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Kurzfassung

Diese Dissertation beschäftigt sich mit der Modellierung und Simulation von Reihen-
folgeproblemen basierend auf Petri Netzen. Im Besonderen werden zeiterweiterte,
gefärbte und stochastische Petri Netze verwendet, um spezielle Reihenfolgeprobleme
aus dem Bereich von Produktionsprozessen und anderen diskreten Ereignissystemen
zu modellieren und implementieren. Die Petri Netz Modelle werden über den Zeit-
bereich simuliert und die Optimierung der Eingangsreihenfolgen erfolgt mittels im-
plementierter simulationsbasierter Optimierung.
Petri Netze bieten die Möglichkeit Bedingungen auf der höchsten Ebene zu behan-
deln. Das ist ein groÿer Vorteil im Vergleich zu ereignis-orientierten Zugängen zur
Modellierung und Simulation von diskreten Ereignissystemen. Wenn Kon�ikte oder
Probleme mit der gleichzeitigen Benutzung vorhandener Mittel auftreten, muss eine
Strategie zum Au�ösen gleichzeitiger Ereignisse implementiert werden. Im Gegensatz
dazu realisieren Petri Netze diese Probleme durch die grundlegenden Eigenschaften
ihrer Struktur.
In dieser Arbeit wird eine neue Art der Kon�iktlösung eingeführt und es wird ein
neuer Weg entwickelt um Feuerungsreihenfolgen zu de�nieren. Dieser neue Zugang
bietet die Möglichkeit Reihenfolgeprobleme zu modellieren, ohne dabei abhängig von
Kon�ikten zu sein. Die Optimierung von Reihenfolgeproblemen wird mittels automa-
tisierter Veränderung und Auswertung der verwendeten Reihenfolgen und Parameter-
spezi�kationen durchgeführt. Diese Art des Optimierungsproblems ist zu komplex,
um bis zur Optimalität gelöst zu werden. Eine Erfolg versprechende Alternative
bietet die Verwendung von Heuristiken, wie Genetische Algorithmen, Simulated An-
nealing oder Threshold Accepting.
Alle diese Methoden sind in der so genannten MATLAB PetriSimM Toolbox im-
plementiert, die die Fähigkeit der Modellierung, Simulation und Optimierung von
zeiterweiterten, gefärbten und stochastischen Petri Netzen besitzt. Im Fall von
stochastischen Prozessen ist der Vergleich von alternativen Systemkon�gurationen
ein nichttriviales Problem. In dieser Arbeit sind ein sequentieller paarweiser t-Test
und Varianzreduktionstechniken implementiert, um die stochastische Optimierung
von Reihenfolgeproblemen zu lösen. Im Zuge dieser Arbeit ist die PetriSimM Tool-
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box entwickelt und in die MATLAB Umgebung integriert worden. Alle entwickelten
Funktionalitäten und Fähigkeiten werden anhand von zwei Fallstudien verglichen und
getestet. Die Fallstudien beinhalten die Modellierung, Simulation und Optimierung
einer Fertigungszelle und dem bekannten Problem des Handlungsreisenden.
Diese Dissertation ist folgendermaÿen strukturiert. Zuerst werden die Grundlagen
von Petri Netzen vorgestellt und es wird ein Überblick über Petri Netze und deren
Erweiterungen gegeben. Weiters wird die De�nition von Petri Netzen formuliert, die
es ermöglicht, Reihenfolgeprobleme zu modellieren und es werden die neuen Ansätze
zur De�nierung von Feuerungsreihenfolgen und Prioritäten beschrieben. Alle ver-
wendeten Optimierungsalgorithmen werden präsentiert und der sequentielle t-Test
und die implementierten Varianzreduktionstechniken werden vorgestellt. Als näch-
stes folgt die MATLAB PetriSimM Toolbox wo grundlegende Fähigkeiten umrissen
und erweiterte Funktionalitäten beschrieben werden. Abschlieÿend wird diese Arbeit
von der Implementierung und den Optimierungsresultaten der beiden Fallstudien
komplettiert.
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Abstract

This PhD thesis deals with modelling and simulation of scheduling and sequencing
problems based on Petri Nets. In particular, Timed, Coloured, and Stochastic Petri
Nets are used to model and implement speci�c scheduling problems in the �eld of
production processes and other discrete event systems. The Petri Net models are
simulated over the time domain and a simulation-based optimisation is implemented
to optimise the input sequences.
Petri Nets o�er the possibility to handle conditions on the highest layer. This is a
big advantage compared to event-oriented approaches for modelling and simulation
of discrete event systems. If con�ict or resource sharing problems occur, a strategy
of solving simultaneous events should be implemented. In contrast, Petri Nets solve
these problems through the basic properties of their structure.
In this thesis a new con�ict resolution is implemented and a sophisticated way of
de�ning �ring sequences is developed. This new approach o�ers the possibility to
model queuing, sequencing or scheduling problems being independent of the appear-
ance of any con�icts. The optimisation of sequencing and scheduling problems works
by automated changing and evaluating of the used sequences and parameter speci�-
cations. This kind of optimisation problem is too complex to be solved to optimality.
A promising alternative is to use heuristics, like genetic algorithms, simulated an-
nealing or threshold accepting.
All these methods are implemented in the so called MATLAB PetriSimM toolbox
which o�ers the capability of modelling, simulation, and optimisation of Timed,
Coloured, and Stochastic Petri Nets. In case of stochastic processes the comparison
of alternative system con�gurations is a highly sophisticated problem. In this work a
sequential paired t-test and variance reduction techniques are used and implemented
to solve the stochastic optimisation for sequencing and scheduling problems. In the
course of this PhD thesis the PetriSimM toolbox is developed and embedded in the
MATLAB environment. All the implemented features, functionalities and capabilities
are compared and tested in two case studies including the modelling, simulation and
optimisation of a production cell and the well-known travelling salesman problem.
This PhD thesis is structured as follows. First of all, the basics of Petri Nets are
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introduced and an overview is given about the state-of-the-art of Petri Nets and their
known extensions. Furthermore, the de�nition for Petri Nets is formulated to allow
the modelling of scheduling problems and the new approaches of de�ning �ring se-
quences and priorities are described. All used optimisation algorithms are presented
and the sequential t-test and the implemented variance reduction techniques are in-
troduced. Next follows the MATLAB PetriSimM toolbox where basic features are
outlined and advanced functionalities are described. Finally, the implementation and
the results of the optimisation of the two case studies complete this work.
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Chapter 1

Introduction

1.1 Motivation
Petri Nets basically model processes on a very low level. Up to now a lot of extensions
of Petri Nets exist. The introduction of time delays makes it possible to simulate over
the time domain. The use of colours simpli�es the graphical description and due to
this fact models of greater complexity can be de�ned and used. In this work another
interesting and important extension is developed to get the capability of modelling
scheduling problems. This means that it is possible to build up Petri Nets based on
the description of scheduling problems. All conditions and constraints are realised by
the basic properties of Petri Nets. The input parameters are characterised by di�erent
�ring sequences of the selected Petri Net corresponding to sequences of the present
scheduling problem. On this account system con�gurations can be easily changed by
the use of di�erent input sequences. All properties of scheduling problems are now
described by the use of Petri Nets and the evaluation of the scheduling problem is
reduced to a single simulation run of the Petri Net based on the used input sequences.

Starting from this development an automated optimisation can be implemented
based on several heuristic methods. The scheduling problem is reduced to a simple
combinatorial problem. The objective function is de�ned by the evaluation of the
Petri Net simulation over the time domain. Another aspect of this work is given by
the use of stochastic time delays. In this case the stochastic optimisation results in
a highly sophisticated problem.

All these extensions and functionalities are developed and implemented in the so
called MATLAB PetriSimM toolbox where the user can model, simulate and optimise
scheduling problems based on Petri Nets.
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1.2 Contents in brief

1.2.1 Petri Nets
In this chapter the basics of Petri Nets are introduced and an overview is given about
the state-of-the art of Petri Nets and their known extensions. All kinds and types
of Petri Nets are presented and the di�erent simulation algorithms are described. In
particular non-timed, timed, coloured and stochastic Petri Nets are considered.

1.2.2 Scheduling Problems and Petri Nets
In this chapter a special de�nition for Petri Nets is formulated to allow the mod-
elling of scheduling problems. Furthermore the capabilities of de�ning sequences and
priorities are introduced and con�ict resolution methods are presented.

1.2.3 Optimisation
In this chapter all implemented optimisation algorithms are presented. In this work
Simulated Annealing, Threshold Accepting and Genetic algorithms are used to opti-
mise scheduling problems based on Petri Nets. A sequential paired t-test and variance
reduction techniques are used and implemented to solve the stochastic optimisation.

