Yp,

p OutputPorts}

)},(),,(),,{(100 inportxinportxinportxX cba
b
u

a)

b) su+1 = int(su, tu)

su+2 = ext(Xb
u, su+1, e)

su+1 = ext(Xb
u, su, e)

with e = (tu - tlast)

su+2 = int(su+1, tu)

outport0

outportj

example input bag:

su+2 = con(su, Xb
u, e)

calling a) or b) depends on
specific implementation of con

)},(
),,{(

1

0

outporty
outportyY

e

d
b

u

example output bag:

tnext=tu

Figure 3.13 Dynamic behaviour of an atomic EDSDEVS model

Listings B.11 in appendix B shows pseudo code of an atomic EDSDEVS model.

A coupled EDSDEVS model is defined by the following 7-tuple:

CMEDS = (dEDS, SEDS, x&s, int, con, , ta)

dEDS specifies the name of the coupled model.
In the EDSDEVS formalism the coupled model structure consists not only
of sets of sub components and coupling relations as in DSDEVS,
introduced in section 3.3.3, but also of additional interface definitions i.e.
input and output port definitions. The set of sequential structure states

3.4 Extended Dynamic Structure DEVS

51

{s0, s1, ...,sn} = SEDS has to define all structure variants of the coupled
model CMEDS. Two model structure variants can vary in different interface
definitions, in contrast to DSDEVS where each model has a non-variable
interface with a single input and a single output port. Hence, a structure
state has to incorporate interface definitions with sets of input and output
ports additionally to the structure state definition as introduced in section
3.3.3. An EDSDEVS structure state is defined by a 10-tuple:

si = (X, Y, HEDS, D, { Md }, InputPorts, OutputPorts, EIC, EOC, IC)

X and Y specify the sets of discrete input and outputs. The sets exactly
match the extended definitions of X and Y as introduced in section
3.3.1 with the introduction of DEVS with Ports.
The sets HEDS, D and Md exactly match the sets HDS, D and Md of the
DSDEVS formalism introduced in section 3.3.3.
InputPorts and OutputPorts specify the sets of input and output port
names of the coupled model CMEDS. These two elements of the
structure state si are introduced by the EDSDEVS formalism.
EIC, EOC and IC are the external input, external output and internal
couplings of CMEDS. The definition of the coupling relations exactly
match the definition as introduced with the DEVS with Ports extension
in section 3.3.1.

x&s: Q × Xb HEDS where Xb is a bag covering input, input port pairs
 and Q = {(h,e) | h HEDS, 0<e<tnext, elapsed time e = t - tlast }
The external and state transition function ext handles a bag covering
inputs. Each input consists of a pair of:
o a discrete input v Xp and an input port p InputPorts. The set

XP is the set of discrete inputs at port p and InputPorts is the set
of input ports of model CMEDS.

o a discrete output v Md.Yp and an output port p
Md.OutputPorts where Md is the model of the sub component d
of the coupled model CMEDS. The set Md.YP is the set of discrete
outputs at port p and Md.OutputPorts is the set of output ports of
model Md.

o a discrete input v Md.Xp and an input port p Md.InputPorts
where Md is the model of the sub component d of the coupled
model CMEDS. The set Md.XP is the set of discrete inputs at port p
and Md.InputPorts is the set of input ports of model Md.

This extended definition of ext is a fusion and extension of the ext
definitions of DSDEVS, PDEVS and DEVS with Ports. In DSDEVS only
state events induced by output events of sub components are handled.
However, an output port can have coupling relations to multiple input
ports. In this case there is a difference in the handling of a single output
event of a single source sub model or multiple input events of different

Chapter 3 Discrete Event System Specification and Simulation

52

destination sub models. Hence, the external and state transition function of
EDSDEVS can handle both output and input events. However, the
functionality is in accordance with the description of the DSDEVS
external and state transition function x&s introduced in section 3.3.3.

int: SEDS SEDS
ta: SN
The internal state transition function int, and the time advance function ta
exactly match the functions of the DSDEVS formalism introduced in
section 3.3.3.

con: SEDS × SEDS
The confluent transition function con handles the execution sequence of

int and ext functions during concurrent external and internal events.
The EDSDEVS formalism introduces the confluent transition function also
at coupled model level due to the fusion of PDEVS and DSDEVS. A
coupled EDSDEVS model handles external, state and internal events itself
instead of only forwarding them as in PDEVS. Hence and in contrast to
PDEVS, in EDSDEVS concurrent external and internal events can occur
also at coupled model level. Consequently, a confluent transition function
to handle concurrent events is also necessary at this level. The
functionality is in accordance with the description of the confluent
transition function con for atomic model in this section.

: SEDS Yb

The output function can generate a bag covering outputs Yb = {yi}. An
output yi consists of a pair of discrete output v Yp and output port p
OutputPorts. The set YP is the set of discrete outputs at port p and
OutputPorts is the set of output ports of model CMEDS. If and which
output event is generated depends on the internal state SEDS.
The output function in the EDSDEVS formalism merges three sources:

o The output function at coupled model level is introduced by
DSDEVS.

o The definition of the function creating a bag covering outputs is
based on PDEVS.

o The output event structure with pairs of output/output port is
introduced by DEVS with Ports.

The figure 3.14 shows the dynamic behaviour of a coupled EDSDEVS model
CMEDS. At time tu the confluent transition function con handles concurrent
external and internal events. The first event is a bag covering inputs received at
input ports by the coupled model CMEDS. The figure depicts an example bag
covering three external inputs received at two different input ports. A concurrent
internal event at tu was scheduled by the last execution of the time advance
function. Depending on the specific implementation of function con sequence a)
or sequence b) is executed. The execution of the internal state transition function

int can change the structure state su to su+1 or su+1 to su+2 and therefore the model
structure of CMEDS to . The execution of the output function creates a

3.4 Extended Dynamic Structure DEVS

53

bag covering outputs . The depicted example bag covers two outputs at
two different output ports.
 Listings B.12 in appendix B shows pseudo code of a coupled
EDSDEVS model.

CMEDS

su SEDS

after internal

event at tu

CMEDS

su+1 SEDS

.

.

.

.

.

.

.

.

.

.

.

.

Xb={xk | xk = (v,p),
v Xp Md.Xp Md.Yp,
p InputPorts Md.InputPorts

Md.OutputPorts }

},...{ 00 minport xxX },...{ 00 poutport yyY

},...{ 0 qoutport yyY
j

inport0

inporti

},...{ 0 ninport xxX
i

outport0

outportj

},...{ 00 rinport xxX

},...{ 0 sinport xxX
k

},...{ 00 voutport yyY

},...{ 0 woutport yyY
l

outport0

outportl

inport0

inportk

Yb={yk | yk = (v,p),
v Yp,

p OutputPorts }

at tu after tu
i,j k,l number of input and output ports
m,n,p,q r,s,v,w number of different X and Y events per port

ttu

concurrent
external and

internal event at tu

tlast

),,(1 eXss b
uuconu

bag of input messages at tu

tu time of concurrent external and internal message
su structure state at time tu

su+1 structure state after time tu

hu structure related state variables at time tu
hu+1 structure related state variables after time tu

)},(),,(),,{(100 inportxinportxinportxX cba
b
u

a)

b) su+1 = int(su, tu)

hu+2 = ext(, hu+1, e)

hu+1 = ext(, hu, e)
with e = (tu - tlast)

su+2 = int(su+1, tu)

example input bag:

example output bag:

Xb bag of input events
Yb bag of output events

b
uX

b
uX

*)},(
),,{(

1

0

outporty
outportyY

e

d
b

u

b
uXcalling a) or b) depends on

specific implementation of con

t=tnext

Figure 3.14 Dynamic behaviour of a coupled EDSDEVS model

Chapter 3 Discrete Event System Specification and Simulation

54

3.4.2 EDSDEV Simulation
The simulation engine for EDSDEVS models is a combination and extension of
the simulation algorithms of Classic DEVS, PDEVS and DSDEVS. The
message handling of coordinators are largely similar to simulators. Each
coordinator holds its own time of next internal event in tnext_c and searches the
minimum time of next internal event in tnext of sub components and in its own
tnext_c.
 Figures 3.15 and 16 depict an EDSDEVS model example with the
associated simulation model components i.e. root coordinator, coordinator and
simulator instances and the message handling. The figure is based on and
extends figure 3.7 depicting a Classic DEVS model example with associated
simulation model components and message handling. The overall structure is
very similar to the Classic DEVS simulation model execution except for
additions at the levels of coordinator and associated coupled model. Because of
complexity and clarity selected situations are shown in sections:
i. (Figure 3.15a) initialisation phase with i-message handling:

During the initialisation phase model component’s init functions are called
because of an i-message handling similar to Classic DEVS. Additionally,
after structure changes i.e. modification of the sub component set during
the simulation phase the init function is called too.

ii. (Figure 3.16b) *-message handling created due to an internal event of
model am2:
The root coordinator advances the simulation clock and a *-message is
firstly created. The message is sent to the successor coordinator instance of
coupled model CM1 (not depicted). This coordinator instance compares
the actual simulation time t with its own next internal event time stored in
tnext_c and determines that it is not responsible for handling this event.
Hence, the event is forwarded to the successor coordinator instance of
CM2. The coordinator instance is again not responsible for handling the
message itself but knows that a sub component scheduled the event. The
coordinator instance will then forward the message to the appropriate
simulator instance associated with am2. The simulator instance of am2
calls the model functions and int. A result of calling could be a
y-message sent back to the subordinate coodinator instance of CM2. This
coordinator instance reacts with the call of the model function x&s of CM2
and a messge forward to the simulator instance of am3 due to an
appropriate IC coupling.

iii. (Figure 3.16c) *-message handling created due to an internal event of
model CM2:
The depicted situation is similar to 3.16b except that the coordinator
instance of CM2 determines that simulation time t and its tnext_c are equal.
Hence, it has to handle the *-message itself with calling and int model
functions of CM2 with the possibility of generating a y-message sent to a

3.4 Extended Dynamic Structure DEVS

55

sub component and/or superordinated coordinator instance and of
changing its sequential structure state SEDS.

iv. (Figure 3.16d) concurrent event handling with the confluent transition
function con:
The figure depicts the handling of concurrent external and internal
messages by the coodinator instance of CM2. The confluent function of
CM2 is called to handle the concurrent messages. Depending on the
specific implementation of con the external transition function x&s and
internal transition/output functions int, respectively, are firstly called.The
external message is concurrently handled by the function con and
forwarded to the simulator instance of sub component am2 as a x-message
due to an appropriate EIC. Calling the output function could cause a
y-message sent to a sub component and/or superordinated coordinator
instance.

v. (Figure 3.16e) x-message handling:
(i) x-message at input0 of CM2 and due to an appropriate EIC at input0

of am2:
The first x-message is received by the coordinator instance of CM2.
This message is handled by the function x&s of the coupled model
itself and concurrently forwarded to the simulator instance am2 due
to an appropriate EIC. Because no concurrent internal event exists
the function con is not called.

(ii) y-message at output0 of am2 and due to an appropriate IC forwarded
as x-message to input0 of am3:
Due to an internal event the model am2 generates a y-message. This
y-message is handled by the super-ordinate coordinator instance
which calls the function x&s of its associated model CM2. The
coordinator instance concurrently forwards the y-message as an
x-message to the simulator instance of am3 because an IC exists
between the output port output0 of am2 and the input port input0 of
am3.

Chapter 3 Discrete Event System Specification and Simulation

56

root coordinator

coordinator
of CM2

i-msg

i-msg

start-msg

simulator
of am1

i-msg

simulator
of am3

simulator
of am2

coordinator
of CM1

CM1init()

am1init()CM2init()

am2init() am3init()

message routing

f() EDSDEVS model
function call

atomic model

COUPLED MODEL

abstract simulator element

am

CM

t
tend

tlast
tnext

tlast
tnext

tlast
tnext

tlast
tnext

tlast
tnext

a)

CM1 CM2

am3

input0 output0

am2

am1 output1

output0
input0

input1

input0output0
input0
input1

output0

Figure 3.15 An EDSDEVS model example with associated abstract simulator
elements, messages and model function calls during initialisation phase

3.4 Extended Dynamic Structure DEVS

57

CM2

*-msg

coordinator
of CM2

x-msg

coordinator
of CM2

(s) / int(s,t)

con(s,t,xb)

(s)

*-msg at t=ti

coordinator
of CM2

x-msg
at t=ti

y-msg

y-msg

coordinator
of CM2

x-msg y-msg

simulator
of am3

simulator
of am2

x-msg at
CM2.input0

b)

c)

d)

e)

y-msg

simulator
of am2

*-msg y-msg

x-msg y-msg
x-msg at

am3.input0

x-msg

x-msg to
simulator of am3

CM2

x&s(s,e,xb)
(s) / int(s,t)

con(s,t,xb)

(s)
concurrent
messages

am3
ext(s,e,xb)

am2

ext(s,e,xb)

(s) / int(s,t)(s)

CM2

x&s(s,e,xb)

am2
(s) / int(s,t)(s)

CM2

x&s(s,e,xb)

tlast
tnext=ti

tlast
tnext

tlast
tnext

tlast
tnext_c=ti
tnext=ti

tlast
tnext_c=tk
tnext=ti

tlast
tnext_c
tnext

*-msg at t=ti

tlast
tnext_c=ti
tnext=ti

*-msg
at t=ti

Figure 3.16 An EDSDEVS model example with associated abstract simulator
elements, messages and model function calls during simulation phase

Chapter 3 Discrete Event System Specification and Simulation

58

Listings B.13 and B.14 in appendix B show pseudo codes of EDSDEVS
coordinator and simulator algorithms.
 The EDSDEVS formalism developed from this research is a fusion of
Classic DEVS with several extensions. It widens significantly the application
area. This part of the research is an as generic as possible modelling and
simulation formalism based on DEVS. Further extensions are desirable and
essential. To establish a widely accepted modelling and simulation approach
extensions for parallel computing and graphical modelling are necessary. There
are also approaches for hybrid DEVS extensions i.e. the support of continuous
state changes. These proposals are recommended as further research.

59

Chapter 4
Model Management –
Model Set Specification and
Organisation
Zeigler introduced in [66] a simulation based system design approach. It is a
plan – generation – evaluation process. The plan phase organises design
alternatives with different model structures and model parameters within defined
system boundaries to satisfy given design objectives. During the generation
phase a specific model design is chosen and the corresponding model is
generated. This model is simulated during the evaluation phase using an
experimental frame derived from the design objectives.
 The System Entity Structure/Model Base framework (SES/MB) [52]
[66] is such a simulation based system design approach. It is specifically
configured to define, organise and generate modular, hierarchical models and
was developed to assist an analyst in model organisation and generation. To
represent a set of modular, hierarchical models, the SES/MB framework is able
to describe three relationships: decomposition, taxonomy and coupling.
Decomposition means the formalism is able to decompose a system object called
‘entity’ into sub-entities. Taxonomy means the ability to represent several
possible variants of an entity called ‘specialisation’. To interconnect sub-entities
the definition of a coupling relationship is necessary.
 The literature e.g. [52], [65] [66] and [69] describes slightly different
specifications of the SES/MB framework. Hence, section 4.1 defines a classic
SES/MB framework according to [52] and [66] as a basis for further extensions
introduced in section 4.2.

4.1 Classic System Entity Structure/Model Base
Framework

The SES/MB framework approach is [52] [66]:
The framework consists of two parts: (i) the system entity structure and (ii)
the model base.
A modular, hierarchical model is constructed based on: (i) the declarative
system knowledge coded in a SES and (ii) predefined basic system models
stored in a MB.

Chapter 4 Model Management – Model Set Specification and Organisation

60

The partitioning of a modular, hierarchical model is highly dependent on
the design objectives. Model parameters are a typical example. They are
not really a part of the model composition structure but nevertheless they
can become a part of the system entity structure if they are crucial for
describing design alternatives.
The model generation from a SES/MB is a multistage process. The first
step is a graph analysing and pruning process to extract a specific system
configuration. Based on this information a modular, hierarchical model is
generated.

The SES is represented by a tree structure containing alternative edges starting at
decision nodes. With the aid of different edge types and decision nodes a set of
different model variants can be defined. To choose a specific design and to
create a specific model variant the SES has to be pruned. The pruning process
decides at decision nodes which alternative(s) to chose as a consequence of
specified structure conditions and selection rules. The result of this process is a
Pruned Entity Structure (PES) that defines one model variant. A composition
tree is derived from a PES. The composition tree contains all the necessary
information to generate a modular hierarchical model using predefined basic
components from the model base (MB). Figure 4.1 shows the principal
organisation and the transformation process: SES PES Composition Tree
+ MB Modular, Hierarchical Model.

SES/MB Specification

Pruned Entity Structure

Model Base

Composition Tree

System Entity Structure

{1,3}

Modular Hierarchical Model

Figure 4.1 SES/MB formalism based model generation

The used SES definition is based on definitions published in [52] and [66]. A
SES is a labelled tree consisting of different nodes with optional properties and
different edge types. Figure 4.2 depicts a SES example which is referenced by
the definition.