1.2.4 MATLAB PetriSimM Toolbox
In the course of this work the MATLAB PetriSimM toolbox is developed where users
can model, simulate and optimise scheduling problems based on Petri Nets. The
main features of the toolbox are outlined and advanced functionalities are described.
Selected benchmarks round o� this chapter.

1.2.5 Case Studies
Two case studies are presented to test and compare the implemented optimisation
algorithms. A production cell is modelled and optimised with respect to arrival times
and selected due dates. Furthermore the well-known Travelling Salesman Problem is
modelled and optimised based on deterministic and stochastic time delays.

1.2.6 Summary and Outlook
Finally, all results and achievements are summarised and possible improvements and
future developments are mentioned.
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Chapter 2

Petri Nets

2.1 Introduction
Petri Nets were �rst introduced by Carl Adam Petri [1] in 1962 and are a graphical
and mathematical modelling tool which is applicable to many systems. Petri Nets
are a formalism for the description of concurrency and synchronisation inherent in
modern distributed systems [2, 3, 4].
This chapter shows all kinds and types of Petri Nets used in this work and should give
an overview of the state-of-the-art of Petri Nets. In particular, �rst Place-Transition
Petri Nets are considered and all needed and used properties are introduced. Next
follows the de�nition of Timed Petri nets where two di�erent approaches of the im-
plementation of time in Petri Nets are shown, the holding durations and the enabling
durations principle. In the further sections the extensions to Coloured and Stochas-
tic Petri Nets are illustrated. Petri Nets o�ers a lot of possibilities to analyse their
structure but this work will focus on the dynamic behaviour and on the simulation
of Petri Nets.

2.2 Place-Transition Petri Nets

2.2.1 Introduction
A Place-Transition Petri Net is a bipartite directed graph consisting of two types of
nodes, called places and transitions. To simplify matters, Place-Transition Petri nets
are abbreviated with the term PN in the following chapters and sections. Further
elements of a PN are arcs which represent the connection between places and transi-
tions. Arcs can only connect a place to a transition or vice versa, but they must not
connect two places or transitions. Tokens represent the speci�c value of the condi-
tions held in each place and all these values are summarised in the marking function.
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Arcs can have weights which mean the number of involved tokens are needed at least
for enabling or the number of tokens which are created. If the weight of an arc is
greater than one, the number of the weight will be shown along the arc, otherwise
this marking will be omitted (see Figure 2.1). In this work places are drawn by yellow
circles, transitions are drawn by cyan rectangles, arcs are drawn by blue lines and
tokens are drawn by green circles. Figure 2.1 shows a PN with objects and elements
described above. The transitions of the PN control the movement of the tokens be-
tween the places and the positions of the tokens de�ne the state of the system [2, 5].
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Figure 2.1: Small PN

Enabling of a transition

A transition of a PN is enabled if all its input places are marked at least with the
weight of its corresponding input arcs.
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Figure 2.2: Transition t1 is enabled

Firing of an enabled transition

An enabled transition may �re. If a transition �res, it removes tokens from input
places and creates tokens in the output places corresponding to the weight of the
involved arcs.
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Figure 2.3: Transition t1 �red

2.2.2 De�nition
A PN with u places and v transitions can be represented by the multiple

PN = (P, T, I, O, M0)

where

• P = {p1, p2, . . . , pu} is the set of places;

• T = {t1, t2, . . . , tv} is the set of transitions;

• I : P ×T → N is the input arc function. If there exists an input arc with weight
k connecting pi to tj, then I(pi, tj) = k

• O : P × T → N is the output arc function. If there exists an output arc with
weight k connecting tj to pi, then O(pi, tj) = k

• M0 : P → N is the initial state

A transition ti is enabled by a given marking if, and only if M(pj) ≥ I(pj, ti) for all
pj ∈ P [2, 5].

2.2.3 Linear Algebraic Representation
The input arc function I and the output arc function O are de�ned through the weight
of the arcs. For each function an adjacency matrix can be built between places and
transitions:

I =




p1t1 . . . p1tv
... . . . ...

put1 . . . putv


 pitj =

{
k if k is weight of arc pi to tj

0 otherwise

O =




t1p1 . . . tvp1

... . . . ...
t1pu . . . tvpu


 tipj =

{
k if k is weight of arc ti to pj

0 otherwise
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The �ow of each transition is now de�ned through the columns of the matrix

A = O − I

If the transition ti �res, then the new marking is given by:

M(pj) = M0(pj) + A(pj, ti) ∀pj ∈ P

In general, the so called �ring vector u is calculated. This binary vector has the length
of the number of transitions and it contains for each transition the information if the
transition �res or doesn't �re. The new marking of the PN is given by the following
matrix multiplication:

M = M0 + A · u
The enabling of the transitions depends only on the input matrix of the Petri Net and
on the current marking of the places. The �ring of the transitions can be additionally
in�uenced by other conditions.

2.2.4 Con�ict - Concurrency - Confusion
One of these conditions can be a con�ict. A con�ict can happen between two or
more transitions if at least two transitions have the same input places. Figure 2.4
shows a small PN with a con�ict. Transitions t1 and t2 are both enabled but the
�ring of one transition disables the other transition. Therefore a con�ict resolution
is necessary. Also, parallel activities or concurrency can easily be modelled with a
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3

Figure 2.4: Con�ict of two transitions

PN . Two events are parallel if both events can occur in any order without con�icts.
If con�ict and concurrency are mixed up this is called confusion (see Figure 2.5)
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Figure 2.5: Concurrency and confusion

2.2.5 Dynamic Behaviour - Simulation
The dynamic behaviour is determined by the enabling and �ring of the transitions.
The initial marking M0 is the start point of the simulation. The next marking Mk+1

is always dependent on the current marking Mk and on the �ring vector uk:

Mk+1 = Mk + A · uk

The changing of the markings in each state is called the token game. A con�ict
between two or more transitions is resolved randomly. This means each transition
has the same probability for �ring.

2.2.6 Important Properties
Deadlock

A deadlock represents the end of the simulation. If no transition can �re any more
the simulation stops and a deadlock is occurred.

Reachability Set - Reachability Graph

Starting from the initial marking M0 it is possible to compute the set of all markings
reachable from it. This set is called the reachability set (M(PN)) and represents the
state space of the system. The reachability set contains no information about the
transition sequences �red to reach each marking. This information is contained in
the reachability graph, where each node represents a reachable state [6]. Figure 2.6
shows an example of a reachbility graph with �ve di�erent markings.

Reversibility

An important reachability property is reversibility: a PN is said to be reversible if
and only if from any state reachable from M0, it is possible to come back to M0
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Figure 2.6: Example of reachability graph

itself. Reversibility expresses the possibility for a PN system to come back in�nitely
often to its initial marking. It is however possible that the state to which we want
to be always able to come back to is not the initial marking of the PN . This special
marking is called a home state for the PN [6].

Liveness

A PN is said to be live for an initial marking if all transitions can �re an in�nite
number of times. A very important consequence of liveness is that, if at least one
transition is live, then the PN cannot have any deadlock.

Boundedness

A PN is said to be bounded for an initial marking if the number of tokens in all
places for all markings of the reachability set is �nite. This means that ∀p ∈ P :

∃k ∈ N0 : ∀M ∈ M(PN) : M(p) ≤ k

2.3 Timed Petri Nets

2.3.1 Introduction
Place-Transition Petri Nets o�er the analysis of their structure and they build the
basis for any extensions. The concept of time is not explicitly given in the original
de�nition of Petri nets and maybe not in the means of the inventor. But however,
for the performance evaluation of dynamic systems and scheduling problems it is
necessary to introduce time delays. Given that a transition represents an event, it is
natural that time delays should be associated with transitions. Time delays may be
either deterministic or stochastic.
As described in [7], there are three basic ways of representing time in Petri nets:
�ring durations, holding durations and enabling durations. The names given to Petri
nets augmented with time vary greatly from one researcher to another. In this work
the holding durations and enabling durations principles are implemented.
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2.3.2 Holding Durations
The principle of holding durations works by classifying tokens into two types, avail-
able and unavailable. Available tokens can be used to enable transitions, whereas
unavailable tokens cannot. To each transition a time duration is assigned, and when
�ring occurs, the action of removing and creating tokens happens instantaneously.
However, the created tokens are not available to enable new transitions until they
have been in their output place for the time speci�ed by the transition that created
them. Figure 2.7 shows the �ring of a Timed Petri Net with holding durations.
Available and unavailable tokens are drawn by small green and small un�lled circles,
respectively.
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Figure 2.7: TPN with holding durations

De�nition

By using holding durations the formal representation of the Timed Petri Net is ex-
tended with the information of time. A TPN with u places and v transitions can be
represented by the multiple

TPN = (P, T, I, O, f, s0)

where

• P = {p1, p2, . . . , pu} is the set of places;

• T = {t1, t2, . . . , tv} is the set of transitions;

• I : P ×T → N is the input arc function. If there exists an input arc with weight
k connecting pi to tj, then I(pi, tj) = k

• O : P × T → N is the output arc function. If there exists an output arc with
weight k connecting tj to pi, then O(pi, tj) = k

• f : T → R+
0 is the time delay function which is a constant function and assigns

a nonnegative real value f(tj) to each transition tj ∈ T .

• s0 is the initial state
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A state of a Timed Petri Net is a triple of functions, one of which describes the distri-
bution of available tokens over the places, the second the distribution of unavailable
tokens and the third one is the remaining-holding-time function [8]. A state of a
Timed Petri Net is a triple s = (m,n, r) where,

• m : P → N is a marking function of available tokens. m de�nes an u×1 column
vector whose jth entry is m(pj).

• n : P → N is a marking function of unavailable tokens. n de�nes an u × 1

column vector whose jth entry is n(pj).

• r is the remaining-holding-time function which assigns the remaining holding
time (local clock) to each independent unavailable token in a place, i.e., if the
rank of unavailable tokens in a place pj is equal to l, n(pj) = l, the remaining-
holding-time function r(p) de�nes a vector of l nonnegative real values denoted
by r(pj) = [r(pj)[1], r(pj)[2], . . . , r(pj)[l]]; r is a partial function and it is unde-
�ned for all those places for which n(pj) = 0.

A transition ti is now enabled by a given marking if, and only if m(pj) ≥ I(pj, ti) for
all pj ∈ P .

Simulation

The initial state s0 = (m0, n0, r0) is the starting point of the simulation. Depending
on the initial available token function m0 the �ring vector u is computed. If any
transition �res, the �ring is considered instantaneous. Newly produced tokens receive
the value of their local clock as prescribed with transitions that produced them. If
no transition can �re at the current state, the global time is increased and the values
of the local clocks are decreased respectively, by the minimum of the remaining-
holding-time function r. As a consequence at least one of the unavailable tokens is
becoming available again and the enabling condition is checked once more. The global
time is always increased by the minimum of the remaining-holding-time function.
Therefore the simulation function is implemented as event handler. A new state sk+1

is computed depending on the current state sk in the following way:

1. Compute �ring vector uk depending on mk

2. If no transition �res (uk = 0) time passes on and the local clocks are decreased:

• Mk = mk + nk

• rk+1 = rk −min rk

• nk+1(pi) = dim(rk+1(pi)) ∀ pi ∈ P ∧ ∃ rk+1(pi)
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• mk+1 = Mk − nk+1

3. Else (uk 6= 0), time remains the same. New tokens are created with the corre-
sponding local clocks.

• Mk = mk + nk

• Mk+1 = Mk + A · uk

• nk+1(pi) = nk(pi) + O(pi, tj) · uk(tj) ∀ pi ∈ P ∧ ∀ tj ∈ T : f(tj) > 0 ∧
uk(tj) > 0

• rk+1(pi) = rk(pi); rk+1(pi)[l] = f(tj) l = nk(pi) + 1 . . . nk+1(pi) ∀ pi ∈
P ∧ ∀ tj ∈ T : f(tj) > 0 ∧ uk(tj) > 0

• mk+1 = Mk+1 − nk+1

2.3.3 Enabling Durations
The enabling duration principle was introduced by Merlin [9] to model recoverable
communication protocols. With enabling durations the �ring of the transitions hap-
pens immediately and the time delays are represented by forcing transitions to be
enabled for a speci�ed period of time before they can �re [7]. Figure 2.8 shows the
�ring of a Timed Petri net with enabling durations. The main advantage of enabling
durations can be seen in a Petri Net where confusion appears. It is possible that one
transition which has begun to be enabled can be interrupted by another transition in
some circumstances.
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Figure 2.8: TPN with enabling durations

Memory

An important issue that arises at every transition �ring when timed transitions are
used in a model is how to manage the timers of all the transitions that do not �re.
From the modelling point of view, the di�erent policies that can be adopted link
the past history of the systems to its future evolution, considering various ways of
retaining memory of the time already spent on activities. The question concerns the
memory policy of transitions, and de�nes how to set the transition timers when a
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state change occurs, possibly modifying the enabling of transitions [6]. To model the
di�erent behaviours arising in real systems, two di�erent ways of keeping track of the
past are possible:

• Enabling Memory At each transition �ring, the timers of all the timed tran-
sitions that are disabled are restarted, whereas the timers of all the timed
transitions that are not disabled hold their present value. The memory of the
past is recorded with an enabling memory variable associated with each tran-
sition. The enabling memory variable accounts for the work performed by the
activity associated with the transition since the last instant of time its timer
was set. In other words, the enabling memory variable measures the enabling
time of the transition since the last instant of time it became enabled [6].

• Age Memory At each transition �ring, the timers of all the timed transitions
hold their present values. The memory of the past is recorded with an age mem-
ory variable associated with each timed transition. The age memory variable
accounts for the work performed by the activity associated with the transition
since the time of its last �ring. In other words, the age memory variable mea-
sures the cumulative enabling time of the transition since the last instant of
time when it �red [6].

Multiple Enabling

Special attention must be paid to the timing semantics in the case of timed tran-
sitions with an enabling degree larger than one. Borrowing from queueing network
terminology, we can consider the following di�erent situations [6].

1. Single-server semantics: a �ring delay is set when the transition is �rst
enabled, and new delays are generated upon transition �ring if the transition is
still enabled in the new marking. This means that enabling sets of tokens are
processed serially.

2. In�nite-server semantics: every enabling set of tokens is processed as soon
as it forms in the input places of the transition. Its corresponding �ring delay
is generated at this time, and the timers associated with all these enabling sets
run down to zero in parallel. Multiple enabling sets of tokens are thus processed
in parallel.

3. Multiple-server semantics: enabling sets of tokens are processed as soon
as they form in the input places of the transition up to a maximum degree
of parallelism (say k). For larger values of the enabling degree, the timers
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associated with new enabling sets of tokens are set only when the number of
concurrently running timers decreases below the value of k.

De�nition

By using enabling durations the formal representation of the Timed Petri Net TPN

is equal to the holding durations de�nition. But a state is now a pair of functions, one
of which describes the distribution of tokens over the places and one for the enabling
time function for each transition and each enabling. A state of a Timed Petri net is
a pair s = (m, r) where,

• m : P → N is a marking function of the tokens. m de�nes an u × 1 column
vector whose jth entry is m(pj).

• r is the enabling time function which assigns the remaining time (local clock)
to each enabling of each transition depending on the enabling degree and
on the server semantics k of each transition, i.e., if the degree of transi-
tion ti and the server degree are both equal to l, deg(ti) = l, the enabling
time function r(t) de�nes a vector of l nonnegative real values denoted by
r(ti) = [r(ti)[1], r(ti)[2], . . . , r(ti)[l]]; r is a partial function and it is unde�ned
for all those transitions which are not enabled: deg(ti) = 0.

A transition ti is now enabled by a given marking if, and only if m(pj) ≥ I(pj, ti) for
all pj ∈ P .

Simulation

The initial state s0 = (m0, r0) is the starting point of the simulation. Depending on
the initial token function m0 the enabling vector is computed. For all transitions and
for each enabling corresponding to the enabling degree and the server semantics the
new local clock is set. If any transition �res, the �ring is considered instantaneous. For
each transition which �res all disabled transitions are checked if they are interrupted.
If no transition can �re at the current state, the global time is increased and the
values of the local clocks are decreased respectively, by the minimum of the enabling
time function r. Now the enabling condition is checked once more and the local
clocks are updated again. As a consequence at least one enabled transition can �re
and the next iteration is started. Also the enabling duration principle function is
implemented as an event handler. A new state sk+1 is computed depending on the
current state sk in the following way:

1. Compute enabling vector depending on mk

2. Compute the degrees of enabling - degree(t) ∀T
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3. deg(ti) = min (degree(ti), k(ti)) ∀ti ∈ T k . . . maxium degree

4. rk+1(ti) = rk(ti); rk+1(ti)[l] = f(ti) l = dim(rk(ti)) + 1 . . . deg(ti)

if dim(rk(ti)) < deg(ti) ∀ti ∈ T

5. Compute �ring vector uk: uk(ti) = 1 if min(rk+1(ti)) = 0

6. If no transition �res (uk = 0) time passes on and the local clocks are decreased:
rk+1 = rk −min rk

7. Else (uk 6= 0), time remains the same. Enabling time of �ring enablings are
deleted and disabled enablings are reset if it is necessary.