4.1 Classic System Entity Structure/Model Base Framework

61

Aspec

A1 A2

B

Bdec1 Bdec2

D E F H K

Cmaspec

L

{1,3}

{p1 = 2} {p1 = 3} {p2 = 3} {p3i = 3}

A C

Root

Rootdec

{p2 = 1}

{couplings}

{couplings}{couplings} {couplings}{selection rules}

{selection
constraint}

(vi)

(iii)

(vi) (vi)(vi)

(ii)

(v) (v)

(iii)

(v) (v)
(v)

(iv)

(v)(v)(v)

(iii)

Figure 4.2 A SES example

The SES formalism differentiates four types of nodes: (i) entity, (ii)
specialisation, (iii) aspect and (iv) multi-aspect. An entity node represents a
system object. There are two subtypes of entity nodes – (v) atomic entity and (vi)
composite entity. An atomic entity (figure 4.2 (v)) cannot be broken down into
sub-entities. The model base contains a corresponding model for each atomic
entity. Atomic models (described in chapter 3) and atomic entities must not be
mixed at this point i.e. an atomic entity can also correspond to a coupled model
in the model base. A composite entity (figure 4.2 (vi)) is defined in terms of
other entities, which can be of type atomic or composite entity. Thus, the root
node of a tree is always of type composite entity, while all leaf nodes are always
of type atomic entity. The root node and each composite entity node of the tree
has at least one successor node of type - specialisation (figure 4.2 (ii)), aspect
(figure 4.2 (iii)) or multiple-aspect (figure 4.2 (iv)). That means there is an
alternate mode between entity nodes and the other node types. The definition of
the different node types can be briefly summarised as follows:

atomic entity node = (name, {av1,… avn},selection constraints}
composite entity node = (name, successors, {av1,… avn})
An entity node is defined by a name and is of type atomic or composite. Both
node types may have attached variables av. A composite entity node can have a
single successor node of type specialisation or multi-aspect or multiple
successor nodes of type aspect. An atomic entity node can have attached
selection constraints when it is a successor of a specialisation node.

specialisation node = (name, successors, selection rules)
A specialisation node is defined by a name and a set of successor nodes. In the
tree it is indicated by a double-line edge. A specialisation node defines the
taxonomy of a predecessor entity node and specifies how the entity can be
categorised into specialised entities. A specialisation node always has successor

Chapter 4 Model Management – Model Set Specification and Organisation

62

nodes of type atomic entity to represent the possible specialisations. A
specialisation node can define additional selection rules to control the way in
which a specialised entity is selected during the pruning process. Selection
constraints are added to successor entity nodes of a specialisation node. The
specialisation node A in figure 4.2 has two specialisations defined by the nodes
A1 and A2. During the pruning process one of these specialisations is chosen.
Due to the selection rule at node A2 it is mandatory to chose node Bdec1 when
node A2 is chosen.

aspect node = (name, successors, coupling specification)
An aspect node is defined by a name, a set of successor nodes and coupling
information. It is indicated by a single-line edge in a SES tree. An aspect node
defines a single possible decomposition of its parent node and can have multiple
successors of type atomic and/or composite entity. The coupling specification is
a set of couplings and describes how the sub-entities, represented by the
successor nodes, have to be connected. Each coupling is defined by a 2-tuple.
Each tuple consists of sub-entity source and destination information, e.g.
(SourceEntity.outputport, DestinationEntity.inputport). The composite entity B
in figure 4.2 has two decomposition variants defined by the aspect nodes Bdec1
and Bdec2. During the pruning process one of the decomposition variants has to
be chosen.
Using SES/MB to describe a DEVS model an aspect node defines the
composition of a coupled model.

multiple aspect node = (name, successor, coupling specification, number range
property)
The definition of a multiple aspect node is similar to an aspect node. However, it
defines additionally a number range property and has only one successor node
of type atomic entity. It is indicated by a triple-line edge in a SES tree. A
multiple aspect node also defines a decomposition of a composite entity, but all
sub-entities have to be of the same entity. Only the number of sub-entities is
variable according to the attached number range property. The multiple aspect
node Cmaspec in figure 4.2 illustrates the decomposition of composite entity C that
may be composed by one, two or three sub-entities L.
A multiple aspect node also defines the composition of a coupled model.

In figure 4.3 a SES/MB example points up the complete process of model
generation from a SES/MB to a modular hierarchical model. The SES tree
defines a coupled model CM1 with two structure variants. The two variants are
defined by the specialisation node CM2_spec and specialisations CM2.1 and
CM2.2. The model base contains several basic components which are referenced
by the SES. The different possible pruning results are PES variant1 and
variant2. After a transformation to a composition tree and a model generation,
with the basic components taken from the model base, the final results are the

4.2 Extension of the System Entity Structure/Model Base Framework

63

modular hierarchical model variant1 and variant2, respectively. The SES tree
does not define selection rules or selection constraints. Hence, an analyst has to
use other, external criteria to decide which alternative structure should be chosen
during the pruning process.

MB

am1

x1

am2

CM2.1

CM2.2

CM1

CM2 am1 am2

CM2.1 CM2.2

CM1_dec

CM2_spec

SES

CM1

CM2.1 am1 am2

CM1_dec
couplings:{...}

CM1

am1 am2

CM2.1

CM1

CM2.2 am1 am2

CM1_dec

CM1

CM2.1 am1 am2

CM1

CM2.2 am1 am2

Variant 1 Variant 2

x1

x1

x1

x2 y1

y1
y2

y1

y1

y3

couplings:{...}

couplings:{...} couplings:{...}

x3

PES

Composition
Tree

Modular
Hierarchical

Model
x1 y1x1

y1 x1
y1
y2
y3x3

x1y1

x2

CM1

am1 am2

CM2.2

x1 y1x1
y1 x1

y1
y2
y3x3

x1y1

x2

{{CM1.x1,am1.x1},{am1.y1,am2.x1},
{am2.y2,am1.x2},{am2.y1,CM1.y1},
{am2.y3,CM2.x1},{CM2.y1,am1.x3}}

Figure 4.3 Detailed pruning and model generation example

4.2 Extension of the System Entity
Structure/Model Base Framework

Originally the SES/MB framework was developed to assist an analyst during the
model variant selection and a subsequent model generation. Pruning as a part of

Chapter 4 Model Management – Model Set Specification and Organisation

64

these processes is a stepwise procedure with decisions at decision nodes under
the control of selection rules and structure constraints. Both rules and constraints
represent supplementary structure-knowledge as an addition to the
structure-knowledge coded in the SES tree. The supplementary
structure-knowledge is used to support the selection of design alternatives and to
avoid invalid structures. This knowledge representation is customised to its
usage during the pruning. The upper part of figure 4.4 depicts the steps of the
original pruning process. An analyst initialises attached variables and makes
decisions as long as unpruned decision nodes exist. A decision at a specific
decision node can cause the pruning at other nodes according selection rules and
structure constraints. The pruning in classic SES is a n-step procedure (n is equal
or less than the number of decision nodes) with the goal to synthesise one valid
model configuration.
 In this research a new pruning principle is introduced. The lower part
of figure 4.4 depicts the steps of the new pruning process. The new process is
based on information delivered by the optimisation method as depicted in figure
2.5 and is carried out in a single step. A structure validation based on
structure-knowledge is carried out after the pruning - not during - as in the
original SES/MB framework. This important development means that the new
pruning procedure requires another representation for structure-knowledge
originally coded in selection rules and structure constraints. The new pruning of
a SES tree is carried out in one step based on the structure parameter set XSi. The
model structure is verified in a second, following step. The new pruning
algorithm is a 2-step procedure. Figure 4.4 identifies the differences between the
original and new principle. A detailed description of the new approach is given
in chapter 5.
 Structure conditions as a new, alternative structure-knowledge
representation are added to composite entity nodes. They are used as the
alternative to selection rules and structure constraints as defined in [52] and [66].
During the pruning sub trees are removed. The remaining structure conditions
are evaluated to verify the PES. Only if all structure conditions are true the PES
is valid.

4.2 Extension of the System Entity Structure/Model Base Framework

65

Exists
an unpruned

decision
node?

Make a decision
at a decision

node.

Check selection rules and
structure constraints. If
necessary automatically

prune appropriate
decision nodes.

PES

No

Yes

Start

Pruning

Start

Establish XSi

Pruning

Check
Structure

Conditions
Invalid

PES

Repeat until no unpruned decision nodes exist.

Original Pruning

New Pruning

Valid

Figure 4.4 Comparison original pruning – new pruning principle

Figure 4.5 shows an example SES with a structure condition added to the
composite entity node ROOT. The SES defines 12 different design variants
whereas not all variants are valid according the structure condition. The figure
depicts two variants, one valid and one invalid. If the generated model structure
contains the atomic entity nodes A2, D, E, F, L, it would be valid because the
structure condition p1+p2+1*p3=3+3+1*3<12 is true. The second model
structure variant contains the atomic entity nodes A2, D, E, F, L, L. It is not valid
because the structure condition p1+p2+2*p3=3+3+2*3<12 is false.

Chapter 4 Model Management – Model Set Specification and Organisation

66

Aspec

A1 A2

B

Bdec1 Bdec2

D E F H K

Cmaspec

L
number range property:{1,2,3}

{p1 = 2} {p1 = 3} {p2 = 3} {p3i = 3}

A C

Root

Rootdec

{p2 = 1}

structure condition:
{p1 + p2 + p3i < 12}

couplings:{...}

couplings:{...}couplings:{...} couplings:{...}

Aspec

A2

B

Bdec1

D E F

Cmaspec

L
{p1 = 3} {p2 = 3} {p31 = 3}

A C

Root

Rootdec
couplings:{...}

couplings:{...} couplings:{...}
Aspec

A2

B

Bdec1

D E F

Cmaspec

L
{p1 = 3} {p2 = 3} {p31 = 3}

A C

Root

Rootdec
couplings:{...}

couplings:{...} couplings:{...}

L
{p32 = 3}

PES valid

structure condition:
p1+p2+1*p3=3+3+1*3<12 valid

structure condition:
p1+p2+2*p3=3+3+2*3<12 invalid

PES invalid

Variant 1 Variant 2PES

SES

Figure 4.5 SES example with a structure condition

 Chapter 5 provides the description of the application of the extended
SES/MB framework. The chapter describes the combination of the introduced
EDSDEVS formalism and SES/MB approach with an optimisation method to
the simulation based parameter and structure optimisation as introduced in
principle in section 2.3. The descriptions of the pruning and the terminal model
generation processes, as a part of the SES/MB framework description, are
provided in the context of other algorithms in chapter 5.

67

Chapter 5
A Framework for Modelling, Simulation
and Optimisation
Chapter 2 introduced the key research concept - simulation based parameter and
structure optimisation as a merging framework of three methods, optimisation,
model management, and modelling and simulation. Chapter 3 introduced
EDSDEVS as a modular, hierarchical modelling and flexible simulation
formalism as applied in the framework, and chapter 4 defines the SES/MB
approach as a suitable model management framework. In this chapter a complete
framework for combined parameter and structure optimisation experiments is
proposed. After a brief description of the general framework structure, its
methods are discussed in detail and the entire algorithm is summarised. Finally
implementation details to describe a SES/MB structure with XML are
introduced.

5.1 General Framework Structure
A fundamental overview of a simulation based parameter and structure
optimisation experiment is shown in figure 2.5. A more detailed structure of the
framework with concrete elements and information flow is depicted in figure
5.1. The interface definitions between the three modules are a fundamental part
of this approach. They bind the named methods together to synthesise a
simulation based parameter and structure optimisation.
On closer examination of the framework it is crucial to divide an optimisation
experiment into two phases:
1. Initialisation phase

The model management reads and analyses a meta-model. Results of the
analysis are information about the multidimensional search space (XS, XP,
DS ,DP). The optimisation module is initialised with this information.

2. Optimisation phase
During the optimisation phase the optimisation method explores the search
space within a loop. Each examined search space point i.e. an ordered set
of values () is delivered to the model management module. This
module starts up the processes: structure synthesis, model generation,
model simulation and performance estimation. The optimisation loop ends
when a stop criterion is fulfilled. Examples of stop criteria are (i) going

Chapter 5 A Framework for Modelling, Simulation and Optimisation

68

below a minimum alteration rate or (ii) exceeding the maximum number of
optimisation cycles. The result of a successful finished optimisation phase
is a parameter and structure optimised model.

Optimisation
Module

EDSDEVS Simulator

Objective
Function

Optimisation
Method

PES

Model Generator

Model Selection Results
Pi(XSi)

Modeling &
Simulation

Module

Model Management Module

Simulation Results
R(Yi(XSi,XPi))

SES

EDSDEVS Model

Search Space S with
XS, XP, DS and DP

(Model Structures &
Parameters Information)

XSi XPi
(Point of

Search Space)

MB

XSi

XPi

Basic
EDSDEVS

Sub-Models

XML
(DEVS)

F*(R(Yi), Pi)

Optimisation PhaseInitialisation Phase

XML(SES/MB)

Figure 5.1 Structure of the simulation based optimisation framework

The simulation based optimisation framework is segmented into the following
modules, methods and interfaces as depicted in figure 5.1:
1. Model Management Module: meta-model specification

A meta-model definition is read and interpreted by the model management
during the initialisation phase. A meta-model is defined in the form of a
platform and implementation independent XML file. The basic
components of a MB are regular EDSDEVS model components. They are
referenced by the XML file with a model name and a model instance
name. The result of this step is a data structure with an SES tree and
references to a MB.

2. Interface Model Management Module – Optimisation Module: meta-
model analysis
In a second step during the initialisation phase the model management
module analyses the SES tree and establishes the search space. The search
space is defined by a set of variables with their domains. These sets XS, DS,
XP and DP are sent to the optimisation module.

5.2 Interface: Optimisation Module – Model Management Module

69

3. Interface Optimisation Module – Model Management Module:
transformation of a search space points into a model configuration
The model management module receives a search space point (XSi XPi)
within the optimisation loop. The sets XSi and XPi are used to prune the
SES, to synthesise the model structure and to parameterise the model. The
selected model structure and model parameters are sent to a model
generator as a platform and implementation independent XML files.

4. Model Generation Method
Based on the received XML file with model structure information and
references to basic components the model generator creates an EDSDEVS
model.

5. Simulation Method
The EDSDEVS model is executed by an EDSDEVS simulator. In this
research the modelling and simulation method is based on the EDSDEVS
formalism. Principally this approach is not limited to EDSDEVS or DEVS
formalisms exclusively.

6. Interface Model Management and Simulator – Objective Function
In this approach the objective function gets both simulation results from
the simulator and model structure selection results from the model
management module to establish the performance of the current model
structure and parameter set.

7. Optimisation Method
The optimisation method establishes the next search space points to
examine in a loop until the stop criterion is fulfilled. The search space
points are chosen based on the search space definition and on previous
objective function results.

5.2 Interface: Optimisation Module – Model
Management Module

During the initialisation phase, the Model Management Module has to analyse
the SES tree to transform formal meta-model structure information into
numerical data useable by the Optimisation Module. Together with the model
parameters the information is sent as initialisation data to the Optimisation
Module. The information, coded in the four sets XS, DS, XP and DP is used to
build the set X* = XP XS and the corresponding domain set D* = DP DS.
During the optimisation phase repeated in each optimisation loop cycle the
optimisation method calculates a numerical data set = XPi XSi. The set is
sent to the Model Management Module, which determines based on this
information a new model configuration, i.e. a new model structure and initial
model parameters. Both transformations are described by an example illustrated
in figures 5.2 and 5.3.
 The main task of the first transformation is to convert SES structure
information to a structure parameter set XS and the corresponding domain set DS.

Chapter 5 A Framework for Modelling, Simulation and Optimisation

70

This is done by a tree analysis starting at the root node, traversing the tree in a
defined direction and considering every node. If a node is a decision node, i.e. it
is a specialisation node, multiple aspect node or composite entity node with
alternative successor nodes, a structure parameter xSi is added to the structure
parameter set XS and a corresponding domain dSi to the domain set DS. The
domains of specialisation node and composite entity node are {1, ..., number of
variants}. The domain of a multiple aspect node is defined by its attached
number range property.
 Two general principles can be applied to traverse the tree: (i) depth-
first and (ii) breadth-first analysis. An advantage of the breadth-first analysis is
the arrangement of the variables. If it can be assumed that variant decisions at a
higher level of the SES tree have larger effects on the overall model structure
than decisions near the leafs, a breadth-first analysis should be preferred. The
breadth-first analysis sorts the elements of XS and DS as follows: elements on the
left hand side of the ordered set correspond to higher levels of the SES; elements
on the right hand side correspond to decision nodes nearer the leafs. An
optimisation method could take this into account. Figure 5.2 illustrates the
algorithm for creating structure parameter set XS and the corresponding domain
set DS based on SES tree information. The analysis and XS, DS set build-up order
is marked with small sequence numbers.

C => xS1,dS1={1,2}
Dmaspec => xS2,dS2={2,3,4}
Espec => xS3,dS3={1,2,3}

X S= {xS1,xS2,xS3}
D S= {dS1,dS2,dS3}

A
structure condition:
{p1+ p2i<13}

(4)
(14)
(15)

Adec

B C

Dmaspec Espec

E1 E2 E3

Cdec1 Cdec2

{2,3,4}

D

{p2i = 2}

{p1=4}

F G H I

decision node

Bdec
{p1=8}

E

K

(1)

(2)

(10)

(3) (4)

(5) (6) (7)

(8) (9) (11) (12) (13)

(14) (15)

(16) (17)
(18)

(19)

SES

(1)...(19) analysis sequence

Figure 5.2 Transformation SES set XS and set DS

The breadth-first analysis starts at the root node A, a non-decision node. Next
nodes are non-decision nodes Adec and B. The composite entity node C is the

5.2 Interface: Optimisation Module – Model Management Module

71

first decision node. It has two alternative successors. A first parameter xS1 is
added to set XS with the domain dS1 = {1, 2}. The next examined nodes are Bdec,
Cdec1, Cdec2, D, E, F, G, H and I - they are non-decision nodes. The next
examined node, the multiple aspect node Dmaspec is a decision node. The value of
its number range property is {2, 3, 4}. A second parameter xS2 is added to XS
with the domain dS2 = {2, 3, 4}. The next node, the specialisation node Espec is
again a decision node. It has three alternative successor nodes. A third parameter
xS3 is added to XS with the domain dS3= {1, 2, 3}. The last nodes analysed K, E1,
E2 and E3 are non-decision nodes. The example SES has three decision nodes.
The resulting structure parameter set is XS = {xS1, xS2, xS3} with the
corresponding domain set DS = {dS1, dS2, dS3} with the above determined
domains. On the basis of the combination of these sets XS, DS, the model
parameter set XP and its corresponding domain set DP the optimisation method is
able to search the search space. Additional SES tree information e.g. the
structure condition at node A and the attached variables p1 and p2 in figure 5.2
are irrelevant during the initialisation phase.
 The second transformation is the reverse of the first. The Model
Management Module receives a point in the search space from the Optimisation
Module i.e. the numerical data set = XPi XSi, where set XSi codes a specific
model structure and set XPi codes its model parameters. It has to synthesise the
corresponding model structure and has to infer the model parameters. The
transformation has to traverse the tree in the same direction as during the first in
the initialisation phase. At each decision node the next element of current
structure parameter set XSi is used to decide: (i) which successor of a composite
entity node with alternative successors nodes is chosen, (ii) which specialisation
of a specialisation node is chosen or (iii) how many successors of a multiple
aspect node are incorporated into the PES. After pruning the model structure is
verified with the evaluation of all structure conditions. If a structure is invalid
the specific set will be refused and this information is sent to the
Optimisation Module. It marks this point in the search space as prohibited and
determines a new one. Figure 5.3 illustrates the principle of this transformation.
The analysis and pruning order is marked again with small sequence numbers.

Chapter 5 A Framework for Modelling, Simulation and Optimisation

72

PES

Adec

B C

K1 E2

Cdec1

K2 K3 K4
{p21=2} {p23=2}{p22=2} {p24=2}

{p1=4}

Xsi = {1,4,2}

current model structure
parameter set

F G

p1=4
p2i=8

A

xS1= 1 => Cdec1
xS2= 4 => K1,K2,K3,K4
xS3= 2 => E2

Bdec

evaluation of attached variables
to validate the PES

p1+ p2i<13

structure is valid

A
structure condition:
{p1+ p2i<13}

Adec

B C

Dmaspec Espec

E1 E2 E3

Cdec1 Cdec2

{2,3,4}

D

{p2i = 2}

{p1=4}

F G H I

Bdec
{p1=8}

E

K

(1)

(2)

(10)

(3) (4)

(5) (6) (7)

(8) (9) (11) (12) (13)

(14) (15)

(16) (17)
(18)

(19)

SES

selected node (1)...(19) analysis sequence

Figure 5.3 Transformation XSi + SES PES

The breadth-first analysis starts at the root node A and continues as already
described before. The first decision node of the SES tree in figure 5.3 is
composition entity node C. The first element in XSi is xS1=1, i.e. the first aspect
node Cdec1 is chosen for the PES. The next decision node is the multiple aspect
node Dmaspec and the corresponding set element is xS2=4, i.e. the PES contains
four nodes K. The last decision node is specialisation node Espec and the
corresponding set element is xS3=2, i.e. the PES contains the second
specialisation of node Espec. After pruning, the attached variables are calculated
and the PES is verified by evaluating the relevant structure conditions. In the
example in figure 5.3, the aspect node Cdec1 and four atomic entity nodes K were
chosen. Therefore, the structure condition at node A is evaluated as follows:
p1 + p2i = 4 + 8 < 13 and from this it follows that the PES is valid.

5.3 Interface: Model Management Module – Modelling and Simulation Module

73

5.3 Interface: Model Management Module –
Modelling and Simulation Module

Each optimisation cycle requires a change and adaptation of the simulation
model. If the structure parameters in XSi are changed, a new simulation model
structure has to be generated. Otherwise, if just the model parameters in XPi are
changed, it is adequate to re-initialise the model parameters. As illustrated in
figure 5.1 all necessary information is sent from the Model Management Module
to the Model Generator of the Modelling and Simulation Module. The Model
Management Module creates XML files describing the model structure.
EDSDEVS basic components, predefined in the MB, XML files and current
model parameters coded in set XPi are used by the Model Generator to generate
the entire EDSDEVS model.
 The use of a standardised XML model description for information
exchange decouples the two modules. It is based on W3C XML schema Finite
Deterministic DEVS Models introduced in [30] and [31]. The XML interface
uses the atomic and coupled model interface descriptions with model and port
names. The coupled model description described in [31] is currently work in
progress and does not contain all necessary description elements for this
approach. Therefore, the composition description of coupled models additionally
defines sub model names and coupling specification. The coupling specification
defines external input (EIC), external output (EOC) and internal coupling
information (IC). An example with corresponding XML files is illustrated in
figure B.1 and listings B.17 and B.18 in appendix B.
 The decoupling of Model Management Module and Modelling and
Simulation Module using XML files eases the modelling and verification of the
basic components without the Model Management Module. Additionally it will
enable and ease the use of different simulator implementations; however this
will be the subject of future work.

5.4 Interface: Modelling and Simulation Module
– Optimisation Module

The objective function, defined in the Optimisation Module, (figure 5.1),
estimates the performance of the current model structure and parameter values.
The function gets its input parameters from the Modelling and Simulation
Module. These are the simulation results Yi(XSi, XPi) and simulation response
function results R(Yi(XSi, XPi)) respectively. Further input parameters are
delivered by the Model Management Module. These are the model structure
results Pi(XSi), which are based on evaluation of attached variables after pruning
the SES. An example is illustrated in figure 5.2. The aspect nodes Cdec1 and Cdec2
and the atomic entity node K define the attached variables p1 and p2i. After the
pruning process illustrated in figure 5.3 the values of p1 and p2 are calculated as

Chapter 5 A Framework for Modelling, Simulation and Optimisation

74

follows: Pi(XSi) = {p1; p2i} = {4;8}. These values may be used as further
objective function parameters.
 The result F*(R(Yi), Pi) of the objective function is evaluated by the
optimisation method. As a consequence of the often stochastic nature of
simulation problems, a random based optimisation method is preferable. Two
established random based algorithms inspired by the principle of the evolution
of life are the Genetic Algorithm (GA) introduced by Holland [20] and the
Evolutionary Strategy (ES) introduced by Rechenberg [50]. The origins of ES
are continuous parameter problems whereas current GAs support hybrid
problems. There is an extensive and varied body of literature on this topic.
Genetic algorithms have delivered robust solutions for various simulation based
optimisation problems e.g. in [47] and [49]. Experiments realised within the
scope of this research have shown that a GA is applicable as an optimisation
method for the simulation based optimisation approach.
 The methods of the simulation based parameter and structure
optimisation framework described in this chapter are integrated into a general
GA algorithm (listing B.19 in appendix B). The resulting algorithmic summary
of the whole framework is introduced in the next section.

5.5 Algorithmic Summary of the Framework
As described in the preceding sections, the proposed simulation based parameter
and structure optimisation framework is composed of different methods that
form a uniform optimisation approach. The following algorithm, based on the
general description in [54], summarises the fundamental operations using a GA
as optimisation method.
Initialisation Phase:
0. Analyse the SES and establish X* = XP XS and D*= DP DS
1. Initialise a population of individuals (generation 0) with different

 = XPi XSi
Optimisation Phase (repeat until stop criterion is fulfilled):
2. Estimate the fitness of all individuals of the current generation

Repeat for each individual
2.1. Prune SES with XSi
2.2. If structure condition is valid, establish Pi(XSi) or otherwise mark

current individual as invalid and continue with next individual
2.3. Generate EDSDEVS model
2.4. Simulate EDSDEVS model and get result Yi(XSi, XPi)
2.5. Evaluate the simulation response function R(Yi(XSi, XPi)) by

repeating step 2.4
2.6. Evaluate the objective function F*(R(Yi), Pi)

3. Select pairs with m individuals and create descendants using crossover
4. Mutate the descendants

5.6 Definition of a Model Set with XML SES/MB

75

5. Exchange individuals of the current generation with descendants based on
a substitution schema to create a new generation

A disadvantage of a conventional GA is the missing memory. It is possible that
in different generations the same individual is repeatedly examined. Because of
the time consuming fitness estimation of one individual in simulation based
optimisation, the addition of a memory method is vitally important. It has to
store already examined individuals with their resulting F*(R(Yi), Pi). This
extension leads to the following, final algorithm summarising the fundamental
operations of the simulation based parameter and structure optimisation
approach using a GA as optimisation method:
Initialisation Phase:
0. Analyse the SES and establish X* = XP XS and D*= DP DS
1. Initialise a population of individuals (generation 0) with different

Optimisation Phase (repeat until stop criterion is fulfilled):
2. Estimate the fitness of all individuals of the current generation

Repeat for each individual
2.1. Check memory if current individual is known. In case of ‘true’:

continue with next individual
2.2. Prune SES with XSi
2.3. If structure condition is valid, establish Pi(XSi) or otherwise mark

current individual as invalid and continue with next individual
2.4. Generate EDSDEVS model
2.5. Simulate EDSDEVS model and get result Yi(XSi, XPi)
2.6. Evaluate the simulation response function R(Yi(XSi, XPi)) by

repeating step 2.5
2.7. Evaluate the objective function F*(R(Yi), Pi)
2.8. Store and F*(R(Yi), Pi) in memory

3. Select pairs with m individuals and create descendants using crossover
4. Mutate the descendants
5. Exchange individuals of the current generation with descendants based on

a substitution schema to create a new generation

5.6 Definition of a Model Set with XML SES/MB
In chapter 4 the extended SES/MB framework for the simulation based
optimisation framework was formally introduced. This section describes the
meta-model definition with the framework in detail. In this approach an
SES/MB meta-model definition is based on XML [64]. Therewith the definition
is platform and implementation independent. The usage of XML has the
potential to enable the development of further extensions e.g. a graphical model
designer. Figure 5.4 depicts the UML 2.0 [61] class and composition structure
diagram of the XML schema and listing B.15 in appendix B contains the

Chapter 5 A Framework for Modelling, Simulation and Optimisation

76

document type description (DTD [64]). Both the schema and the DTD are
describing the structure of an SES/MB XML file.
The structure is divided into three main sub structures (i) SES tree, (ii) MB, (iii)
properties:
1. The SES tree sub structure is defined within the ses sub tree of the XML

structure. The six nodes (i) composite, (ii) atomic, (iii) multiaspect,
(iv) aspect, (v) specialisation and (vi) specialisation-entity correspond to
the different entity types of the formal SES/MB description as introduced
in chapter 4. An exception is the specialisation-entity node which matches
an atomic node. It is introduced to eases the SES XML file verification.
The connections within the UML class and composition diagram defines
the container class/contained class relationship and the m:n relations
between both components. Each component has one attribute, the entity
name esname. This name is used to logically connect XML elements
within the XML SES, MB and property sub structures e.g. an atomic entity
definition from the ses sub tree with the mb_atomic model implementation
definition from the modelbase sub tree.

2. The MB is defined within the modelbase sub structure. The sub structure
references (a) model implementations and defines (b) model interfaces:
a. Nodes of the type mb_atomic and mb_specializationentity references

basic components. The models are not directly defined within an
SES/MB XML file. The above nodes refer to a model
implementation. The attribute classname refers to the model
implementation class name and the attribute modelname names the
specific model instance name. Both class and instance names are
necessary to enable multiple usage of a component. The node
mb_aspect is not a reference to a model implementation but is used
to synthesise a model during model generation.

b. Nodes of the type atomic, specialization and aspect have attached
coupling information. Hence the corresponding modelbase nodes
mb_atomic, mb_aspect and mb_specialization define interfaces with
input and output ports. Each model i.e. the corresponding structure
in the modelbase can have several inports and outports named with
the attribute name and combined in list structures inports and
outports. Even though a specialisation node does not have a model
implementation it has a definition in the modelbase sub tree. All
child nodes of a specialisation share the same interface description
which is defined once at parent node level.

3. To avoid scattered node property definitions all properties are defined in
the properties sub structure. An aspect node defines a coupled model i.e.
besides the sub components defined within the ses sub structure additional
coupling information are necessary. A modelcouplings sub structure with a
corresponding name in the esname attribute describes the coupling
information in eic, eoc and ic lists. The number of possible children of a
multiple aspect node is defined by the varNumberOfComponent structure.

5.6 Definition of a Model Set with XML SES/MB

77

Nodes can have attached variables defined within the var structure and
coupled with the esname attribute to the corresponding ses sub structure.
Optional structure conditions are defined within the constraint structure.

ses_mb

-esname : string(idl)
composite

ses

-esname : string(idl)
aspect

-esname : string(idl)
atomic

-esname : string(idl)
multiAspect

-esname : string(idl)
specialization

-esname : string(idl)
specializationentity

1

1..*

1

0..*

1

0..*

1

0..*

0..*1

1

1

1

0..*

1

0..*

1

1

1

0..*

1

properties

1

1

-name : string(idl)
-esname : string(idl)
-typ : string(idl) = {internal|external}
-external_string : string(idl)
-value : string(idl)

var

modelbase

-esname : string(idl)
-classname : string(idl)
-modelname : string(idl)

mb_specializationentity

-esname : string(idl)
-classname : string(idl)
-modelname : string(idl)

mb_atomic
-esname : string(idl)
mb_specialization

-esname : string(idl)
-classname : string(idl)
-modelname : string(idl)

mb_aspect

inports outports

-name : string(idl)
inport

-name : string(idl)
outport

-inport : string(idl)
-component : string(idl)
-component_inport : string(idl)

eic

-component : string(idl)
-component_outport : string(idl)
-outport : string(idl)

eoc

-component1 : string(idl)
-component1_outport : string(idl)
-component2 : string(idl)
-component2_inport : string(idl)

ic

-esname : string(idl)
-min : unsigned long(idl)
-max : unsigned long(idl)

varNumberOfComponents

1..* 1..*

1

111

1 1

0..1 0..1 0..1 0..10..10..1

1 1

1

1

0..*

0..* 0..*

0..*

-esname : string(idl)
modelcouplings

-name : string(idl)
-typ : string(idl) = {entity|parameter}
-action : string(idl) = {enable|valid}
-condition : string(idl) = {gt|lt|eq|gteq|lteq|neq}
-var_name1 : string(idl)
-var_name2 : string(idl)
-destination : string(idl)

constraint

1

1
1 110..*

0..*

0..*

0..*

0..*

0..*

0..*

1 1

MB sub-structure

Property sub-structure
1

1

SES sub-structure

1

1 1

Figure 5.4 UML Diagram of SES/MB XML Schema

The example SES in figure 5.5 defines two structure variants through two
different specialisations A1 and A2 at Aspec. With the structure condition at the
ROOT entity the PES can be verified after pruning. Figure 5.5 depicts the
structure variants after pruning and model generation. Due to the structure
condition only one model variant is valid. The listing B.16 in appendix B shows
the corresponding meta-model definition with an SES/MB XML file. The three

Chapter 5 A Framework for Modelling, Simulation and Optimisation

78

sub structures ses, modelbase and properties are separated with an empty line,
XML elements, attributes and values are highlighted with different colours.

Aspec

A1 A2

B
Bdec

D E
{p1 = 2} {p1 = 3} {p2 = 3}

A

ROOT

ROOTdec

{pmax = 6}
structure condition:
{p1 + p2 < pmax}

{{A.Aout1, B.Bin1},
{A.Aout2, B.Bin2},
{B.Bout, C.Cin}}

{{B.Bin1,D.Din},
{B.Bin2,E.Ein1},
{D.Dout,E,Ein2},
{E.Eout,B.Bout}}

ROOT

AA1

B

D E

B

D E

ROOT

AA2

invalid structure: 3 + 3 < 6 is false

SES Model Structure Variants
valid structure: 2 + 3 < 6 is true

Figure 5.5 An SES/MB XML example – SES tree with both valid and invalid
model structure variants

The next chapter starts with an overview of modelling and simulation of
manufacturing systems and demonstrates the application of the introduced
framework with a project from industry.

79

Chapter 6
Parameter and Structure Optimisation
of Manufacturing Systems
This chapter demonstrates the application of the introduced framework for a
simulation based parameter and structure optimisation with a real industrial
project. It starts with a short review of types, components and complexity of
manufacturing systems in the context of modelling and simulation. Current
manufacturing system planning concepts and a range of modelling and
simulation concepts for manufacturing system simulation are presented in an
overview.
 A broad choice of modelling and simulation packages is commercially
available, developed to reflect the changing requirements of manufacturing
applications. As discussed in chapter 2 not all demands of manufacturing
modelling and simulation are satisfied optimally. A real life example using the
approach developed in this research demonstrates how this can be accomplished.