• Delete �rst of rk(ti)[l] which rk(ti)[l] = 0

• Compute new degree for disabled transitions degnew(tj)

� Enabling memory: delete rk(tj) ∀tj ∈ T : degnew(tj) < deg(tj)

� Age memory: delete rk(tj)[degnew(tj) . . . deg(tj)] ∀tj ∈ T :

degnew(tj) < deg(tj)

• mk+1 = mk + A · uk

2.3.4 Comparison Holding - Enabling
The main di�erence can be seen in a TPN where confusion appears (Figure 2.9). If
holding durations are used, transition t1 and t3 �re concurrently at time point zero,
placing one token in place P2 and one in P5. The token in P2 becomes available at
time point one and the token in P5 at time point �ve. No more transitions are en-
abled. Figure 2.9 (b) shows the holding duration TPN in its �nal state. If enabling
durations are used, initially transitions t1 and t3 are enabled and t1 will �re after
one time unit while t3 will �re after �ve. Thus, at time point one, t1 �res placing
a token in P2, enabling transition t2 to �re in two time units, that is, at time point
three. Transition t3 is still enabled and scheduled to �re at time point �ve. Thus,
t2 �res (before t3) at time point three, removing the tokens from P2 and P3, and
placing a token in P4. This disables t3. The �nal state of the enabling durations
TPN is shown in Figure 2.9 (c). This shows that changing the timing policy of the
TPN causes a dramatic change to the way the net executes. It is the interruption
to the enabling of t3 in the case of enabling durations that changes the outcome. It
was the requirement to model such interruptions in systems with timeouts and where
preempting is possible that led to the development of enabling durations [7].
It is is easy to model holding durations using enabling transitions if immediate tran-
sitions are used. Immediate transitions have zero enabling durations and always �re

14



p
1

p
2

p
3

p
4

p
5

t
1

t
2

t
3

t=1 t=2

t=5

(a) Initial marking of TPN with confusion
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(b) Final marking using holding durations
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(c) Final marking using enabling durations

Figure 2.9: Di�erence between holding and enabling durations

before transitions with nonzero enabling durations. Thus, to represent an holding
durations TPN with enabling durations, each transition is preceded by an imme-
diate transition [7]. But this works only for enabling transition with in�nite-server
semantics. Figure 2.10 shows the enabling durations TPN which is equivalent to the
holding durations TPN shown in Figure 2.9 (b).
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Figure 2.10: Representing holding with enabling times

It is natural to use holding durations in modelling most processes as transitions rep-
resent events and generally, once an event starts it does not stop to allow another
event to occur. Consequently, the kind of interruption modelled by enabling du-
rations is not applicable for many systems. However, since enabling durations can
act like holding durations when immediate transitions and transitions with in�nite-
server-semantics are used and allow the modelling of interruptions, they give greater
modelling �exibility [7].
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2.4 Coloured Petri Nets

2.4.1 Introduction
The graphical representation of Petri Nets becomes fairly complex due to modelling
real life problems. The main reason is that there is only one type of token. Each
process has to be modelled by a separate sub net. There exists a lot of extensions
and di�erent types of high level Petri Nets [10]. Coloured Petri Nets (CPNs) were
�rst introduced by K. Jensen [11]. In the de�nition of Coloured Petri nets a type
called the colour is attached to a token. This aspect leads to a simpli�cation of the
graphical representation of a Petri Net model of a complex system [2]. Figure 2.11
shows the graphical simpli�cation of three sub nets of a PN to one CPN .

Figure 2.11: Simpli�cation with CPN

2.4.2 De�nition
For the de�nition of CPNs it is needed to de�ne a multi-set. A multi-set m over a
non-empty set S, is a function m : S → N0. The non-negative integer m(s) ∈ N0 is
the number of appearances of the element s in the multi-set m. The defnition of the
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bb
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c

Figure 2.12: A multi-set m
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multi-set m in �gure 2.12 is �ven by

m(s) =





2 if s ∈ {a, c}
4 if s = b

1 if s = d

SMS de�ne the set of all �nite multi-sets over S.

A CPN with u places and v transitions can be represented by the multiple

CPN = (P, T, C, I, O,M0)

where

• P = {p1, p2, . . . , pu} is the set of places;

• T = {t1, t2, . . . , tv} is the set of transitions;

• C : P ∪ T into �nite and non-empty sets is the colour function for places and
transitions

• I : C(t) → C(p)MS is the input arc function ∀(p, t) ∈ P × T .

• O : C(t) → C(p)MS is the output arc function ∀(p, t) ∈ P × T

• M0 is the initial state

A transition t ∈ T is now enabled by a given marking with respect to a colour
c′ ∈ C(t) if, and only if M(p)(c) ≥ I(p, t)(c′)(c) for all p ∈ P and c ∈ C(p).

2.4.3 Simulation
Every CPN can be easily unfolded uniquely into a PN so that all concepts relating
to CPNs are consistent with those of PNs [2]. Therefore the extensions to a Timed
CPN with holding or enabling durations can be done in an analogue way. The four
dimensional input and output functions can be transformed into two dimensional
matrices by adding each transition colour as a column and by adding each place
colour as a row. Also simulation and analysis can be done on the unfolded Petri
Net. It should be clear that CPNs are only a means of simplifying the graphical
representation of a Petri Net model of a complex system.
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2.5 Stochastic Petri Nets

2.5.1 Introduction
Up to now randomness doesn't play an important role for Petri Nets. Only the con-
�ict resolution is decided randomly. Stochastic Petri Nets use random numbers and
stochastic distributions to control and model nondeterministic behaviour. In the non-
timed case the �ring of the transitions can be controlled by a local or global �ring
probability [2]. This means that it is randomly decided if an enabled transition can
�re or not. For Timed Petri Nets the randomness is put into the time delays of the
transitions. To each transition an stochastic distribution can be de�ned. Depend-
ing on the selected distributions di�erent de�nitions of Stochastic Petri Nets exists.
Stochastic Petri Nets (SPN) are characterised by exponential distributed �ring times
or by exponential distributed �ring probabilities [2, 12]. Generalised Stochastic Petri
Nets (GSPN) [6] allows additionally immediate transitions having no time delay and
�ring without loosing time. Another extension are Deterministic Stochastic Petri
Nets (DSPN) [6] where deterministic time delays are also used. If no constraints
are made for the distributions of the �ring time of the transitions this type is called
Extended Stochastic Petri Net (ESPN) [13]. Depending on the type of the Stochas-
tic Petri Nets and the used distributions the reachability set and the reachability
graph can be modelled as Markov Chain, Markov Process, Semi-Markov Process or
in general as Stochastic Process [2, 12, 13, 14, 15].

2.5.2 De�nition
Non-timed

In this work a global �ring probability can be de�ned for non-timed simulation. To
each enabled transition a uniform distributed random value between zero and one
is assigned in each iteration. If the assigned values are greater than the de�ned
�ring probability (value between zero and one in percent) the enabled transitions are
not allowed to �re in this iteration. If the values are smaller than or equal to the
�ring probability the enabled transition will �re. With this global �ring probability
stochastic behaviour can be modelled for non-timed Petri Nets.

Timed

TPNs can be extended to each type of Stochastic Petri Net due to the use of proper
time delay functions. In this work each kind of Stochastic Petri Nets is abbreviated
by SPN . The time delay function is now re-de�ned for SPNs in the following way:
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• f : T → R+
0 is the time delay function which can be an arbitrary stochastic

distribution function or a constant function (for deterministic and immediate
transitions). It assigns for each �ring and for each realisation a non-negative
real value f(tj) to each transition tj ∈ T .