6.1 Manufacturing Systems
The focus of manufacturing is the combination and transformation of raw
material to a product with a market potential using industrial machines [21] [22].
This is a very simple principle but is difficult to achieve and maintain. The
challenge is that the market potential and the requirements of manufacturing
system are changing continuously. A manufacturer who does not adapt will lose
competitiveness and vice versa a company that handles these changes most
effectively will succeed. A major issue for managers and engineers is the
continuous analysis of manufacturing system performance and the use of
methods to improve operations and adapt to new market situations. Analysis
using modelling and simulation is potentially a powerful management method.
 Depending on the point of view it is possible to differentiate between
several types of manufacturing systems. Two widely used, described in more
detail in [5] are the following:

serial system
An assembly line as a typical example of a serial system is a sequential set
of workstations connected by material handling systems. Component parts
are assembled or machined to produce a finished product in a line. The
assembly activity can be divided into work elements as the smallest unit of

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

80

productive work. A subset of work elements are assigned to each
workstation. A work piece passes the complete line in a sequence. After
leaving the final workstation the product is complete. Such systems are
often used to produce a high volume of a small number of similar
products. Figure 6.1 shows an example of a serial system with several
lines with sub assembly manufacturing and a final end product assembly
line.

Part entry Buffer storage (Assembly) flow line

Figure 6.1 General assembly system layout (source [5])

shop scheduling system
In contrast to a serial system a job scheduling system manufactures a
variety of different products. Work pieces can follow different routes with
significant different processing time at a workstation. Regularly work
pieces are combined in batches or jobs of one or more parts which are
manufactured on the same route i.e. with the same production sequence
and similar processing time. If all batches are processed in the same
sequence of workstations the system is named flow shop. In contrast, in a
job shop each batch type has the same production sequence. With a
growing flexibility and pressure to decrease manufacturing cost the
complexity of job shop systems is increasing considerably. Hence the
planning of job shop systems is making greater than ever demands.

6.2 Modelling and Simulation of Manufacturing
Systems

The simulation of manufacturing and material handling systems is one of the
most important applications of discrete event modelling and simulation
techniques [7]. These techniques have been successfully used as an aid in the

6.2 Modelling and Simulation of Manufacturing Systems

81

design of new systems as well as an evaluation tool for improvements to existing
systems, as a daily staffing, material and operation planning tool and so on.
 Even though both the types of manufacturing systems and the analysis
issues vary substantially the different modelling and simulation techniques share
some common characteristics as described in the following sections.

6.2.1 Simulation Model Level of Detail
In principle every model is an approximation of the real world. Depending on
the analysis objectives irrelevant characteristics and details can be omitted when
creating a model. In simulation literature this principle is called level of
abstraction [51] because the model is an abstraction or approximation of the real
system. The appropriate level of detail can distinguish between valid and invalid
or successful and unsuccessful simulation experiments. It is claimed that a good
rule is to add details step by step during a model validation process because
starting with a low level of detail usually leads to fewer simulation results to be
validated [51]. The analyst stops the process when the model is close enough to
real system behaviour to provide results for analysis. This validation approach is
an iterative process that results in a sufficiently accurate model. Figure 6.2
depicts the correlation between model detail and validation time [51]. The
asymptotic behaviour of the relationship may mean more effort to increase the
level of detail from 95% to 100% than creation of the initial model with 95%
accuracy.

Figure 6.2 Model detail during model validation (source [51])

6.2.2 Fundamental Components
Manufacturing systems produce a wide range of products with many types of
production methods using many different system layouts. Nevertheless there are

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

82

common components that can describe many manufacturing operations. These
common components are the basis elements of a simulation model [51]. Table
6.1 depicts these basic elements.

Product Resource Demand Control

Parts/pieces Equipment
layout

Customer
orders

Warehouse
management

Routings Equipment
costs Start date Inventory

control

Process time Number of
 machines Due date Shop floor

control

Setup time Failure WIP
inventory WIP tracking

Bill of
material Maintenance Restricted

resources

Yield Number of
operators Station rules

Rework Shift
schedules

Table 6.1 Fundamental components of manufacturing systems (source [51])

Product. Parts or pieces are the products manufactured. Products may be
handled as a single item or production unit or combined to batches depending on
the manufacturing process named batch or job. A batch can be described as a
production unit in a subsequent process. Products are manufactured in a defined
sequence, the routings. Depending on the manufacturing process and on the
product the routing can be sequential e.g. in an automobile assembly line i.e. a
serial system or complex e.g. in a semiconductor production process i.e. a job
scheduling system. For each manufacturing step the setup and processing time
determine the total cycle time. These times depend on the machine and/or
product and can be deterministic or stochastic.
 A product can be assembled from several items, i.e. sub assemblies,
defined by the product structure file or bill of material (BoM). Each item in the

6.2 Modelling and Simulation of Manufacturing Systems

83

BoM can be the result of a production process. During the manufacturing
process all BoM items must be available at a defined point of time relative to the
final product assembly or product due date. The modelling of manufacturing
systems with a delivery or production of sub assemblies Just-In-Time to
minimise waste and inventory is an important manufacturing paradigm today.
The typical example of this principle is the automobile industry.

Yield and rework are found in many manufacturing processes. The
reasons are imperfect processes and operations. Both factors influence the
process throughput and other characteristics e.g. the costs. With a lower level of
detail both characteristics can also be omitted.

Resources. Resources include machines and human operators, mobile and
immobile equipment, material and storage systems etc. They are used to
manufacture a product. The equipment layout and the number of machines have
an effect on the production flow and the speed of operation. The equipment costs
influence amongst others the manufacturing cost of a product. Staff number can
be a restricted resource, e.g. the number of machines and with these the
necessary number of operators is higher than the available number of operators.
In this context shift schedules have to be possibly considered.
 The equipment has unplanned and planned down times, random
failures or regular maintenance. During these times production has to stop or
product flow has to be rerouted when alternatives are available.

Demand. Costumer orders define the demands on a manufacturing process.
Start and due dates are determined by these customer orders for products. An
important question of production management is the determination of the latest
start date for BoM items to complete the order before the due date.

Normally production does not start from an idle state instead there is
some work-in-process (WIP) e.g. in buffers, on conveyors or in machines. The
modeller can decide to accept an initialisation phase until the model contains a
certain amount of WIP to start the real experiment or initialise the model with
work-in-process data.

Control. Control systems determine how products flow through the
manufacturing processes, collect status information about products and/or
resources, inspect the compliance of resource or demand constraints and decide
about the use of the restricted recourses. A control algorithm can influence a
simulation with changes of input data e.g. a changed semi finished part order in
an assembly line or changes in inwards and outwards goods movements in a
warehouse management system. A shop floor or/and an inventory control
algorithm can change model properties and model structure e.g. a storage area
extension or reduction or an equipment layout modification of a manufacturing
system. A WIP tracking system can deliver current process status information
for control strategies. Station rules define local scheduling decisions, e.g. the
working sequence in a manufacturing cell from simple first in, first out control

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

84

strategy to a more complex such as a custom order dependant priority control
strategy.

6.2.3 Measures of Performance
The methods to evaluate the performance of a real system and model have to be
the same otherwise it will be difficult to have confidence in simulation and
analysis results. Because both the real system and its model are based on random
events the performance measure is a statistical analysis of real system and
simulation system results. The following measurements are typical for a
manufacturing system [51]:

Throughput of sub model (such as a machine or process) or the complete
model
Cycle time at a process or overall
Queueing time or length
Response time of material handling equipment
WIP
Resource utilisation
System specific performance measures (scrap rate, waiting time at a
process etc.)

Due to the fact that a manufacturing system is a complex system it is important
to note that model changes to improve one measure usually change other
measures, for optimisation this is an important issue.

6.2.4 Analysis Issues
Using the measures described in chapter 5 an analyst experiments with a model
to understand coherences of model elements and the behaviour of the whole
system using input value, model parameter and model structure changes. Among
others the following are typical analysis questions [51]:

Determining bottlenecks
Determining required staffing levels
Evaluating the scheduling of staff
Evaluating the scheduling of tasks
Evaluating the control system
Recovering strategies for random events

The identification of bottlenecks is often an analysis issue. The problem is the
direct influence of the experiment on the bottleneck. With changes of anything
in the model the primary bottleneck can move to other elements of the model. So
the identification of a bottleneck can be a complex task and requires the
examination at both local and global model levels.
 A second important analysis issue is the determination of resource
levels. Manufacturing systems with a fluctuating production volume, e.g. with
seasonal dependencies, require such an analysis. An example is the staff

6.3 Introduction to the Photofinishing Industry

85

requirement. It can change constantly and has to be planned regularly. An
associated issue is the scheduling of staff between manufacturing system
elements. With intelligent scheduling strategies it may be possible to employ
fewer staff and still maintain sufficient throughput or to increase the throughput
without increasing staff costs.

6.3 Introduction to the Photofinishing Industry
The application in this research uses developments and problems in the
photofinishing industry and investigates a small part of a production process to
validate the key research concept. The photofinishing industry specialises in
high volume production of thousands to millions of pictures per day but has
nevertheless a relatively broad range of different products. As a consequence of
significant changes in the photography market, notably the introduction of
digital cameras with a considerable reduction of analogue and an increase of
digital orders during recent years, a mix of analogue and digital production
facilities are used. The change of the main production material from analogue to
digital material has lead to concentration from many, local working, smaller
laboratories to few, large, nationwide working laboratories and fierce
competition between them. The situation is driving an urgent need to be as cost
effective as possible.
 Figure 6.3 shows general structure and product flow through the
different departments of a typical photofinishing laboratory. It is possible to
differentiate between three main production departments to depict the
production flow analogue film/digital image – photographic picture:
I. The material arrives in several forms at the login process. After sorting the

product mixes, some 10 to some 100 single orders are combined into
batches. Each batch contains only one production material and one product
type, e.g. undeveloped analogue film and specific paper width and surface.
The batch creation is done with different machine types: (i) a splicer
combines undeveloped film rolls onto a large film reel, (ii) a universal
reorder station (URS) combines analogue reorders to a strap of film strips,
(iii) a digital URS scans the analogue reorders and creates a digital batch,
(iv) a digital splicer handles digital data carriers (CDs, flash cards etc.) and
(v) software applications combine digital images collected by a web
server. Steps (i) and (ii) creates analogue and steps (iii)...(v) digital
batches.

II. Undeveloped analogue batches have to be developed. Analogue material
can be scanned for the next steps which could be CD production and
digital printing. As an alternative, the analogue batches are printed at an
analogue printer. The result of both printer types is a huge reel of exposed
photographic paper.

III. After the development of a photographic paper reel the final step is
cutting. Regarding paper cutting both cutter and digital cutter are
comparable. A DigiCutter is specialised for paper cutting without a film

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

86

cutter but possibly equipped with several paper cutters each able to cut
different paper widths. Finally items are packed and identified for delivery
to customers.

Login

In sorter
(manuell/automatic)

Splicer URS DigiSplicer Software Application for
Internet orders

orders (analogue/digital):
from dealer, post, internet

Develop

Scanner

DigiURS

DigiPrinter
Analogue

Printer

Cutter DigiCutter

Out sorter

Postage

analogue material

digital data

Develop

Universal Reorder
StationURS

other material
e.g. paper

CD Production

analogue machine

digital machine

I

II

III

Figure 6.3 General product flows of a photofinishing lab

Figures C.1 ... C.4 in appendix C show a selection of photofinishing machines.
 The product flow splicer/URS – development – analogue printer –
development – cutter was the common production flow before the digital era and
is typical serial manufacturing system. Nowadays there are several possible
material routes through production with the same end product but different
processing time, machine and operator requirements and costs i.e. a
photofinishing lab now appears more as a job scheduling system. It is possible to

6.4 Photofinishing Lab – An Optimisation Application

87

employ fewer operators than available workstations and produce on time if an
appropriate production structure and effective organization method are used to
manage production. In a typical company with staff of some 10 to some 100,
possibly more than one employee is necessary to organise the complete
production.

6.4 Photofinishing Lab – An Optimisation
Application

The validation is based on developments and problems in the photofinishing
industry and investigates a small part of a production process to demonstrate the
approach. The germ of the idea to this example comes from a project enquiry
made by the Kodak Photofinishing Department (closed down) to Syntax
Software [58] 6 years ago.

6.4.1 Problem Description
For this project the login and splicer departments are studied in detail with a
structure as depicted in figure 6.4.

Splicer

unsorted single orders

material flow

machine/
work place

Splicer Splicer. . .

In sorter
(automatic)

In sorter
(manual)

boxes with sorted
orders

in batches combined orders

Figure 6.4 Product flow of the considered example

System description
The source materials, unsorted, single orders, are sorted by product type
manually or automatically into boxes. These sorted orders are combined to
batch reels at splicers. An automatic sorter is handled by one or two
operators, whereas manual sorting is done by the number of available
operators without the need of a machine. A splicer is handled by one
operator. Operators can be moved between machines. The handling time
of the machines is listed in table 6.2.

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

88

Machine Order handling time (s)
automatic in sorter 0.5
manual in sorter 1.7 2 (equal distribution)
splicer 0.9 1 (equal distribution)

Table 6.2 Order handling times

Sorting and splicing of a defined amount of orders takes a production time
depending on type of machines, number of operators and organisation
strategies. The production time is estimated by simulation.
A specific production system causes costs. In this case study the costs
depends on the number of operators as shown in table 6.3.

of operators Costs
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Table 6.3 Production costs

Simulation model level of detail and fundamental components
Each workstation is taken as a black box with a defined processing time
and resource utilisation. Workstations need a specific number of operators
to manufacture and can be enabled or disabled. Further properties do not
exit.
Source material is modelled as a data structure with material type and
planed end product type.
A production or department manager is modelled as a control model. The
model can enable and disable workstations and organise material flow
depending on the availability of operators, unhandled source material and
queue lengths.
The number of operators is a model property used by the control model.
Operators are moved between departments and workstations to enable and
disable workstations. Operator movements does not cost any time.
To minimise complexity additional considerations e.g. setup time,
maintenance and failure are not modelled. Shift schedules and other
components in connection with operators are not modelled too.
Performance Measurement
For a performance measurement the sorting and splicing of a defined
number of orders are simulated. The simulation output of a single run

6.4 Photofinishing Lab – An Optimisation Application

89

delivers the production time and cost Y = {yproduction time, ycosts} of the
current model variant.
The simulation response function calculates the average over 50 runs.
They are passed to the objective function that is defined by the term:

F = F(Y) = 1 * r1 * production time + 2 * r2 * costs minimum

The factors 1 and 2 normalise the values of the variables, production time
and costs. The factors r1 and r2 define the relevance of the variables,

production time and costs. With the factors 1=1/max_production_time,
2=1/max_costs, r1=1 and r2=1 both variables are within the range

between 0 and 1 and have the same relevance. The maximal value of the
production time can be calculated with a minimal production system i.e.
one operator, manual sorting and one splicer. The maximal value of the
costs is defined by the upper bound of the parameter number of operators.
In this case study for both variables, production time and costs the same
relevance is chosen. Depending on the analysis objectives a different
relevance of production time and costs can be used.
The result of the funtion F is the performance of the investigated model
variant.
Analysis issues
The production time and consequently the cost for a specific number of
orders varies depending on the type and number of machines used, number
of operators and the strategy to organise operators i.e. the initial
distribution and succeeding movement of operators between machines and
departments. The challenge for modelling is to minimise the combination
of the production time of a given number of orders and the costs i.e.
employing a minimal number of operators.

6.4.2 Implementation Details
Figure 6.5 shows the SES, describing possible model structures and the model
parameter number of operators. Both the SES and the model parameter are the
open quantities of the optimisation problem. The model structure variants are
characterised by the use of: (i) automatic and/or manual sorting, (ii) one to eight
splicers and (iii) one of three different department organisation strategies to
share operators between machines and departments. Depending on selected
alternative nodes during the pruning process several structure related attached
variables will be initialised with different values. The SES defines 72 model
structure variants in all. In addition there is one model parameter, the
number of operators with a range of one to eight. The combination results in 576
model variants. Not all model variants define useful combinations. For example
a model with four operators and eight splicers delivers the same result as a
model with four operators and four splicers since in both variants only four
splicers at all can be used. To exclude the useless variants the root node

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

90

MODEL defines a structure condition that reduces the valid number of model
variants to 275.
The following list describes the nodes and basic components, respectively:

DEP_LOGIN
The login department model can have three different sorting
configurations. The first configuration applies only manual, the second
only automatic and the third combines both sorting types. The number of
available operators in this department is managed by the controllerspec
model. Decisions of the controllerspec model may be a function of the
queue_order length.
DEP_SPLICER
The splicer department model can consist of a different number of splicers.
The number of available operators in this department is managed by the
controllerspec model. Decisions of the controllerspec model may be a
function of the queue_box2 length.
controllerspec
The specialisation node controllerspec has three successor nodes each
implementing another staff organisation strategy:
o ctrl1:

The strategy starts with employing operators in the login department.
If more staff is available than needed they are employed in the
splicer department. After sorting is finished all staff is employed in
the splicer department.

o ctrl2:
The strategy starts with employing operators in the login department.
If more staff is available than needed they are employed in the
splicer department. If the queue_box length is larger or equal than
four all staff is employed in the splicer department. If the queue_box
length is smaller than four the initial staff arrangement is recovered.

o ctrl3:
The strategy starts with employing half of operators in the login
department and the other half in the splicer department. After sorting
is finished all staff is employed in the splicer department.

6.4 Photofinishing Lab – An Optimisation Application

91

controllerspec

ctrl1 ctrl2
DEP_LOGINdec1 DEP_LOGINdec3

queue_
box2

queue_
batchsplicermaspec

splicer

{#_of_splicers
={1,…,8}}

DEP_LOGINdec2

ctrl3

DEP_SPLICERdec

MODELdec

queue_
order

queue_
box1

sorter_manu

sorter_manu

queue_
order

queue_
box1

sorter_auto

queue_
order

queue_
box1

sorter_auto

MODEL

DEP_SPLICERCONTROLLERDEP_LOGIN

Model Parameter

#_of_operators={1,8} structure conditions:
{max(manu_login+auto_login,#_of_splicers)<=#_of_operators
AND
(manu_login*8+auto_login*2+#_of_splicers)>=#_of_operators}

{auto_login=1}

{manu_login=1}

{auto_login=1}

{manu_login=1}

SES

Figure 6.5 Model parameter and SES of the application

To solve this example, the search space has to be defined in terms of a structure
parameter set, a model parameter set and their corresponding domain sets. Using
the principle introduced in section 5.2 the structure parameter set and the
corresponding domain set are defined by:

XS = {xDEP_LOGIN, xcontrollerspec, xsplicermaspec}

DS = {dDEP_LOGIN, dcontrollerspec, dsplicermaspec} with

 dDEP_LOGIN = {1; 2; 3}

 dcontrollerspec = {1; 2; 3}

 dsplicermaspec = {1; 2; 3; 4; 5; 6; 7; 8}

The model parameter set and the corresponding domain set are defined by:

XP={x#_of_operators}

DP={d#_of_operators} with d#_of_operators = {1; 2; 3; 4; 5; 6; 7; 8}

Hence, the resulting search space is defined by:

X = XP XS

X = { xDEP_LOGIN, xcontrollerspec, xsplicermaspec, x#_of_operators}

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

92

Each model variant defines one point in the search space. With the principle
introduced in section 5.2 a PES can be derived and a corresponding model can
be generated. One point of the search space is X132 = {2; 2; 2; 2}. This means
that the aspect node DEP_LOGINdec2 and the specialisation ctrl2 are chosen, the
number range property value of the multiple aspect node splicermaspec is two and
the model parameter #_of_operators is also two. Figure 6.6 depicts the PES of
model variant 132. The generated EDSDEVS model is illustrated in figure 6.7.

ctrl2DEP_LOGIN

DEP_LOGINdec2

queue_
box2

queue_
batch

splicer1

DEP_SPLICER

MODELdec

splicer2queue_
order

queue_
box1

sorter_
auto

MODEL

DEP_SPLICERdec

Figure 6.6 PES of 132th variant

6.4 Photofinishing Lab – An Optimisation Application

93

DEP_SPLICER

DEP_LOGIN

ctrl2 EF

generator

transducer

MODEL

ROOT

unsorted
orders

boxes with sorted orders

batches

o
p
e
r
a
t
o
r
s

queue
status

queue status

orders

box

box

operators

box

batchbatch

r
e
a
d
y

r
e
a
d
y

r
e
a
d
y

sorter_
auto

queue_
box1

queue_
order

orders

splicer1 splicer2

queue_
batch

queue_
box2

Figure 6.7 Model structure of 132th variant

All model variants use intensively the dynamic structure characteristics of the
EDSDEVS formalism. The model of the department manager (model ctrl2 in
figure 6.7) activates and deactivates several atomic models (models sorter_auto,
splicer1 and splicer2 in figure 6.7) and creates and destroys couplings
respectively based on the department manager algorithm and the current model
state. Figure 6.8 shows a sequence diagram section of one simulation run.
Depending on queue lengths messages are generated and sent to the control
model that enables/disables models and creates/destroys couplings.

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

94

queue_order queue_box2 ctrl2 splicerxsorter_auto

Msg_full

Msg_empty

length>=4

length<4

Disable

Enable

Enable

Disable

Msg_empty Disable Enable
length==0

Figure 6.8 A sequence diagram section of one simulation run

Numerous commercial and non-commercial GA implementations exist. In this
research the commercial toolbox MATLAB® GA toolbox [59] released by The
MathWorksTM is used. The default MATLAB GA parameter settings were used,
except for a decreased population size of 15 and an adjusted stop criterion:

if the weighted average change in the fitness function value over x
generations (x=20 in 1st and x=5 in 2nd experiment) is less than 0.01, the
algorithm stops.

In the following all GA parameters and their values are listed. A description and
lists of possible values as well as the algorithm description can be found in [59].
Population:

Population type: Double Vector
Population size: 15
Creation function: Uniform
Initial population: []
Initial scores: []
Initial range: [0; 1]

Fitness scaling:
Scaling function: Rank

Selection:
Selection function:: Stochastic uniform

Reproduction:
Elite count: 2
Crossover fraction: 0.8

6.4 Photofinishing Lab – An Optimisation Application

95

Mutation:
Mutation function: Gaussian
Scale: 1.0
Shrink: 1.0

Crossover:
Crossover function: Scattered

Migration:
Direction: Forward
Fraction: 0.2
Interval: 20

Algorithm settings:
Initial penalty: 10
Penalty factor: 100

Hybrid function:
Hybrid function: None

Stopping criteria:
Generations: 100
Time limit: Inf
Fitness limit: -Inf
Stall generations: 20 (1st experiment)

 5 (2nd experiment)
Stall time limit: 20
Function tolerance: 0.01
Nonlinear constraint tolerance: 0.000001

Display to command window:
Level of display: Final

Vectorize:
Fitness function is vectorized: Off

The population size and the stop criteria are adapted for this case study. It is
possible that changes of other parameters would lead to better optimisation
results but further experiments are not undertaken in the scope of this research.
 Each simulation run estimates the production time of 200 orders with a
random production type mixture. The optimisation was repeated 50 times for
each stop criterion with different random number generator initialisations.
Listing 6.1 shows a Matlab code section of the optimisation initialising and
executing the GA.
% ses tree is initialised outside of this function
function example_optim_exp(ses)

% function uses two parameters, the ses object
(global variable) and a search room point
fitnessFunction = @exec_simu;

% Bounds

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

96

% e.g. LB = [1 1 1 1];
% e.g. UB = [3 3 8 8];
[LB UB] = ses.generateBounds();

% Number of Variables
nvars = size(LB,2);

% Start with default options
options = gaoptimset;

% Modify some parameters
options = gaoptimset(options,'PopulationSize' ,15);
options = gaoptimset(options,'StallGenLimit' ,20);
%1st exp.
% options = gaoptimset(options,'StallGenLimit'
,5);%2nd exp.
options = gaoptimset(options,'TolFun' ,0.01);

% Run GA
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =
ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,
nonlconFunction,options);

Listing 6.1 Matlab code section with GA initialisation and execution

6.4.3 Results
To validate the research framework the global optimum estimated through
simulation of all system variants is compared with the result of an optimisation
experiment. In both experiments the performance rating of a variant is
established by the same objective function using the following function
definition:
F = F(Y) = 1 * r1 * production time + 2 * r2 * costs

r1 = r2 = 1 – same relevance of both paramters
1 = 1/566 – maximal production time with a minimal production

system is 566 (1st line in table 6.4)
2 = 1/8 – maximal costs are 8

The simulation results of all 275 variants are shown in table 6.4. The columns
control strategy, login and # of splicers specifies the model structure and the
column # of operators specifies the model parameter as described in subsection
6.4.2. The production time values are the simulation result of the production of
200 orders. The costs correspond to the number of operators and the fitness is
calculated with the above objective function.

6.4 Photofinishing Lab – An Optimisation Application

97

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

1 1 1 1 566,0 1 1,1250
1 1 1 2 357,0 2 0,8807
1 1 1 3 209,0 3 0,7443
1 1 1 4 208,0 4 0,8675
1 1 1 5 209,0 5 0,9943
1 1 1 6 208,0 6 1,1175
1 1 1 7 208,0 7 1,2425
1 1 1 8 207,0 8 1,3657
1 1 2 2 288,0 2 0,7588
1 1 2 3 208,0 3 0,7425
1 1 2 4 208,0 4 0,8675
1 1 2 5 207,0 5 0,9907
1 1 2 6 208,0 6 1,1175
1 1 2 7 209,0 7 1,2443
1 1 2 8 207,0 8 1,3657
1 1 3 3 209,0 3 0,7443
1 1 3 4 199,0 4 0,8516
1 1 3 5 208,0 5 0,9925
1 1 3 6 208,0 6 1,1175
1 1 3 7 208,0 7 1,2425
1 1 3 8 209,0 8 1,3693
1 1 4 4 208,0 4 0,8675
1 1 4 5 207,0 5 0,9907
1 1 4 6 208,0 6 1,1175
1 1 4 7 208,0 7 1,2425
1 1 4 8 208,0 8 1,3675
1 1 5 5 208,0 5 0,9925
1 1 5 6 197,0 6 1,0981
1 1 5 7 208,0 7 1,2425
1 1 5 8 208,0 8 1,3675
1 1 6 6 209,0 6 1,1193
1 1 6 7 208,0 7 1,2425
1 1 6 8 208,0 8 1,3675
1 1 7 7 198,0 7 1,2248
1 1 7 8 200,0 8 1,3534
1 1 8 8 208,0 8 1,3675
1 2 1 1 279,5 1 0,6188
1 2 1 2 229,5 2 0,6555
1 2 1 3 179,8 3 0,6926

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

1 2 2 2 139,75 2 0,4969
1 2 2 3 119,5 3 0,5861
1 2 2 4 99,5 4 0,6758
1 2 3 3 99,8 3 0,5512
1 2 3 4 89,5 4 0,6581
1 2 3 5 69,3 5 0,7474
1 2 4 4 79,3 4 0,6400
1 2 4 5 69,5 5 0,7478
1 2 4 6 59,8 6 0,8556
1 2 5 5 59,3 5 0,7297
1 2 5 6 59,5 6 0,8551
1 2 5 7 59,5 7 0,9801
1 2 6 6 59,8 6 0,8556
1 2 6 7 59,3 7 0,9797
1 2 6 8 59,3 8 1,1047
1 2 7 7 59,5 7 0,9801
1 2 7 8 59,5 8 1,1051
1 2 8 8 59,5 8 1,1051
1 3 1 2 219,5 2 0,6378
1 3 1 3 204,0 3 0,7354
1 3 1 4 189,8 4 0,8352
1 3 1 5 149,5 5 0,8891
1 3 1 6 160,0 6 1,0327
1 3 1 7 159,5 7 1,1568
1 3 1 8 169,5 8 1,2995
1 3 2 2 149,3 2 0,5137
1 3 2 3 124,0 3 0,5941
1 3 2 4 119,5 4 0,7111
1 3 2 5 109,8 5 0,8189
1 3 2 6 89,8 6 0,9086
1 3 2 7 89,8 7 1,0336
1 3 2 8 79,8 8 1,1409
1 3 3 3 104,0 3 0,5587
1 3 3 4 99,8 4 0,6762
1 3 3 5 89,5 5 0,7831
1 3 3 6 69,8 6 0,8732
1 3 3 7 59,5 7 0,9801
1 3 3 8 59,8 8 1,1056
1 3 4 4 79,8 4 0,6409

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

98

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

1 3 4 5 79,8 5 0,7659
1 3 4 6 69,8 6 0,8732
1 3 4 7 59,8 7 0,9806
1 3 4 8 60,0 8 1,1060
1 3 5 5 69,5 5 0,7478
1 3 5 6 59,5 6 0,8551
1 3 5 7 59,5 7 0,9801
1 3 5 8 49,5 8 1,0875
1 3 6 6 59,8 6 0,8556
1 3 6 7 59,8 7 0,9806
1 3 6 8 50,0 8 1,0883
1 3 7 7 49,8 7 0,9629
1 3 7 8 49,8 8 1,0879
1 3 8 8 49,8 8 1,0879
2 1 1 1 404,0 1 0,8388
2 1 1 2 265,0 2 0,7182
2 1 1 3 309,0 3 0,9209
2 1 1 4 329,0 4 1,0813
2 1 1 5 330,0 5 1,2080
2 1 1 6 329,0 6 1,3313
2 1 1 7 328,0 7 1,4545
2 1 1 8 308,0 8 1,5442
2 1 2 2 213,0 2 0,6263
2 1 2 3 214,0 3 0,7531
2 1 2 4 219,0 4 0,8869
2 1 2 5 227,0 5 1,0261
2 1 2 6 228,0 6 1,1528
2 1 2 7 237,0 7 1,2937
2 1 2 8 237,0 8 1,4187
2 1 3 3 191,0 3 0,7125
2 1 3 4 208,0 4 0,8675
2 1 3 5 209,0 5 0,9943
2 1 3 6 205,0 6 1,1122
2 1 3 7 218,0 7 1,2602
2 1 3 8 208,0 8 1,3675
2 1 4 4 183,0 4 0,8233
2 1 4 5 197,0 5 0,9731
2 1 4 6 192,0 6 1,0892
2 1 4 7 210,0 7 1,2460

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

2 1 4 8 190,0 8 1,3357
2 1 5 5 187,0 5 0,9554
2 1 5 6 196,0 6 1,0963
2 1 5 7 190,0 7 1,2107
2 1 5 8 200,0 8 1,3534
2 1 6 6 191,0 6 1,0875
2 1 6 7 189,0 7 1,2089
2 1 6 8 202,0 8 1,3569
2 1 7 7 187,0 7 1,2054
2 1 7 8 183,0 8 1,3233
2 1 8 8 192,0 8 1,3392
2 2 1 1 271,0 1 0,6038
2 2 1 2 253,8 2 0,6983
2 2 1 3 215,8 3 0,7562
2 2 2 2 133,5 2 0,4859
2 2 2 3 161,0 3 0,6595
2 2 2 4 135,5 4 0,7394
2 2 3 3 104,3 3 0,5592
2 2 3 4 140,3 4 0,7478
2 2 3 5 105,0 5 0,8105
2 2 4 4 94,0 4 0,6661
2 2 4 5 104,8 5 0,8101
2 2 4 6 95,8 6 0,9192
2 2 5 5 83,8 5 0,7730
2 2 5 6 106,3 6 0,9377
2 2 5 7 85,3 7 1,0256
2 2 6 6 74,0 6 0,8807
2 2 6 7 90,8 7 1,0353
2 2 6 8 75,3 8 1,1330
2 2 7 7 74,3 7 1,0062
2 2 7 8 88,5 8 1,1564
2 2 8 8 74,8 8 1,1321
2 3 1 2 244,3 2 0,6815
2 3 1 3 202,3 3 0,7323
2 3 1 4 187,0 4 0,8304
2 3 1 5 184,3 5 0,9505
2 3 1 6 204,0 6 1,1104
2 3 1 7 194,8 7 1,2191
2 3 1 8 194,0 8 1,3428

6.4 Photofinishing Lab – An Optimisation Application

99

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

2 3 2 2 133,8 2 0,4863
2 3 2 3 145,0 3 0,6312
2 3 2 4 119,8 4 0,7116
2 3 2 5 115,8 5 0,8295
2 3 2 6 115,0 6 0,9532
2 3 2 7 115,0 7 1,0782
2 3 2 8 114,8 8 1,2027
2 3 3 3 87,3 3 0,5292
2 3 3 4 113,5 4 0,7005
2 3 3 5 99,3 5 0,8004
2 3 3 6 96,0 6 0,9196
2 3 3 7 94,0 7 1,0411
2 3 3 8 84,8 8 1,1497
2 3 4 4 72,5 4 0,6281
2 3 4 5 107,5 5 0,8149
2 3 4 6 78,5 6 0,8887
2 3 4 7 76,5 7 1,0102
2 3 4 8 75,0 8 1,1325
2 3 5 5 62,8 5 0,7359
2 3 5 6 93,8 6 0,9156
2 3 5 7 78,0 7 1,0128
2 3 5 8 65,3 8 1,1153
2 3 6 6 62,8 6 0,8609
2 3 6 7 80,5 7 1,0172
2 3 6 8 67,8 8 1,1197
2 3 7 7 53,8 7 0,9700
2 3 7 8 79,0 8 1,1396
3 1 1 1 566,0 1 1,1250
3 1 1 2 394,0 2 0,9461
3 1 1 3 209,0 3 0,7443
3 1 1 4 208,0 4 0,8675
3 1 1 5 209,0 5 0,9943
3 1 1 6 208,0 6 1,1175
3 1 1 7 208,0 7 1,2425
3 1 1 8 207,0 8 1,3657
3 1 2 2 406,0 2 0,9673
3 1 2 3 208,0 3 0,7425
3 1 2 4 208,0 4 0,8675
3 1 2 5 207,0 5 0,9907

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

3 1 2 6 208,0 6 1,1175
3 1 2 7 209,0 7 1,2443
3 1 2 8 207,0 8 1,3657
3 1 3 3 209,0 3 0,7443
3 1 3 4 199,0 4 0,8516
3 1 3 5 208,0 5 0,9925
3 1 3 6 208,0 6 1,1175
3 1 3 7 208,0 7 1,2425
3 1 3 8 209,0 8 1,3693
3 1 4 4 208,0 4 0,8675
3 1 4 5 207,0 5 0,9907
3 1 4 6 208,0 6 1,1175
3 1 4 7 208,0 7 1,2425
3 1 4 8 208,0 8 1,3675
3 1 5 5 208,0 5 0,9925
3 1 5 6 197,0 6 1,0981
3 1 5 7 208,0 7 1,2425
3 1 5 8 208,0 8 1,3675
3 1 6 6 209,0 6 1,1193
3 1 6 7 208,0 7 1,2425
3 1 6 8 208,0 8 1,3675
3 1 7 7 198,0 7 1,2248
3 1 7 8 200,0 8 1,3534
3 1 8 8 208,0 8 1,3675
3 2 1 1 279,5 1 0,6188
3 2 1 2 189,0 2 0,5839
3 2 1 3 179,8 3 0,6926
3 2 2 2 149,5 2 0,5141
3 2 2 3 119,5 3 0,5861
3 2 2 4 99,5 4 0,6758
3 2 3 3 99,8 3 0,5512
3 2 3 4 89,5 4 0,6581
3 2 3 5 89,3 5 0,7827
3 2 4 4 79,3 4 0,6400
3 2 4 5 79,5 5 0,7655
3 2 4 6 69,8 6 0,8732
3 2 5 5 69,3 5 0,7474
3 2 5 6 69,5 6 0,8728
3 2 5 7 69,5 7 0,9978