If the evaluation of a stochastic distribution leads to a negative value or if a constant
function with a negative value is de�ned, the used values for the simulation are set
to zero.
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Chapter 3

Scheduling Problems and Petri Nets

3.1 Introduction
Scheduling deals with the allocation of resources to activities over time, by respecting
precedence, duration, capacity and incompatibility constraints, in order to achieve
the optimal use of resources or the optimal accomplishment of tasks. Scheduling
involves the arrangement, coordination, and planning of the utilisation of resources
to achieve an objective. Of the resources available, time is becoming an important
commodity. Time is the resource most often planned and is present in all scheduling.
In its simplest form, the overall time cycle required for production or completion
is the most usual scheduling situation [16]. Scheduling problems arise in domains
like manufacturing, transportation, computer processing and production planning.
Many well de�ned problems like job-shop, �ow-shop problem or scheduling used in
�exible assembly systems can be found in literature [17, 18].
There exists special classi�cations of scheduling problems [19, 20, 21] which leads
to di�erent approaches of modelling and algorithms. This work provides a general
framework for modelling, simulation, analysis and optimisation of scheduling
problems based on Timed Petri Nets. No special de�nitions are given for the
scheduling problem besides of some restrictions for the underlying Timed Petri
Net. The sequence orders are the only parameters used. All other conditions and
speci�cations are determined by the basic properties of Timed Petri Nets. Simulation
is an appropriate tool for evaluating and analysing scheduling problems based on
Timed Petri Nets to get the needed performance measures [22]. With respect to the
optimtisation problem this work is focused on the overall cycle time as main interest
of the performance measures. But using Petri Nets o�ers a lot of possibilities to get
other interesting parameters of the system. For example, utilisation and allocation
of the resources can be easily measured and shown by Gantt Charts.
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Petri Nets can represent many di�erent applications by the use of their simple ele-
ments: places, transitions and tokens [23, 24]. Places stand for states of the system,
transitions represent events, tokens realise conditions and arcs control the logical be-
haviour of the system. Used additionally, time in Petri Nets extends the possibilities
of modelling in an essential way. For example, Manufacturing systems and produc-
tion activities can be modelled with Timed Petri Nets [25, 26, 27, 28]. Now places
correspond to resources, transitions represent operations and tokens can be products
or in general entities of the system. It is up to the modeller of the system to de�ne
and to assign a meaning to the di�erent elements of the Timed Petri Net.
This chapter shows how Timed Petri Nets can be extended by priorities and sequences
to get the capability of modelling scheduling problems. Another important part is the
exact de�nition and the restrictions for the TPN in respect of modelling scheduling
problems. Further properties like con�ict resolution, deadlock and reachablility are
treated in the following chapter.

3.2 De�nition
The class of scheduling problems which can be modelled as Timed Petri Nets is
de�ned by the following criteria:

• same initial marking - Each scheduling problem has to start with the same
initial marking. This means that di�erent system con�gurations can only re-
alised by changing the sequence parameters.

• sequences assigned to transitions - The sequence parameters are assigned
to the transitions and they correspond to the �ring sequences of the transitions.

• con�icts solved - All con�icts have to be resolved and determined at the
beginning.

• bounded - The TPN has to be bounded.

• not reversible - The TPN must not be reversible. In this case reversibility is
extended with the de�ned �ring sequences. This means that it is not allowed to
come back to a home state including the current state and position of sequence
parameters.

• all transitions not live - No transition is allowed to be live.

• terminating simulation - Because of the previous criterion the simulation of
the Timed Petri Net is terminating.
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3.3 Con�ict Resolution
All possible con�icts are determined through the structure of the underlying Petri
Net. Input places that are connected to more than one transition allow the occur-
rence of a con�ict depending on the current marking. Con�icts are processed and
resolved in an arbitrary manner for each iteration of the simulation function. This
should prevent the equal appearance of confusion during the simulation. Transitions
get a ranking value between zero and one depending on the selected con�ict resolu-
tion strategy. This ranking value de�nes which transition can �re �rst. Starting with
the highest value each transition �res step by step until no transition of the selected
con�ict is enabled any more. If more than one transition has the same ranking value
in the same step the winner of the con�ict is randomly decided.
A con�ict resolution is necessary if at least two transitions are in con�ict. For Petri
Nets without time there is the possibility of random decision based on the uniform
distribution. Timed Petri Nets o�er other approaches of solving the con�ict be-
tween transitions. Figure 3.1 shows a small Timed Petri Net where a con�ict occurs.
The two di�erent principles of time implemented to Petri nets leads to a di�erent be-
haviour during a con�ict. In this section the holding durations and enabling durations
are compared in relation to solving con�icts.
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Figure 3.1: Con�ict Resolution

3.3.1 Holding
Transitions working with the holding durations principle �re immediately after en-
abling. Therefore next to the random con�ict resolution the following two strategies
can be used for transitions with deterministic time delays:

• SPT - The transition with the shortest processing time �res �rst. In �gure 3.1
transition t2 has the shortest time delay. Thus, the con�ict is decided in favour
of transition t2.

22



• LPT - The transition with the longest processing time �res �rst. Transition t1

of �gure 3.1 will �re because it has the longest processing time delay.

These two strategies only work for transitions with deterministic time delays. Using
holding durations the time delays are assigned during the �ring of the transition. If
stochastic time delays are used the underlying stochastic distribution functions are
newly evaluated in each �ring. Therefore con�icts can not be decided beforehand for
stochastic time delays using SPT or LPT strategy.

3.3.2 Enabling
The enabling durations principle works by forcing the transitions to be enabled for
a certain time delay. It can be distinguished between immediate transitions without
time and transitions with time delays greater than zero. For immediate transitions
and transitions with equal time delays random decision is used. Con�icts between
transitions with di�erent time delays are solved by the so called race policy. In this
case always the transition with the shortest time delay wins. The race policy also
works for stochastic time delays because for enabling durations the time delays are
assigned before the �ring of the transitions.

3.4 Priority
The resolution of all con�icts is an important criterion of scheduling problems mod-
elled as Timed Petri Nets. For this purpose a priority ranking can be established for
the �ring of the transitions. A priority value can be set to each transition. This value
has to be greater or equal than one and de�nes the priority of the transition. The
highest priority is given to 1. If there is a con�ict between at least two transitions
the transition with the highest priority will always �re. If two or more transitions
have the highest priority value it will be randomly decided which transition �res.
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Figure 3.2: Petri Net with priority
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Figure 3.2 shows a small Petri Net with de�ned priorities before and after �ring. In
this example transition t1 has the highest priority equal to 1 and transitions t2 and
t3 have both the priority equal to 2. Place P1 contains two tokens and therefore a
con�ict occurs because all three transitions are enabled but only two of them can �re.
Transition t1 �res in any case. Transitions t2 and t3 have the same priority and the
�ring is randomly decided. In this case transition t2 �res but it is also possible that
transition t3 �res instead of t2 after restarting the simulation.

3.5 Sequence
Next to the de�nition of a priority Petri Nets need another important extension to
get the capability of modelling scheduling problems. The main input parameters of
scheduling problems are represented by the sequences of di�erent tasks. A change
of the input parameters leads to a di�erent system con�guration and to di�erent
results. These sequences can be directly implemented and de�ned to the transitions
of the Petri Net. Disjoint groups of transitions can be selected and to each group a
�ring rule can be assigned. The transitions are numbered within the group starting
from 1 to the selected group length. Now a �ring list can be de�ned for the group of
transitions. This list consists of the assigned numbers of the transitions. The values
of the list correspond to the �ring of the transitions. All transitions of the group are
deactivated instead of the transition represented by the �rst number of the �ring list.
This means that all deactivated transitions are not able to be enabled by any tokens
of the input places. After the �ring of the selected transition the next value of the
list is taken. If the end of the �ring list is reached all transitions are activated again
and they behave like normal transitions not controlled by a �ring list.
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Figure 3.3: Petri Net with sequence

Figure 3.3 shows the �ring of a Petri Net with a de�ned sequence. In this example the
sequence (1, 2) is assigned to the transitions t1 and t2. In the left Petri Net transition
t1 is enabled and transition t2 is deactivated due to the �ring list. The middle Petri
Net shows the marking after �ring of transition t1. Transition t2 is activated again
and now enabled whereas transition t1 is deactivated in this step. The �nal marking
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is shown in the right Petri Net of �gure 3.3 after �ring of transition t2.
On the one hand transitions can be selected to assign priorities and on the other
hand transitions can be added to groups to de�ne �ring lists. These two possibilities
are disjoint. This means that either a transition can have a priority or a transition
can be member of a sequence group. If a priority is needed for sequence transitions
a sequence priority can be de�ned. This sequence priority controls the behaviour of
con�icts between transitions of di�erent sequence groups. Priorities are necessary if
con�icts between transitions should be solved in a special way. The following ranking
and hierarchy is used for the interacting of the di�erent kinds of transitions:

1. Sequence: Transitions which are members of a sequence group always have
the highest priority. Con�icts inside sequence transitions are determined by the
sequence priority.

2. Priority: Transitions with priority get the second highest priority.

3. Normal: Transitions without any priorities or sequences are de�ned as normal
transitions. Con�icts of normal transitions are solved through the strategies
mentioned in the previous section.

3.6 Deadlock
The termination of the simulation is an important and an essential criterion for
modelling scheduling problems based on Timed Petri Nets. Depending on the selected
input sequences each system con�guration leads to di�erent simulation results. The
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Figure 3.4: Sequence deadlock

end of a simulation corresponds to a �nal marking of the reachability graph. The
�nal markings are reached during the simulation through a desired natural deadlock.
Because of the sequence extensions of Timed Petri Nets a new kind of deadlock can
occur during the simulation. If the transition activated due to the �ring list is not
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able to be enabled and no other transition is enabled in the current simulation step
a sequence deadlock happens. This sequence deadlock represents an invalid system
con�guration and it can be separately detected.
Figure 3.4 shows this new kind of deadlock. Transition t1 and t2 are added to a
sequence group containing the �ring list (1, 2). Transition t1 is activated but not
enabled and therefore a sequence deadlock occurs and the simulation stops.

3.7 Reachability
The reachability graph contains all possible markings and ways through the under-
lying Petri Net. The extension of de�ning sequences to Petri Nets may lead to a
di�erent reachability set and graph for Timed Petri Nets modelling scheduling prob-
lems. The alternate activating and deactivating of transitions temporary change the
natural behaviour of the Petri Net. Starting with the same initial marking each
system con�guration �nds its own way through the reachability graph during the
simulation. The changing of the input sequence can also modify parts of the reach-
ability graph. But the simulation has to be used to create each reachability graph
for all possible input parameters. Therefore it is very time-consuming to compute all
possible markings beforehand.
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Figure 3.5: Way through reachability graph

Figure 3.5 schematises the way through the reachability graph for two di�erent input
sequences. The markings and transitions used are coloured red in this case. Timed
Petri Nets need exact de�nitions and constraints for modelling scheduling problems.
By means of these criteria the way through the reachability graph is determined for
each system con�guration. The use of deterministic or stochastic time delays highly
in�uence the way through the reachability graph for each input sequence. The two
di�erent types of time delays are discussed in the following sections in relation to the
holding and enabling duration principles.
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Deterministic
If only deterministic time delays are used and all criteria are ful�lled each system
con�guration has an unique and determined way through the reachability graph.
For the holding and enabling duration principle all used times are deterministic and
therefore each con�ict based on time delays assigned to transitions is solved in an
unique way. Timed Petri Nets adapted for scheduling problems contain no probabilis-
tic part. Therefore, each input sequence leads to the same result in each simulation
run. Two di�erent system con�gurations can be directly compared with regard to
the optimisation of scheduling problems.

Stochastic
For stochastic time delays each system con�guration may has di�erent ways through
the reachability graph using holding durations. The markings of a Stochastic Timed
Petri Net can have small modi�cations due to the di�erent evaluations of the underly-
ing stochastic distribution functions. For scheduling problems modelled with holding
durations all possible con�icts are solved and therefore the di�erence can only be in
the time of �ring. On this account the visited markings of the reachability graph can
be di�erent for each simulation run of the same input sequences. A certain number
of simulation runs is needed to compare two di�erent system con�gurations but this
problem is treated in the following chapter.
The race policy of enabling durations causes another constraint for solving con�icts
if stochastic time delays are used. In the deterministic case the race policy always
determines a con�ict in the same way, meaning that the transition with shortest
time delay can �re. For stochastic time delays this decision depends on the respec-
tive values of the used stochastic distribution function. The probabilistic controlled
preempting can model a fault detection for a system but for scheduling problems it
doesn't really seems useful with respect to the interesting performance measure. If
the two possible ways through the rechability graph di�er too much the simulation
runs can lead to a great di�erence of the overall duration. Thus, the stochastic opti-
misation is negatively a�ected because of the increase of the variance. For modelling
scheduling problems based on Timed Petri Nets this problem should be considered.
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Chapter 4

Optimisation

4.1 Introduction
Scheduling problems basically belong to the �eld of combinatorics. A set of tasks
should be ordered to build an optimum corresponding to certain constraints. An
optimum can be both a maximum and a minimum. Therefore the optimisation of
a scheduling problem can be a minimising or maximising problem. In this work all
constraints and speci�cations of scheduling problems are determined by the basic
properties of Timed Petri Nets. The sequence orders are the only parameters used.
All possible permutations of these sequences build the solution space of the schedul-
ing problem. In general a so called objective or �tness function is de�ned which
assigns a certain value to each solution of the solution space. This �tness value is
used to de�ne the quality of the selected solution. In this case the objective function
is determined through the underlying Timed Petri Net. The evaluation of the �tness
value is performed by simulation resulting in the overall cycle time of the system.
For maximising problems this value should be as great as possible and respectively
for minimising problems it should be as small as possible. But both problem types
are equivalent. The multiplication of the objective value of a minimising problem
by −1 results in a maximising problem and vice versa. Thus, in the following only
minimising problems are considered.
In principle there are two possibilities to solve such optimisation problems. On the
one hand exact solutions can be computed forming an exact optimum of the selected
problem. Scheduling problems belong to the class of NP-hard problems [19] and
therefore exponential run-time would be needed to compute an exact solution. On
the other hand it is possible to apply approximation algorithms like heuristic algo-
rithms [19, 29]. These algorithms have polynomial run-time and produce solutions
that are guaranteed to be within a �xed percentage of the actual optimum. Any ap-
proach without formal guarantee of performance can be considered a heuristic. Such
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approaches are useful in practical situations if no better methods are available [19].
This chapter introduces the used heuristic algorithms. Starting with the simple local
search more sophisticated approaches like simulated annealing and threshold accept-
ing are considered. Furthermore Genetic algorithms are discussed and the determin-
istic optimisation is extended with the capability of due dates. Another important
part is the stochastic optimisation of scheduling problems using a sequential paired
t-test and variance reduction techniques.

4.2 Local Search
Local search is an iterative procedure which moves from one solution in the search
space S to another as long as necessary. In order to systematically search through
S, the possible moves from a solution s to the next solution should be restricted in
some way. To describe such restrictions a neighbourhood structure N : S → 2S is
introduced on S. For each s ∈ S, N(s) describes the subset of solutions which can be
reached in one step by moving from s. The set N(s) is called the neighbourhood of s.
Usually it is not possible to calculate the neighbourhood structure N(s) beforehand
because S has an exponential size. To overcome this di�culty, a set AM of allowed
modi�cations F : S → S is introduced. For a given solution s, the neighbourhood of
s can be de�ned by N(s) = {F (s) |F ∈ AM}.
Using these de�nitions, a local search method may be described as follows. Each
iteration starts with a solution s ∈ S and choose a solution s′ ∈ N(s) or a
modi�cation F ∈ AM which provides s′ = F (s). Based on the values of the objective
function f : S → R, f(s) and f(s′) , the starting solution of the next iteration is
chosen. According to di�erent criteria used for the choice of the starting solution of
the next iteration di�erent types of local search techniques are arisen [19].
The iterative improvement algorithm takes the solution with the smallest value of
the objective function and can be formulated as follows:

Algorithm Iterative Improvement:
begin

choose initial solution s ∈ S

repeat
generate neighbour solution s′ ∈ N(s)

if f(s′) ≤ f(s) then
s := s′

until f(s′) ≤ f(s), ∀ s′ ∈ N(s)

end
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4.3 Simulated Annealing
Local search algorithms are simple to implement and quick to execute, but they have
the main disadvantage that they terminate in the �rst local minimum which might
give an objective function that deviates substantially from the global minimum.
The reason why a local search algorithm terminates in the �rst local minimum it
encounters is that only transitions corresponding to a decrease in the objective
function are accepted by the algorithm. Alternatively, an algorithm should be
considered which attempts to avoid becoming trapped in a local minimum by some-
times accepting transitions corresponding to an increase in the objective function.
Simulated Annealing is an example of the latter approach where in addition to
cost-decreasing transitions, cost-increasing transitions are accepted with a non-zero
probability which decreases gradually as the algorithm continues its execution [30].
Simulated Annealing (SA) exploits an analogy between the way in which a metal
cools and freezes into a minimum energy crystalline structure (the annealing process)
and the search for a minimum in a more general system. The algorithm is based
upon that of Metropolis et al. [31], which was originally proposed as a means of
�nding the equilibrium con�guration of a collection of atoms at a given temperature.
Kirkpatrick et al. [32] proposed in 1983 that the Metropolis algorithm forms the
basis of an optimisation technique for combinatorial and other problems.
The pseudo-code of the local search algorithm is extended for the Simulated
Annealing algorithm in the following way:

Algorithm Simulated Annealing:
begin

generate initial solution s ∈ S

i := 0

repeat
generate neighbour solution s′ ∈ N(s)

if f(s′) ≤ f(s) then
s := s′

else if min(1, exp(f(s)−f(s′)
ci

)) > random([0, 1]) then
s := s′

ci+1 := g(ci)

i := i + 1

until termination criterion
end
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Simulated Annealing is a method which seeks to avoid being trapped in a local
minimum. It is a randomised method because:

• s′ is chosen randomly from N(s)

• in the i− th step s′ is accepted with probability

min(1, exp(
f(s)− f(s′)

ci

))

where (ci) is a sequence of positive control parameters with limi→∞ ci = 0.