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

100

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

3 2 6 6 59,8 6 0,8556
3 2 6 7 59,3 7 0,9797
3 2 6 8 59,3 8 1,1047
3 2 7 7 59,5 7 0,9801
3 2 7 8 59,5 8 1,1051
3 2 8 8 59,5 8 1,1051
3 3 1 2 179,0 2 0,5663
3 3 1 3 189,5 3 0,7098
3 3 1 4 189,5 4 0,8348
3 3 1 5 164,0 5 0,9148
3 3 1 6 154,3 6 1,0225
3 3 1 7 159,5 7 1,1568
3 3 1 8 169,5 8 1,2995
3 3 2 2 148,5 2 0,5124
3 3 2 3 119,5 3 0,5861
3 3 2 4 99,3 4 0,6754
3 3 2 5 84,0 5 0,7734
3 3 2 6 84,0 6 0,8984
3 3 2 7 89,8 7 1,0336
3 3 2 8 79,8 8 1,1409
3 3 3 3 99,5 3 0,5508
3 3 3 4 79,5 4 0,6405
3 3 3 5 84,0 5 0,7734
3 3 3 6 74,0 6 0,8807
3 3 3 7 59,5 7 0,9801
3 3 3 8 59,8 8 1,1056
3 3 4 4 79,5 4 0,6405
3 3 4 5 74,0 5 0,7557
3 3 4 6 64,0 6 0,8631
3 3 4 7 59,8 7 0,9806
3 3 4 8 60,0 8 1,1060
3 3 5 5 64,0 5 0,7381
3 3 5 6 54,0 6 0,8454
3 3 5 7 59,5 7 0,9801
3 3 5 8 49,5 8 1,0875
3 3 6 6 54,0 6 0,8454
3 3 6 7 59,8 7 0,9806
3 3 6 8 50,0 8 1,0883
3 3 7 7 49,8 7 0,9629

ctrl
strat.

log.
typ

of
spl.

of
ops

prod.
time

costs fit.

3 3 7 8 49,8 8 1,0879
3 3 8 8 49,8 8 1,0879

Table 6.4 Simulation results of all
model structure and parameter

variants with resulting production
time, costs and fitness

6.4 Photofinishing Lab – An Optimisation Application

101

The fitness values of all 275 model variants are shown graphically in figure 6.9.

Figure 6.9 Fitness values of all variants with the optimum at X132

The limits of the objective function parameters i.e. model generation and
simulation results and objective function results are shown in table 6.5. The
solution X132 has the minimal fitness value 0.4859 i.e. this solution is the global
optimum. Figure 6.6 shows the PES and figure 6.7 the model structure of this
variant.

min max

production time 49,5 566

costs 1 8

fitness 0.4859 1,5442

Table 6.5 Limits of fitness function parameters and results

Beside the global minimum several local minima exist with a very close fitness
value, as can be seen in figure 6.9. Table 6.6 lists the global optimum (green
line) and all near optimal solutions with a maximal variation of 3% of the
maximal fitness value of 2. The solutions 2, 4 and 7 are identical to solutions 1,
3 and 6 due to the preferred assignment of the two available operators to the
automatic login i.e. the manual login is not used in variants 2, 4, 7. The solutions
1, 3 and 6 differ in the control strategy whereas the most flexible control strategy
2 delivers the optimal result. Solutions 3 and 5 are based on different system
configurations. With the used same weighting of production time and costs the
solution 3 is the optimal solution, with a higher weighting of production time
solution 5 would be a better variant.

optimum
0,4859

0

0,4

0,8

1,2

1,6

0 20 40 60 80 100 120 140 160 180 200 220 240 260

fit
ne

ss

model …

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

102

no. ctrl
strat.

login
typ

of
splicers

of
ops

prod.
time

costs fittness

1 1 2 2 2 139,8 2 0,4969
2 1 3 2 2 149,3 2 0,5137
3 2 2 2 2 133,5 2 0,4859
4 2 3 2 2 133,8 2 0,4863
5 2 3 3 3 87,3 3 0,5291
6 3 2 2 2 149,5 2 0,5141
7 3 3 2 2 148,5 2 0,5124

Table 6.6 Optimal and near optimal solutions

With other relevance factors r1 and r2 the optimal system configuration is
different. E.g. without the consideration of costs two global optima with a
production time of 49.5 exist (X86 and X267). These solutions produce the
specified number of orders in the shortest time.
 In each of the two GA optimisation experiments the optimisation was
repeated 50 times to estimate average values because of the stochastic nature of
GA. Each optimisation experiment uses one stop criterion as described in section
6.4.2.
 The results with average number of investigated individuals, optimum
and near optima found are shown in table 6.7. The results show that the number
of investigated individuals (194 and 102) is significant less than the number of
all variants (275). The probability to find the optimal or near optimal solution is
high (68% and 50%) but the finding is not guaranteed. Both, the number of
investigated individuals and the finding probability depend highly on chosen GA
parameters as can be seen when comparing the results of optimisation
experiment 1 and 2 in table 6.7.

Stop criterion 1
(uses weighted
average change
over 20
generation)

Stop criterion 2
(uses weighted
average change
over 5
generation)

Average number of
investigated individuals
to find an optimum

194 102

Optimum X132 47% 21%
Near optimal results with
max 3.2% error 21% 29%

Table 6.7 Results of 50 optimisation experiments

6.4 Photofinishing Lab – An Optimisation Application

103

An example of the development of individual fitness values, best and average
generation fitness during a single optimisation experiment is shown in figure
6.10. The diagram shows the fast convergence of the average fitness of the
generations. After two generations each generation contains the optimal solution
once in minimum and after the 7th generation the fitness value does not change
anymore.

Figure 6.10 Individual fitness, best and average fitness of generations of one GA
run

The results show that the optimisation approach developed in this research
delivers an optimal solution with a high probability and with significantly less
simulation runs in comparison to a complete simulation study of all model
variants. Consequently the new approach of a simulation based parameter and
structure optimisation is validated with a first real industrial example. There is a
potential to increase the probability and/or decrease the number of simulation
runs to estimate the optimal solution through adaptations of the GA parameters
or with the use of other search methods.
 For a potential application of the introduced approach it is necessary to
extend the model to a complete Photofinishing Laboratory. Although the model
of the case study is relative small the computing time of an optimisation
experiment is on average between some 10 minutes and a few hours. However,
the case study is carried out with a prototypical implementation of the simulation
method and ideal parallelisation possibilities of GAs are not used. Hence, it can
be assumed that there is a huge potential of runtime optimisation.
 The introduced case study stands for many flexible production
systems. It can be assumed that the developed framework can be applied to
other, comparable systems with the ability of modular, hierarchical modelling.

0

0,4

0,8

1,2

1,6

0 15 30 45 60 75 90 105 120

fit
ne

ss

of individual

best fitness of
generation

Chapter 6 Parameter and Structure Optimisation of Manufacturing Systems

104

105

Chapter 7
Conclusions and further Work

7.1 Conclusions
Simulation in a manufacturing context focuses on modelling the behaviour and
the structure of manufacturing organisations, processes and systems. Many
manufacturing systems have the potential to be optimised and to exploit this
potential simulation based optimisation techniques are an important step
forward. The overall goal of applying of these techniques is the identification of
improved user selected system parameters. This research deals with a
fundamental optimisation problem in discrete event simulation. Optimisation is
well established but restricted to the optimisation of system parameters. Model
structure is considered to be fixed, defined during model development. In
simulation based optimisation using automated model parameter changes and
manual model structure adaptations the global optimal system configuration
cannot be guaranteed. With the growing use of flexible manufacturing systems
and the increasing demand for product customisation the number of
manufacturing system variants increases consequently the demand for structure
optimisation is becoming increasingly more important.
 This research has developed a simulation based optimisation method
to solve the limitations of the established techniques. A crucial difference to
established simulation based parameter optimisation is the application of a
method based on meta-modelling to manage a set of models. The new
optimisation method can simultaneously control both model parameter changes
and model structure selection. The result of a successful optimisation experiment
using this approach is a parameter and structure optimised model. The key
research aim to develop an approach to replace conventional manual structural
changes i.e. to develop a combined, simulation based parameter and structure
optimisation has been achieved.
 An essential prerequisite of the new approach is a modular,
hierarchical modelling and simulation method with a strict separation of model
and simulator. This research determined the DEVS formalism as a suitable
method. DEVS as a two-part definition consisting of a formal model
specification and a simulation algorithm to model execution was introduced in
the 70s and since then has been continuously developed. Many DEVS
extensions have one joint attribute: they are based on the original DEVS

Chapter 7 Conclusions and further Work

106

formalism and have not taken advantage of the potential in combining
extensions. For this reason the research has been followed the idea of a merging
formalism to combine the advantages of different approaches. The new
EDSDEVS formalism developed from this research is a fusion of Classic DEVS
with selected extensions. It is an as generic as possible, powerful modelling and
simulation formalism based on DEVS. A second key research aim to develop a
modelling and simulation method based on DEVS and DEVS extensions to
create a merging formalism has been achieved.
 A further prerequisite for simulation based optimisation is an
appropriate model management method. This research determined the SES/MB
approach as a suitable method. Originally the SES/MB framework was
developed to assist an analyst during a manual model variant selection. Changes
to the SES/MB approach and algorithms to embed it into the simulation based
optimisation have been developed within the research.
 The final prerequisite is a suitable search method to find the optimal
model configuration in the general multidimensional search space. Many search
algorithms exist. One category widely used in both research and commercial
applications are genetic and evolutionary algorithms. For a practical
investigation of the fundamental simulation based parameter and structure
optimisation framework a commercial GA is used.
 Validation of the work has been achieved using an industrial problem
where the ability to control manufacturing system structure is an important
optimisation factor. The photo-processing industry relies on management of the
process flow to achieve profitability and this application demonstrates both how
the new framework functions and the validity of the GA used in a real world
situation. In two optimisation experiments it has been shown that the results are
significantly dependent on the GA parameters. However in both experiments the
probability to find an optimal or near-optimal model configuration is equal to or
greater than 50%. An increased probability of an optimal solution is preferable
however this will be the subject of further work.
 The framework is implemented as MATLAB toolboxes and uses a
commercial GA toolbox respectively. In the prototypical implementation of the
framework and the validation of the work it has been shown that the use of
MATLAB has both advantages and disadvantages. It is a powerful and
productive environment to solve scientific and engineering problems and to
implement prototypical applications. A disadvantage is the interpretative
operation method. Particularly in simulation based optimisation where
numerous, time consuming simulation runs lead to long execution times.
However, there are parallel computing MATLAB toolboxes which support
several aspects of parallelisation. The algorithmic summary shown using a GA is
a promising approach to improve execution time by parallelisation.
 During the research project the important steps have been published in
a peer-reviewed journal, at international conferences and as a book chapter.
Appendix C presents the publications.

7.2 Suggestions for further work

107

7.2 Suggestions for further work
This research has established an approach to simulation based parameter and
structure optimisation. Whilst this thesis presents the ideas, principles and a first
example, it also opens up several future research directions. Future research
directions can be divided into two areas (i) investigations of simulation based
optimisation framework (ii) EDSDEVS formalism.
i. The introduced approach defines the model structure variants at the meta-

model level as a static structure. Otherwise it uses a dynamic structure
modelling and simulation method to execute the selected model
configuration. The dynamic changes of the model structure during the
simulation time are not considered in this approach i.e. the optimisation
regards only the initial model structure as a static structure. It seems
feasible to add dynamic structure changes during the model lifetime as an
additional criterion to the optimisation. An example is the length of stay of
a sub model. This approach considers the initial existence of the sub model
but its lifetime may play an important role in the search for an optimal
model configuration.
 With the SES XML definition a platform and implementation
independent meta-modelling definition already exists. The manual
modelling based on direct writing a XML file is not straightforward.
General XML editors can assist the modelling but cannot replace a
dedicated SES XML editor. A graphical SES/MB modelling application is
a reasonable extension.
 As already shown in section 6.4.3 the optimisation results and the
number of optimisation cycles depends on the GA parameters. There is
much literature about GA methods and parameterisation. The experience
gained in this research has shown that further investigations in this
direction are necessary. Hence, the optimisation of GA parameters is a
further research topic.
 There are also other promising search methods. Another nature
analogue method is the Particle Swarm Optimisation (PSO) approach
based on swarm intelligence of social groups. This group of algorithms is
relative new, introduced around 10 years ago. The number of publications
and applications is growing fast. The literature review has shown evidence
that this algorithm group can solve problems like the simulation based
optimisation as well as GAs.

ii. The new EDSDEVS formalism developed from this research is a fusion of
Classic DEVS with several extensions. This part of the research is a step to
a generic modelling and simulation formalism based on DEVS. Further
extensions are desirable and essential e.g. extensions for parallel
computing and graphical modelling. There are also approaches for hybrid
DEVS extensions i.e. the support of continuous state changes. These are
proposals for further research. The last proposal, the hybrid DEVS, is
already a current research project topic of the Research Group CEA.

Chapter 7 Conclusions and further Work

108

The importance and topicality of the idea behind this research can be seen in two
brand new research proposals, the first currently in preparation and the second
announced at 30.03.2009:
 A research proposal at the Deutsche Forschungsgemeinschaft (DFG
German Research Foundation) for further developments of the simulation based
parameter and structure optimisation approach and its application to the
optimisation of energy efficiency of process chains and manufacturing structures
is currently in preparation. The optimisation of energy efficiency of process
chains i.e. among other things the structure optimisation of process chains is a
planned priority programme of DFG.
 In a call for proposal of the Federal Ministry of Education and
Research of Germany a sponsorship is announced with the topic ‘safeguarding
competitiveness by versatile manufacturing systems’. One matter of the
proposed research is covered by the optimisation technique introduced in this
thesis.

Appendix A. References

109

Appendix A. References
[1] Amnn W. (1994) Eine Simulationsumgebung für Planung und Betrieb

von Produktionssystemen. Springer.
[2] April J., Marco Better M., Glover F., Kelly J., Laguna M. (2006)

Enhancing Business Process Management with Simulaiton
Optimization. Proceedings of the 2006 Winter Simulation Conference.

[3] April J., Kelly J., Glover F., Laguna M. (2003) Practical Introduction
to Simulation Optimization. Proceedings of the 2003 Winter
Simulation Conference.

[4] April J., Glover F., Kelly J., and Laguna M. (2001)
Simulation/Optimization using “Real-World” Applications
Proceedings of the 2001 Winter Simulation Conference, pages 134-
138.

[5] Askin R.G., Standridge C.R. (1993) Modeling an Analysis of
Manufacturing Systems. John Wiley & Sons.

[6] Azadivar F. (1999) Simulation Optimization Methodologies.
Proceedings of the 1999 Winter Simulation Conference, pages 93-100.

[7] Banks J., Carson II J.S., Nelson B.L., Nicol D.M. (2003) Discrete-
Event System Simulation. Prentice Hall.

[8] Barnett M. (2003) Modeling & Simulation in Business Process
Management. BP Trends Newsletter, White Papers & Technical
Briefs, 1-10. http://www.bptrends.com [accessed November 20, 2008].

[9] Barros F.J. (1996) Modeling and Simulation of Dynamic Structure
Discrete Event Systems: A General Systems Theory Approach. PhD
thesis. University of Coimbra.

[10] Barros F.J. (1996) The dynamic structure discrete event system
specification formalism. Transactions of The Society for Modeling and
Simulation International, Mar 1996, vol. 13.

[11] Breitenecker F. (1992) Models, methods and experiments – A new
structure for simulation systems. Mathematics and Computer in
Simulation 34, 1-30, Amsterdam: North Holland.

[12] Chi S.D. (1997) Model-based Reasoning Methodology Using the
Symbolic DEVS Simulation. Transaction of SCS 14(3) p.141-152.

[13] Chow A.C., Zeigler B.P. (1994) Parallel DEVS: A Parallel,
Hierarchical, Modular Modeling Formalism. Proceedings of the 1994
Winter Simulation Conference.

Appendix A. References

110

[14] FU M.C., Glover F.W. (2005) Simulation Optimization: A Review,
New Developments, and Applications. Proceedings of the 2005 Winter
Simulation Conference.

[15] Fu M. C., Andradóttir S., Carson J. S., Glover F., Harrell C. R., Yu-
Chi Ho, Kelly J. P., Robinson S. M. (2000) Integrating Optimization
and Simulation: Research and Practise. Proceedings of the 2000
Winter Simulation Conference.

[16] Hagendorf O., Pawletta Th. (2008) An Approach for Simulation Based
Structure Optimisation of Discrete Event Systems. Proceedings of the
2008 Spring Simulation Conference.

[17] Hagendorf O., Pawletta T., Pawletta S., Colquhoun G. (2006) An
approach for modelling and simulation of variable structure
manufacturing systems. ICMR 2006 Liverpool/UK.

[18] Hagendorf O., Colquhoun G., Pawletta T., Pawletta S. (2005) A DEVS
- Approach to ARGESIM Comparison C16 ‘Restaurant Business
Dynamics’ using MatlabDEVS. Simulation News Europe, no.44/45,
(December).

[19] Heilala J., Montonen J., Salmela A., Järvenpää P. (2007) Modeling
and Simulation for Customer Driven Manufacturing System Design
and Operations Planning. Proceedings of the 2007 Winter Simulation
Conference.

[20] Holland J.H. (1975) Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and
Artificial Intelligence. The University of Michigan Press.

[21] Ireson W.G. (1963) Factory Planning and Plant Layout. Prentice-Hall
Englewood Cliffs, NJ.

[22] Kalasky D.R. (1996) Manufacturing Systems: Modeling and
Simulation in Systems Modeling and Comupter Simulation. Ed. Kheir
N.A. Marcel Dekker, Inc.

[23] Kremp M., Pawletta T., Colquhoun G. (2004) Optimisation of
manufacturing control strategies using online simulation. In
Proceedings of the 5th EUROSIM Congress on Modeling and
Simulation, eds. G.Attiya & Y.Hamam (6 pages). Paris. SCS-European
Publishing House, Ghent (Belgium).

[24] Kremp M., Pawletta T., Pawletta S., Colquhoun G. (2004) Simulation
based control of a flexible manufacturing system, published in
German. Proc. of 11th symposium of maritime electrical engineering,
electronics und information technology. (workshop: control and
feedback control systems, pp. 15-18). University of Rostock.

[25] Law A.M., Kelton W.D. (2000) Simulation Modeling and Analysis.
McGraw-Hill 2000 3rd Edition.

[26] Law A. M., McComas M. G. (1999) Simulation of Manufacturing
Systems. Proceedings of the 1999 Winter Simulation Conference.

[27] Lucie-Smith E. (1983) A History of Industrial Design. Phiadon Press
Limited Oxford.

Appendix A. References

111

[28] Maletzki G., Pawletta T., Pawletta S., Dünow P., Lampe B. (2008)
Simulation Model based Rapid Prototyping of Complex Robot Control
Applications. (German) In: atp-Automatisierungstechnische Praxis,
Oldenbourg Verlag, München, 50(2008)8, pages 54-60.

[29] Milberg J. (1992) Wettbewerbsfaktor Zeit in Produktionsunternehmen.
(German) In: Tagungsband Münchner Kolloquium 91, Springer, pages
13-31.

[30] Mittal S. (2007) DEVS Unified Process for Integrated Development
and Testing of Service Oriented Architectures. PhD Thesis, University
of Arizona.

[31] Mittal S. (2007) W3C XML schema Finite Deterministic DEVS
Models. http://www.saurabh-mittal.com/fddevs/ [accessed November
21, 2008].

[32] Olafsson S., Kim J. (2002) Simulation Optimization. Proceedings of
the 2002 Winter Simulation Conference.

[33] Ören T. I. (1989) Simulation Model: Taxonomy. in: Encyclopaedia of
Systems and Control, (Ed.) Singh, M., Pergamon Press.

[34] Pawletta T., Deatcu C., Pawletta S., Hagendorf O., Colquhoun G.
(2006) DEVS-Based Modeling and Simulation in Scientific and
Technical Computing Environments. Proceedings of the 2006 Spring
Simulation Conference, Huntsville/Al USA.

[35] Pawletta T., Pawletta S. (2004) A DEVS-based simulation approach
for structure variable hybrid systems using high accuracy integration
methods. Proceedings of CSM2004 - Conference on Conceptual
Modeling and Simulation, Part of the Mediterranean Modelling
Multiconference (I3M), Genova, Italy, October 28-31 2004.

[36] Pawletta T., Lampe B., Pawletta S., Drewelow, W. (2002) A DEVS-
Based Approach for Modeling and Simulation of Hybrid Variable
Structure Systems. Modeling, Anlysis, and Design of Hybrid Systems.
Engel S., Frehse G., Schnieder E. (Ed.), Lecture Notes in Control and
Information Sciences 279, Springer, pages 107-129.

[37] Pawletta T., Pawletta S., Drewelow W. (1998) Integration of discrete
event simulation methods in interactive scientific and technical
computing environments. In R. Zobel, editor, Proceedings of the 12th

European Simulation Multiconference, pages 251-255. SCS European
Publishing House, 1998. Manchester, June, 16-19.

[38] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) Dynamic
structure simulation based on discrete events. In ASIM-Mitteilungen
Nr. 53, pages 7-11, 9. Workshop Simulation and AI, Ulm, Germany,
Februar 1996.

[39] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) Modeling
and Simulation of Variable Structure Systems. Proc. of the 3rd
International Symposium on Methods and Models in Automation and
Robotics - MMAR'96 (IEEE), Miedzyzdroje, Poland, Ed.: Banka, S.;
Domek, S. and Emirsajilow, Z.; 1996, Vol. 3, pages 1219-1223.

Appendix A. References

112

[40] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) A new
Approach for Simulation of Variable Structure Systems. Proceedings
of the 41th Conference KoREMA (IEEE), Ed.: Vukic, Z.; Opatia,
Croatia, September 1996 September 1996, Vol. 4, pages 83-87.

[41] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) An object
oriented Framework for modeling and simulation of variable structure
systems. Proceedings of the SCS Summer Computer Simulation Conf.,
Portland, Oregon, July 1996, pages 8-13.

[42] Pawletta T., Pawletta S. (1995) Design of a Simulator for Structure
Variable Systems. Proceedings of the 5th International IMACS-
Symposium on System Analysis and Simulation, Berlin, SAMS 1995
Vol.18-19, Ed. Sydow, A., Gordon & Breach, 1995, pages 471-474.

[43] Pawletta T., Pawletta S. (1995) Object-Oriented Simulation of
Continuous Systems with Discrete Changes in Structure. Proceedings
of the 9th European Simulation Multiconference, Prag, Ed.: Snorek,
M.; Sujansky, A. and Verbraeck, A., SCS International, 1995, pages
627-630.

[44] Pawletta T., Pawletta S. (1995) Simulation of modular hierarchical
systems with discrete structure changes. Proceedings of the 40th

Anniversary Conference KoREMA (IEEE), Zagreb, Ed. Vukic, Z.;
April 1995, Vol. 1, pages 356 - 359.

[45] Pawletta T., Pawletta S., Dimitrov E. (1994) Modelling and Simulation
of Structure Variable Systems. (German) Advances in Simulation
(Fortschritte in der Simulationstechnik), Ed.: Kampe, G. and Zeitz, M.,
Vieweg Verlag, Braunschweig, 1994, pages 59-64.

[46] Pawletta T. (1992) Comparison 2 - Modelling of a flexible
manufacturing system, System EXTEND. Simulation News Europe,
(1992)6, pages 32-33.

[47] Pierreval H., Caux C., Paris J. L. , Viguier F. (2003) Evolutionary
approaches to the design and organization of manufacturing systems.
Computers and Industrial Engineering Volume 44, Issue 3 (March
2003).

[48] Praehofer, H. (1992) CAST Methods in Modelling. Pichler, F.,
Schwärtzel, H. Springer Pub.

[49] Ray J. P., Tomas S. C. (1998) Simulation optimisation using a genetic
algorithm. Simulation Practice and Theory 6 (1998), pages 601–611.

[50] Rechenberg I. (1972) Evolutionsstrategie. (German) Friedrich
Frommann Verlag.

 [51] Rohrer M.W. (1998) Simulation of Manufacturing and Material
Handling Systems. In: Handbook of Simulation ed. Banks J. John
Wiley & Sons, Inc.

[52] Rozenblit J.W., Zeigler B.P. (1985) Concepts for Knowledg--Based
System Design Environments. Proceedings of the 1985 Winter
Simulation Conference.

Appendix A. References

113

[53] Sarjoughian H., Huang D. (2005) A multi-formalism modeling
composition framework: Agent and discrete-event models. Paper
presented at the 9th IEEE International Symposium on Distributed
Simulation and Real Time Applications, Montreal, Quebec, Canada.

[54] Schönberg E., Heinzmann F., Feddersen S. (1994) Genetic Algorithms
and Evolutionary Strategies. (German) Addison-Wesley.

[55] Swisher J.R. (2003) Discrete-Event Simulation Optimization using
Ranking, Selection, and Multiple Comparison Procedures: A Survey.
ACM Transaction 04.2003.

[56] Swisher, J.R. Hyden, P.D. (2000) A Survey of Simulation Optimization
Techniques and Procedures. Proceedings of the 2000 Winter
Simulation Conference.

[57] The ACM Digital Library (2009) http://portal.acm.org.
[58] The MathworksTM (2008) MATLABTM.

http://www.mathworks.com/products/matlab/.
[59] The MathworksTM (2008) Genetic Algorithm and Direct Search

ToolboxTM. http://www.mathworks.com/products/gads/.
[60] Uhrmacher A.M., Arnold R. (1994) Distributing and maintaining

knowledge: Agents in variable structure environment. 5th Annual
Conference on AI, Simulation and Planning of High Autonomy
Systems, pages 178-194.

[61] Unified Modeling Language http://www.uml.org/ (2009).
[62] Wainer, G. A. (2005) DEVS Tools. DEVSStandardization Group,

http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm.
[63] Wainer G., Giambiasi N. (2001) Application of the Cell-DEVS

paradigm for cell spaces modelling and simulation. SIMULATION
Transactions of The Society for Modeling and Simulation
International, Jan 2001; vol. 76.

[64] World Wide Web Consortium http://www.w3c.org/XML/ (2009).
[65] Zeigler B. P., Hammonds P. E. (2007) Modeling And Simulation-

Based Data Engeneering. Elsevier Academic Press.
[66] Zeigler B.P., Praehofer H., Kim T.G. (2000) Theory of Modelling and

Simulation. 3rd edition, Academic Press.
[67] Zeigler B.P. (1984) Multifacetted Modelling and Discrete Event

Simulation. Academic Press.
[68] Zeigler B.P. (1976) Theory of Modelling and Simulation. 1st edition,

John Wiley & Sons.
[69] Zhang G., Zeigler B.P. (1989) The system Entity Structure: Knowledge

Representation for Simulation Modeling and Design. In: Artificial
Intelligence, Simulation, and Modeling. Widman L.E., Loparo K.A.,
Nielsen N.R. (Ed.), John Wiley & Sons Inc, pages 47-73.

Appendix A. References

114

Appendix B. Coding Examples

115

Appendix B. Coding Examples
atomic_model

variables:
 tlast time of last event
 s internal state
 function init()
 // initialise state variable set S and tnext with the time of the first
internal event
 end function
 function ext(e, x)
 t = tlast + e
 // do something with x.value
 end function
 function int(t)
 SK SK+1 // calculate next internal state SK+1 from current
internal state SK
 end function
 function t = ta()
 t = . . . // calculate next internal state event
 end function
 function y = ()
 y.value = . . . // set value of y-message
 end function
end atomic_model

Listing B.1 Pseudo code skeleton of an atomic Classic DEVS model

Appendix B. Coding Examples

116

coupled_model
 function Md* = select(imminent)
 Md* = . . . // choose one of the sub component from component
list imminent
 end function
end coupled_model

Listing B.2 Pseudo code skeleton of a coupled Classic DEVS model

Appendix B. Coding Examples

117

variables:
 t simulation clock
 tend simulation end time
when receive start-msg(tend)
 send i-msg() to sub-ordinate DEVS coordinator
 t := tnext of sub-ordinate coordinator
 while t < tend
 send *-msg(t) to sub-ordinate DEVS coordinator
 t := tnext of sub-ordinate coordinator

Listing B.3 Pseudo code of a Classic DEVS root coordinator

Appendix B. Coding Examples

118

variables:
 tlast time of last event
 tnext time of next internal state event
 am associated atomic model
when receive i-msg()
 am.init()
 tlast := 0
 tnext := am.ta()
when receive *-msg(t) at time t
 if t <> tnext
 error: bad synchronisation
 y := am. ()
 send y in y-message to parent coordinator

 am. int(t)
 tlast := t
 tnext := tlast + am.ta()
when receive x-msg(t, x) at time t with value x
 if not (tlast t tnext)
 error: bad synchronisation
 am. ext(t-tlast, x)
 tlast := t
 tnext := tlast + am.ta()

Listing B.4 Pseudo code of a Classic DEVS simulator

Appendix B. Coding Examples

119

variables:
 tlast time of last event
 tnext time of next internal state event
 CM associated coupled model
when receive i-msg()
 foreach sub component Md CM.M

 send i-msg() to Md
 tlast := 0
 // determine time of next scheduled internal state event of all sub
components
 tnext := min({ Md.tnext | Md CM.M })
when receive *-msg(t) at time t
 if t <> tnext
 error: bad synchronisation
 // find all sub components with a true condition tnext=t
 imminent := { Md | Md CM.M Md. tnext= t }
 // call select function to determin one sub component to send the *-msg
 Md* := select(imminent)
 send *-msg(t) to Md*
 tlast := t
 // determine time of next scheduled internal state event of all sub
components
 tnext := min({ Md.tnext | Md CM.M })
when receive x-msg(t, x) at time t with value x
 if not (tlast t tnext)
 error: bad synchronisation
 // get all sub components Md* with an appropriate EIC
 receivers := subcomponents {Md | Md CM.M} with {coupling |
coupling CM.EIC}
 // forwards the x-msg to all appropriate sub components
 foreach sub component Md* in receivers
 send x-msg(t, x) to Md*
 tlast := t
 // determine time of next scheduled internal state event of all sub
components
 tnext := min({Md.tnext | Md CM.M})
when receive y-msg(t, y) at time t with value y
 // forwards y-msg to super-ordinate model if an appropriate EOC
exists
 if exist coupling in CM.EOC
 send y-msg(t, y) to parent model
 // get all sub components Md* with an appropriate IC

Appendix B. Coding Examples

120

 receivers := subcomponents {Md |M d CM.M} with {coupling |
coupling CM.IC}
 // creates from y-msg and sends it as an x-msg to all appropriate sub
components
 foreach sub component Md* in receivers
 send x-msg(t, y x) to Md*

Listing B.5 Pseudo code of a Classic DEVS coordinator

Appendix B. Coding Examples

121

atomic_model
variables:

 tlast time of last event
 s internal state
 function ext(e, x)
 t = tlast + e
 switch x.port
 case inputport0
 // do something with x.value received at input port
inputport0

. . .
 case inputportn
 // do something with x.value received at input port
inputportn

. . .
 end switch
 end function
 function y = ()
 y.port = . . . // set output port of y-message
 y.value = . . . // set value of y-message
 end function

Listing B.6 Pseudo code skeleton of an atomic Classic DEVS with Ports model

Appendix B. Coding Examples

122

when receive *-msg(t) at time t
 if t <> tnext
 error: bad synchronisation
 y := am. ()
 send value y.value in y-message to parent coordinator at port y.port

am. int(t)
 tlast := t
 tnext := tlast + am.ta()
when receive x-msg(t, x, p) at time t with value x at port p
 if not (tlast t tnext)
 error: bad synchronisation
 am. ext(t-tlast, x, p)
 tlast := t
 tnext := tlast + am.ta()

Listing B.7 Pseudo code of a Classic DEVS with Ports simulator

Appendix B. Coding Examples

123

when receive x-msg(t, x, p) at time t with value x at port p
 if not (tlast t tnext)
 error: bad synchronisation
 // get all sub components Md* with an appropriate EIC
 receivers := subcomponents {Md | Md CM.M} with {coupling |
coupling CM.EIC}
 // forwards the x-msg to all appropriate sub components
 foreach sub component Md* in receivers
 send x-msg(t, x, Md*.p) to Md* at port p
 tlast := t
 // determine time of next scheduled internal state event of all sub
components
 tnext := min({Md.tnext | Md CM.M})
when receive y-msg(t, y, p) at time t with value y at port p
 // forwards y-msg to super-ordinate model if an appropriate EOC
exists
 if exit coupling in CM.EOC
 // coupling is a structure with the elements {sub component,
psource, pdestination}
 foreach coupling in CM.EOC
 send y-msg(t, y, coupling.pdestination) to parent model
 // get all sub components Md* with an appropriate IC
 receivers := subcomponents {Md |M d CM.M} with {coupling |
coupling CM.IC}
 // creates x-msg from y-msg and sends it as an x-msg to all

appropriate sub components
 foreach sub component Md* in receivers
 foreach coupling in CM.IC with coupling between y.source and
Md*.p
 send x-msg(t, y x, Md*.p) to Md* at port p

Listing B.8 Pseudo code of a Classic DEVS with Ports coordinator

Appendix B. Coding Examples

124

atomic_model
variables:

 tlast time of last event
 s internal state
 function init()
 // initialise state variable set S and tnext with the time of the first

internal state event
 end function
 function con(t, x_bag)
 // default implementation of a confluent function matches

Classic DEVS functionality
int(t)
ext(0, x_bag)

 end function
 function ext(e, x_bag)
 t = tlast + e
 foreach x in x_bag
 // do something with x.value
 end function
 function int(t)
 SK SK+1 // calculate next internal state SK+1 from current
internal state SK
 end function
 function t = ta()
 t = . . . // calculate next internal state event
 end function
 function y_bag = ()
 y.value = . . . // set value of y-message
 y_bag += y
 end function
end atomic_model

Listing B.9 Pseudo code skeleton of an atomic PDEVS model

Appendix B. Coding Examples

125

when receive *-msg(t) at time t
 if t <> tnext
 error: bad synchronisation
 y_bag := am. ()
 send y_bag in y-message to parent coordinator
when receive x-msg(t, x_bag) at time t with x_bag
 if not (tlast t tnext)
 error: bad synchronisation
 if t=tnext and x_bag is not empty
 // concurrent external and internal event
 am. con(t, x_bag)
 else if t=tnext and x_bag is empty
 // internal event
 am. int(t)
 else
 // external event
 am. ext(t-tlast, x_bag)
 end if
 tlast := t
 tnext := tlast + am.ta()

Listing B.10 Pseudo code of a PDEVS simulator

Appendix B. Coding Examples

126

atomic_model
variables:

 tlast time of last event
 s internal state
 function init(t)
 // initialise state variable set S and tnext with the time of the first

internal state event
 // t=0 initialisation at simulation start
 // t>0 initialisation after structure change
 end function
 function con(t, x_bag)
 // default implementation of a confluent function matches Classic

DEVS functionality
int(t)
ext(0, x_bag)

 end function
 function ext(e, x_bag)
 t = tlast + e
 foreach x in x_bag
 // do something with x.value received at x.port
 switch x.port
 case inputport0
 // do something with x.value received at
input port inputport0
 . . .
 case inputportn
 // do something with x.value received at
input port inputportn
 . . .
 end switch
 end function
 function int(t)
 su su+1 // calculate next internal state su+1 from current
internal state su
 end function
 function t = ta()
 t = . . . // calculate next internal state event
 end function
 function y_bag = ()
 y.value = . . . // set value of y-message
 y.port = . . . // set output port of y-message
 y_bag += y
 end function

Appendix B. Coding Examples

127

end atomic_model

Listing B.11 Pseudo code skeleton of an atomic EDSDEVS model

Appendix B. Coding Examples

128

coupled_model
variables:

 tlast time of last event
 s internal state
 function init(t)
 // initialise structure and state variable set S and tnext with the

time of the first internal
 // state event
 // t=0 initialisation at simulation start
 // t>0 initialisation after structure change
 end function
 function con(t, x_bag)
 // default implementation similar to an atomic model
 functionality

int(t)
x&s(0, x_bag)

 end function
 function x&s(e, x_bag)
 t = tlast + e
 foreach x in x_bag
 // do something with x.value received at x.port
 switch x.port
 case inputport0
 // do something with x.value received at
input port inputport0
 . . .
 case inputportn
 // do something with x.value received at
input port inputportn
 . . .
 end switch
 end function
 function int(t)
 su su+1 // calculate next internal state su+1 from current
internal state su
 end function
 function t = ta()
 t = . . . // calculate next internal state event
 end function
 function y_bag = (t)
 y.value = . . . // set value of y-message
 y.port = . . . // set output port of y-message
 y_bag += y

Appendix B. Coding Examples

129

 end function
end coupled_model

Listing B.12 Pseudo code skeleton of a coupled EDSDEVS model

Appendix B. Coding Examples

130

variables:
 tlast time of last event
 tnext time of next internal state event
 am associated atomic model
when receive i-msg(t)at time t
// t=0 initialisation at simulation start
// t>0 initialisation after structure change
 am.init(t)
 tlast := t
 tnext := am.ta()
when receive *-msg(t) at time t
 if t <> tnext
 error: bad synchronisation
 y_bag := am. ()
 send y_bag in a y-message to parent coordinator
when receive x-msg(t, x_bag) at time t with value x_bag containing x.value und
x.port pairs
 if not (tlast t tnext)
 error: bad synchronisation
 if t=tnext and x_bag is not empty
 // concurrent external and internal event
 am. con(t, x_bag)
 else if t=tnext and x_bag is empty
 // internal event
 am. int(t)
 else
 // external event
 am. ext(t-tlast, x_bag)
 end if
 tlast := t
 tnext := tlast + am.ta()

Listing B.13 Pseudo code of an EDSDEVS simulator

Appendix B. Coding Examples

131

variables:
 tlast time of last event
 tnext time of next internal state event of the coupled model or a
sub component
 tnext_c time of next internal state event of the coupled model
 CM associated atomic model
 // CM.st current, sequential structure state
 IMM // imminent children

mail // output mail bag
// t=0 initialisation at simulation start
// t>0 initialisation after structure change
when receive i-msg(t)at time t
 CM.init(t)
 foreach sub component Md CM.st.M

 send i-msg(t) to Md
 tlast := t
 // determine time of next scheduled internal state event of coupled
model
 tnext_c := CM.ta()
 // determine time of next scheduled internal state event of coupled
model and all
 // sub components
 tnext := min(tnext_c, { Md.tnext | Md CM.st.M })
when receive *-msg(t) at time t
 if t <> tnext & t<>tnext_c
 error: bad synchronisation
 // internal state transition event of the coupled model CM itself
 if t=tnext_c
 y_bag := CM. ()
 send bag of value/output port pairs in a y-message to parent

coordinator
 // internal state transition event of a sub component of CM
 else if t=tnext
 // find all sub components with a true condition tnext=t
 IMM := { Md | Md CM.st.M Md. tnext= t }
 foreach Md in IMM
 send *-msg(t) to Md

when receive x-msg(t, x_bag) at time t with value x_bag containing pairs of
x.value/x.port
 if not (tlast t tnext_c)
 error: bad synchronisation
 if t=tnext_c and x_bag is not empty
 CM. con(t, x_bag) // concurrent external and internal event

Appendix B. Coding Examples

132

 else if t=tnext_c and x_bag is empty
 CM. int(t) // internal event
 else
 CM. x&s(t-tlast, x_bag) // external event
 end if
 // get all sub components Md* with an appropriate EIC
 receivers := subcomponents {Md | Md CM.st.M} with {coupling |

coupling CM.st.EIC}
 // forwards the x-msg to all appropriate sub components
 foreach sub component Md* in receivers
 CM. x&s(t-tlast, x_bag) // external event of sub component
 send x-msg(t, x_bag, Md*.p) to Md* at port p
 foreach sub component Md* in IMM and not in receivers
 send x-msg(t, NULL, NULL) to Md* // send empty bag, input
port is ignored
 tlast := t
 tnext_c := tlast + CM.ta()
 tnext := min(tnext_c, { Md.tnext | Md CM.st.M })

when receive y-msg(t, y_bag, d) at time t with y_bag with value/port pairs from
d
 // collect all y-messages from all sub components
 if d is not the last not reporting d in IMM
 add (y_bag, d) to mail
 mark d in IMM as reporting
 // all sub components now handled their *-message
 else if d is the last not reporting d in IMM
 CM. x&s(t-tlast, mail)
 // check external coupling to form sub-bag of parent output
 y_bagparent = NULL
 foreach d in mail where (y_bag and d) has an appropriate EIC
 add y_bag to y_bagparent
 send y-msg(t, y_bagparent,, CM) to parent model
 // check IC to get children Md* with an appropriate IC who
receives a sub bag
 receivers := subcomponents {Md |d in mail, M d CM.st.M} with

{coupling | coupling CM.st.IC}
 foreach sub component Md* in receivers
 creates sub bag x_bag from mail with elements where Md* is
receiver send x-msg(t, x_bag) to Md*
 mark d in IMM as sending
 foreach sub component Md* in IMM where Md* is not sending
 send x-msg(t, NULL) to Md*

Appendix B. Coding Examples

133

 tlast := t
 tnext_c := tlast + CM.ta()
 tnext := min(tnext_c, { Md.tnext | Md CM.st.M })

Listing B.14 Pseudo code of an EDSDEVS coordinator

Appendix B. Coding Examples

134

<?xml version="1.0" encoding="us-ascii"?>
<!--
 DTD for an SES.
-->

<!ELEMENT top (ses_mb)>

<!ELEMENT ses (modelbase | ses | properties)*>

<!ELEMENT modelbase ((mb_composite | mb_atomic |
mb_aspect | mb_specialization |
mb_specializationentity | mb_multiAspect)+)>

<!ELEMENT ses (composite)>

<!ELEMENT properties ((modelcouplings | var |
varNumberOfComponent | constraint)+)>

<!ELEMENT modelcouplings ((eic | eoc | ic)+)>
<!ATTLIST modelcouplings

esname CDATA #REQUIRED>

<!ELEMENT mb_composite EMPTY>
<!ATTLIST mb_composite

esname CDATA #REQUIRED>

<!ELEMENT composite ((aspect | specialization |
multiAspect)*)>
<!ATTLIST composite

esname CDATA #REQUIRED>

<!ELEMENT mb_atomic ((inports | outports)*)>
<!ATTLIST mb_atomic

esname CDATA #REQUIRED
classname CDATA #REQUIRED
modelname CDATA #REQUIRED>

<!ELEMENT atomic EMPTY>
<!ATTLIST atomic

esname CDATA #REQUIRED>

Appendix B. Coding Examples

135

<!ELEMENT mb_aspect ((inports | outports)*)>
<!ATTLIST mb_aspect

esname CDATA #REQUIRED
classname CDATA #REQUIRED
modelname CDATA #REQUIRED>

<!ELEMENT aspect ((entity | specialization |
multiAspect | atomic)*)>
<!ATTLIST aspect

esname CDATA #REQUIRED>

<!ELEMENT mb_specialization ((inports |
outports)*)>
<!ATTLIST mb_specialization

esname CDATA #REQUIRED>

<!ELEMENT mb_specializationentity EMPTY>
<!ATTLIST mb_specializationentity

esname CDATA #REQUIRED
classname CDATA #REQUIRED
modelname CDATA #REQUIRED>

<!ELEMENT specialization
(specializationentity+)>
<!ATTLIST specialization

esname CDATA #REQUIRED>

<!ELEMENT specializationentity EMPTY>
<!ATTLIST specializationentity

esname CDATA #REQUIRED>

<!ELEMENT mb_multiAspect EMPTY>
<!ATTLIST mb_multiAspect

esname CDATA #REQUIRED>

<!ELEMENT multiAspect (atomic)>
<!ATTLIST multiAspect

Appendix B. Coding Examples

136

esname CDATA #REQUIRED>

<!--
internal var will be set internally in the ses
external var references an external variable
-->
<!ELEMENT var EMPTY>
<!ATTLIST var

name CDATA #REQUIRED
esname CDATA #REQUIRED
typ (internal|external) "internal"
external_name CDATA #IMPLIED
value CDATA #IMPLIED>

<!ELEMENT varNumberOfComponent EMPTY>
<!ATTLIST varNumberOfComponent

esname CDATA #REQUIRED
min CDATA #REQUIRED
max CDATA #REQUIRED>

<!ELEMENT inports (inport+)>

<!ELEMENT outports (outport+)>

<!ELEMENT inport EMPTY>
<!ATTLIST inport

name CDATA #REQUIRED>

<!ELEMENT outport EMPTY>
<!ATTLIST outport

name CDATA #REQUIRED>

<!ELEMENT eic EMPTY>
<!ATTLIST eic

inport CDATA #REQUIRED
component CDATA #REQUIRED
component_inport CDATA #REQUIRED>

<!ELEMENT eoc EMPTY>
<!ATTLIST eoc

Appendix B. Coding Examples

137

component CDATA #REQUIRED
component_outport CDATA #REQUIRED
outport CDATA #REQUIRED>

<!ELEMENT ic EMPTY>
<!ATTLIST ic

component1 CDATA #REQUIRED
component1_outport CDATA #REQUIRED
component2 CDATA #REQUIRED
component2_inport CDATA #REQUIRED>

<!ELEMENT constraint EMPTY>
<!ATTLIST constraint

name CDATA #REQUIRED
typ (entity|parameter) #REQUIRED
action (enable|valid) #IMPLIED
condition (gt|lt|eq|gteq|lteq|neq)

#IMPLIED
var_name1 CDATA #IMPLIED
var_name2 CDATA #IMPLIED
destination CDATA #IMPLIED>

Listing B.15 DTD describing the structure of SES/MB XML

Appendix B. Coding Examples

138

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE ses SYSTEM "ses.dtd" []>
<ses_mb>
 <ses>
 <composite esname="ROOT">
 <aspect esname="ROOTdec">
 <composite esname="A">
 <specialization esname="Aspec">
 <specializationentity
esname="A1"/>
 <specializationentity
esname="A2"/>
 </specialization>
 </composite >
 <composite esname="B">
 <aspect esname="Bdec">
 <atomic esname="D"/>
 <atomic esname="E"/>
 </aspect>
 </composite >
 </aspect>
 </composite >
 </ses>

 <modelbase>
 <mb_aspect esname="ROOTdec"
classname="ROOT" modelname="root"/>
 <mb_specialization esname="Aspec">
 <outports>
 <outport name="Aout1"/>
 <outport name="Aout2"/>
 </outports>
 </mb_specialization>
 <mb_aspect esname="Bdec" classname="B"
modelname="b">
 <inports>
 <inport name="Bin1"/>
 <inport name="Bin2"/>
 </inports>
 <outports><outport
name="Bout"/></outports>

Appendix B. Coding Examples

139

 </mb_aspect>
 <mb_atomic esname="D" classname="D"
modelname="d">
 <inports><inport name="Din"/></inports>
 <outports><outport
name="Dout"/></outports>
 </mb_atomic>
 <mb_atomic esname="E" classname="E"
modelname="e">
 <inports>
 <inport name="Ein1"/>
 <inport name="Ein2"/>
 </inports>
 <outports><outport
name="Eout"/></outports>
 </mb_atomic>
 </modelbase>

 <properties>
 <modelcouplings esname="ROOTdec">
 <ic component1="A"
component1_outport="Aout1"
 component2="B"
component2_inport="Bin1"/>
 <ic component1="A"
component1_outport="Aout2"
 component2="B"
component2_inport="Bin2"/>
 </modelcouplings>
 <modelcouplings esname="Bdec">
 <eic inport="Bin1" component="D"
component_inport="Din"/>
 <eic inport="Bin2" component="E"
component_inport="Ein2"/>
 <ic component1="D"
component1_outport="Dout"
 component2="E"
component2_inport="Ein1"/>
 <eoc component="E"
component_outport="Eout" outport="Bout"/>
 </modelcouplings>

Appendix B. Coding Examples

140

 <var esname="ROOT" name="pmax"
typ="internal" value="6"/>
 <var esname="A1" name="p1" typ="internal"
value="2"/>
 <var esname="A2" name="p1" typ="internal"
value="3"/>
 <var esname="D" name="p2" typ="internal"
value="3"/>
 <constraint name="sc1" condition="lt"
var_name1="p1+p2"
 var_name2="pmax" action="valid"
typ="parameter"/>
 </properties>
</ses_mb>

Listing B.16 SES/MB XML example – XML file

Appendix B. Coding Examples

141

server transducer

MODEL

job_out job_in

Figure B.1 A coupled model example

<?xml version="1.0" encoding="utf-8"?>
<atomic modelName="server" xmlns="AtomicDevs">
 <inports/>
 <outports>
 <outport>job_out</outport>
 </outports>
</atomic>

<?xml version="1.0" encoding="utf-8"?>
<atomic modelName="transducer" xmlns="AtomicDevs">
 <inports>
 <inport>job_in</inport>
 </inports>
 <outports/>
</atomic>

Listing B.17 Two atomic model XML files

<?xml version="1.0" encoding="utf-8"?>
<coupled modelName="MODEL" xmlns="CoupledDevs">
 <Models>
 <Model><devs>server</devs></Model>
 <Model><devs>transducer</devs></Model>
 </Models>
 <inports/>
 <outports/>
 <EIC/>
 <IC>
 <Coupling>

 <SrcModel>server</SrcModel><outport>job_out</outpor
t>
 <DestModel>transducer</DestModel>
 <inport>job_in</inport>
 </Coupling>

Appendix B. Coding Examples

142

 </IC>
 </EOC>
</coupled>

Listing B.18 Coupled model XML file

Appendix B. Coding Examples

143

0. Define the search space and chose an appropriate information encoding in
chromosomes

1. Initialise a population of individuals with different chromosomes
(generation 0)

Repeat until stop criterion is fulfilled
2. Estimate the fitness of all individuals of the current generation
3. Select pairs with m individuals and create descendants using crossover
4. Mutate the descendants
5. Exchange individuals of the current generation with descendants based

on a substitution schema to create a new generation
Listing B.19 A general GA algorithm

Olaf Hagendorf studied Electrical Engineering with emphasis
Computer Engineering at Universities Wismar and Rostock. After
finishing his study in 1997 he set up a company, among other
specialised in automation system and machine control deve-
lopment for the photo-finishing industries. His company dealt
with orders mainly in Middle and Northern Europe.
Parallel to his business he started with a PhD project at Liverpool
John Moores University, which he finished successfully in 2009.
Currently he is a research at University Wismar.

Modelling and simulation based on discrete event systems is used routinely in research
and industrial applications. An advanced, but now well established technique is model-
ling and simulation with integrated parameter optimisation to improve system perfor-
mance. In using these established approaches model structure is considered to be fixed as
the relationships between model elements are defined during model development.
As model performance is optimised it may be necessary to redesign the model structure,
normally carried out manually by an analyst. With increasingly complex and reconfigurable
discrete event systems and therefore with an increasing number of possible structure variants
the potential benefit of automatic model structure optimisation becomes significant.
The research reported in this thesis details a new approach providing automatic reconfig-
uration and optimisation of both model structure and model parameters. This is achieved
through a combination of simulation, optimisation and model management methods.