The interpretation of this probability is as follows. If f(s′) ≤ f(s), then s is replaced
by s′ with probability one. If, on the other hand, f(s′) > f(s), then s is replaced
by s′ with some probability. This probability decreases with increasing i. In other
words, a local minimum can be left, but the probability for doing so will be low
after a large number of steps. In the Simulated Annealing algorithm random[0, 1]

denotes a function which yields a uniformly distributed random value between 0 and
1. Furthermore, the sequence (ci) is created by a function g, i.e. ci+1 = g(ci) ∀ i [19].

4.3.1 Neighbourhood Functions
The neighbourhood function contains the allowed modi�cations for creating neigh-
bour solutions of a given solution based on one move or step. In the following three
neighbourhood functions are introduced which are used and implemented in this
work. Depending on the underlying scheduling problem each neighbourhood func-
tion can have its advantages in �nding good and feasible neighbour solutions. In case
of sequences with repetition a generalised version of the neighbourhood functions can
be used to overcome ine�ective moves. If the given solution consists of more input se-
quences the selected neighbourhood function will only change one randomly selected
sequence.

Order-based Function

The order-based neighbourhood function selects two tasks at random and exchanges
them in the sequence. In the following example task 6 and task 8 are selected and
exchanged:

input sequence: 1 4 10 5 6 9 7 8 3 2
order-based: 1 4 10 5 8 9 7 6 3 2

For sequences with repetition it can happen that the same task can be selected twice.
An exchange of these two selected tasks would have no e�ect and exactly the same
solution would be created. To overcome this problem only di�erent tasks can be
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selected in the general order-based neighbourhood function. Now marked task 3 and
task marked 4 are selected and exchanged:

input sequence: 1 2 1 5 3 3 5 4 6 4
general order-based: 1 2 1 5 4 3 5 3 6 4

Swap-based Function

The swap-based neighbourhood function selects one task at random and exchanges
it with an adjacent task. In the following example task 9 is selected and exchanged
with task 7:

input sequence: 1 4 10 5 6 9 7 8 3 2
swap-based: 1 4 10 5 6 7 9 8 3 2

In the generalised version of the swap-based neigbourhood function it is not possible
to exchange two equal tasks. In this example marked task 1 is selected and exchanged
with the marked adjacent task 5:

input sequence: 1 2 1 5 3 3 5 4 6 4
general swap-based: 1 2 5 1 3 3 5 4 6 4

Position-based Function

The position-based neighbourhood function deletes a randomly selected task of the
sequence and puts it to a newly inserted place at an arbitrary position. In other
words �rst two positions of tasks are selected at random. The task at the smaller
position is deleted and newly inserted at the larger position. The tasks between the
the two positions are shifted one position to the left. In the following example task
5 is deleted and newly inserted at the former position of task 3:

input sequence: 1 4 10 5 6 9 7 8 3 2
position-based: 1 4 10 6 9 7 8 3 5 2

For sequences with repetition it can happen that the same task is repeated one after
the other. If the two randomly selected positions cover a part of similar tasks the
position-based neighbourhood function will have no e�ect. To overcome this problem
a generalised version of the position-based neighbourhood function is de�ned. In the
following example the marked task 1 is deleted and newly inserted at the former
position of the marked task 6:

input sequence: 1 2 1 5 3 3 5 4 6 4
general position-based: 1 2 5 3 3 5 4 6 1 4
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4.3.2 Cooling Strategies
Most features in Simulated Annealing like solution space, neighbourhood functions or
objective function are �xed by de�nition. The only feature which is variable during
the calculation is the sequence of the control parameter. For Simulated Annealing
this control parameter can be denoted as the temperature. Therefore one of the most
important features in simulated annealing is the choice of the annealing schedule, and
many attempts have been made to derive or suggest good schedules. The annealing
procedure involves �rst "melting" the system at a high temperature, then repeatedly
lowering the temperature by a constant factor α (0 < α < 1), taking enough steps at
each temperature to keep the system close to equilibrium, until the system approaches
the ground state [33]. In this work three di�erent cooling strategies are used and
implemented.

Exponential

The exponential schedule is de�ned by

T (i) = T0α
i

where i is the step count.

Linear

The linear schedule is de�ned by

T (i) = T0 − αi

where i is the step count. If the value of the linear schedule would be negative it is
set to zero.

Logarithmic

The logarithmic schedule is de�ned by

T (i) =
T0

log (i + d)

where i is the step count and parameter d > 0

Figure 4.1 shows the curves of the three cooling strategies. The starting temperature
is set to 250. For the exponential schedule the constant factor α is set to 0.98. For
the linear schedule α is equal to 1. In this example both cooling strategies yield
zero or a value near to zero after 250 iterations. The logarithmic schedule will lead
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the system to the global minimum state in the limit of in�nite time. In this case
parameter d is set to 1. If parameter d < e− 1 = 1.71828183 the logarithm of (i+d)
is smaller than 1 in the �rst step. Therefore an increase of the temperature happens
in the �rst step which can be seen in �gure 4.1.
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Figure 4.1: Cooling Strategies

4.3.3 Termination Criteria
The termination criterion is an important part and concept of heuristic algorithms.
For all iterative algorithms the type and time of the termination is essential. It can
happen that the goodness of the solution is signi�cantly improved if more iterations
are done and simulated. For Simulated Annealing the following termination or stop
criteria can be chosen and the optimisation stops if one of these criteria is ful�lled:

• Iterations - If a certain number of iterations is reached the simulation stops.

• Time Limit - If the current simulated time exceeds the given time limit the
simulation stops.

• Function Limit - If a certain value of the objective function is reached the
simulation stops.
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4.4 Threshold Accepting
The Threshold Accepting algorithm (TA) is one of the youngest heuristic algorithms.
Dueck and Scheuer [34] proposed Threshold Accepting as a variance of Simulated
Annealing in 1990. The essential di�erence between SA and TA consists of the
di�erent acceptance rules. TA accepts every new con�guration which is not much
worse than the old one whereas SA accepts worse solutions only with rather small
probabilities. An apparent advantage of TA is its greater simplicity. It is not
necessary to compute probabilities or to make random decisions. The pseudo-code
for the Threshold Accepting algorithms can be de�ned in the following way:

Algorithm Threshold Accepting:
begin

generate initial solution s ∈ S

i := 0

repeat
generate neighbour solution s′ ∈ N(s)

if f(s′) ≤ f(s) then
s := s′

else if f(s′)− f(s) < ti then
s := s′

ti+1 := g(ti)

i := i + 1

until termination criterion
end

A newly generated solution s′ ∈ N(s) is now accepted if the di�erence f(s′) − f(s)

is smaller than some non-negative threshold t. The threshold t is a positive control
parameter which is gradually reduced in an analogue way to the temperature of the
Simulated Annealing algorithm. The neighbourhood functions de�ned in the previous
section can also be used for the TA algorithm. Further, the cooling strategies for the
temperature can be used for the threshold. The TA algorithm also has the same
termination criteria as the SA algorithm.
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4.5 Genetic Algorithms
Genetic algorithms (GA) are numerical optimisation algorithms inspired by both
natural selection and natural genetics. The method is a general one, capable of being
applied to an extremely wide range of problems. Genetic algorithms were developed
by John Holland [35] in the late sixties. They combine survival of the �ttest among
string structures with a structured yet randomised information exchange to form a
search algorithm with some of the innovative �air of human search. In the original
de�nition the di�erent solutions of the search space are represented and encoded in
binary strings but also other encodings are possible. Especially for combinatorial
and scheduling problems the solutions can be encoded directly. This means that
the sequence of tasks can be directly used in the algorithm. In the GA lingo all
used terms and elements have special names. A solution of the problem is called
individual or phenotype and its representation is called genome, chromosome or
genotype. In case of scheduling problems those two de�nitions are coincided. The
search space of the selected problem is called �tness landscape and the objective
function is called �tness function. Compared to Simulated Annealing or Threshold
Accepting Genetic algorithms are initialised with a population of individuals which
are usually random and be spread throughout the search space. A typical algorithm
then uses three operators, selection, crossover, and mutation to direct the population
over a series of time steps or generations towards convergence at the global optimum
[36, 37]. The pseudo-code for a GA can be de�ned in the following way:

Algorithm GA:
begin

i := 0

generate initial population P (i)

evaluate individuals in P (i)

repeat
i := i + 1

select P (i) from P (i− 1)

recombine individuals in P (t)

evaluate individuals in P (t)

until termination criterion
end

Genetic algorithms are suitable for problems with an unknown search space
and for cases where no other methods can be used. The algorithm and its operators
do not need any problem speci�c information. Therefore scheduling problems can be
solved and optimised by the use of Genetic algorithms [38, 39, 40].
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4.5.1 Fitness Scaling
Fitness scaling converts the raw �tness scores that are returned by the �tness function
to values in a range that is suitable for the selection function. The selection func-
tion uses the scaled �tness values to select the parents of the next generation. The
selection function assigns a higher probability of selection to individuals with higher
scaled values. The range of the scaled values a�ects the performance of the Genetic
algorithm. If the scaled values vary too widely, the individuals with the highest scaled
values reproduce too rapidly, taking over the population gene pool too quickly, and
preventing the Genetic algorithm from searching other areas of the solution space.
On the other hand, if the scaled values vary only a little, all individuals have approxi-
mately the same chance of reproduction and the search will progress very slowly [41].
In this work the following �tness scaling functions are used:

• Rank - The �tness scaling function rank scales the raw scores based on the
rank of each individual instead of its score. The rank of an individual is its
position in the sorted scores. The rank of the most �t individual is 1, the next
most �t is 2, and so on. Rank �tness scaling removes the e�ect of the spread
of the raw scores

• Top - Top scaling scales the top individuals equally. The number of top indi-
viduals can be de�ned. Each of the selected individuals is assigned an equal
scaled value, while the rest are assigned the value 0

• Proportional - Proportional scaling makes the scaled value of an individual
proportional to its raw �tness score.

• Shift linear - Shift linear scaling scales the raw scores so that the expectation
of the �ttest individual is equal to a constant multiplied by the average score.
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Figure 4.2: Raw scores of sorted individuals
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Figure 4.2 shows the raw scores of selected sorted individuals. The raw scores are
scaled with the four di�erent scaling functions and the results of the scaled scores
can be seen in �gure 4.3.
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Figure 4.3: Results of scaling functions

4.5.2 Selection
Selection attempts to apply pressure upon the population in a manner similar to that
of natural selection found in biological systems. Poorer performing individuals are
weeded out and better performing, or �tter individuals have a greater than average
chance of promoting the information they contain within the next generation. The
selection function chooses parents for the next generation based on their scaled values
from the �tness scaling function. An individual can be selected more than once as
a parent, in which case it contributes its genes to more than one child [41]. In this
work the following selection functions are used:

• Roulette - Roulette selection chooses parents by simulating a roulette wheel,
in which the area of the section of the wheel corresponding to an individual
is proportional to the individual's expectation. The algorithm uses a random
number to select one of the sections with a probability equal to its area.

• Tournament - Tournament selection chooses each parent by choosing a certain
number of players de�ned as tournament size at random and then choosing the
best individual out of that set to be a parent. Selection pressure can be easily
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adjusted by changing the tournament size. If the tournament size is larger,
weak individuals have a smaller chance to be selected.

• Remainder - Remainder selection assigns parents deterministically from the
integer part of each individual's scaled value and then uses roulette selection on
the remaining fractional part. For example, if the scaled value of an individual
is 2.3, that individual is listed twice as a parent because the integer part is 2.
After parents have been assigned according to the integer parts of the scaled
values, the rest of the parents are chosen stochastically. The probability that a
parent is chosen in this step is proportional to the fractional part of its scaled
value.

• Stochastic uniform - The Stochastic uniform function lays out a line in which
each parent corresponds to a section of the line of length proportional to its
scaled value. The algorithm moves along the line in steps of equal size. At each
step, the algorithm allocates a parent from the section it lands on. The �rst
step is a uniform random number less than the step size.

• Uniform - Uniform selection chooses parents randomly and therefore it is not
a very e�ective search strategy. But it can be used for testing the algorithm.

4.5.3 Reproduction
On the one hand the reproduction depends on the �tness of the individuals selected
through the selection function and on the other hand the reproduction is controlled
by the operations Elitism, Mutation and Crossover. In this section those operations
and the producing of the next generation are discussed.

Elitism

Elitism is a strategy to prevent from loosing the best solutions of the current pop-
ulation. The �ttest individuals are copied to the population in the next generation.
These individuals are called elite children. The number of individuals which are
guaranteed to survive to the next generation is called elite count. Elitism can very
rapidly increase performance of GA, because it prevents losing the best found solu-
tion to date. But setting elite count to a high value causes the �ttest individuals to
dominate the population, which can make the search less e�ective.

Creating Next Generation

At each step, the Genetic algorithm uses the current population to create the children
that make up the next generation. The algorithm selects a group of individuals in the
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current population, called parents, who contribute their information � the entries
of their vectors � to their children. Three types of children are building the next
generation:

• Elite children

• Crossover children

• Mutation children

The crossover rate speci�es the fraction of each population, other than elite children,
that are made up of crossover children. A crossover fraction of 1 means that all
children other than elite individuals are crossover children, while a crossover fraction
of 0 means that all children are mutation children.

4.5.4 Mutation
Mutation is a genetic operator that is used to alter one or more genes in an individual.
Mutation provides genetic diversity and enable the Genetic algorithm to search a
broader space. This operator is used to prevent GAs from stagnating at local optima.
In this work the neighbourhood functions for SA and TA de�ned in the previous
sections can be used for mutation in an analogous manner:

• Order-based mutation

• Swap-based mutation

• Position-based mutation

4.5.5 Crossover
The backbone of genetic search are the crossover operators. They combine the geno-
types of two parents in the hopes to produce two even more promising children. The
di�erent solutions of scheduling problems can be directly encoded for the Genetic
algorithm. Therefore special crossover operators have to be de�ned. In this work
several crossover operators are implemented and used. The �rst two operators are
order-based crossover (OX1) and partially matched crossover (PMX) proposed by
Goldberg [36]. Next follows a second order-based crossover (OX2, GOX), a position-
based crossover (PX, GPX) and an uniform crossover (UX, GUX) operator introduced
by Bierwirth [42] and Mattfeld [29]. For the three latter operators generalised versions
exist which can be used in case of sequences with repetition.
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Order-based Crossover 1

The order-based crossover operator works by �rst picking two crossing sites uniformly
at random. In the example below these crossing points are de�ned at position 4 and
7. In the next step the numbers of this matching section are exchanged to build the
�rst part of the two children. Then the holes are �lled starting with the �rst task
next to the right hand side of the matching section. If the selected number is not yet
in the child it is added and otherwise the next number is considered until all holes
are �lled. Child 1 gets its remaining numbers from parent 1 and, respectively, child
2 from parent 2. OX1 tends to respect the relative position of the tasks.

parent 1: 1 2 3 |4 5 6 7| 8
parent 2: 2 6 4 |5 7 1 3| 8

child 1: * * * |5 7 1 3| *
child 2: * * * |4 5 6 7| *

child 1: 2 4 6 |5 7 1 3| 8
child 2: 2 1 3 |4 5 6 7| 8

Partially Matched Crossover

The partially matched crossover operator starts with the same step as the order-based
crossover operator. The matching section is exchanged and afterwards each parent
inherits all possible tasks to each o�spring. The remaining holes are �lled through
a positionwise exchange of the missing tasks de�ned by the matching section. The
following exchange is used in the example below: 1 ↔ 6 ∧ 3 ↔ 7 ↔ 5 ↔ 4 ⇔ 3 ↔ 4.
In contrast to the order-based crossover the partially matched crossover operator
tends to respect the absolute position of the tasks.

parent 1: 1 2 3 |4 5 6 7| 8
parent 2: 2 6 4 |5 7 1 3| 8

child 1: * 2 * |5 7 1 3| 8
child 2: 2 * * |4 5 6 7| 8

child 1: 6 2 4 |5 7 1 3| 8
child 2: 2 1 3 |4 5 6 7| 8
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Order-based Crossover 2

The OX2 operator selects randomly a matching section. The length of the matching
section can be arbitrary de�ned for each operator but it should be chosen in between
one half and one third of the total length. For that both parents can inherit nearly
the same amount of information to the children. In the next step all numbers of the
matching section are deleted in the respective parent. The remaining tasks and the
respective matching section are merged, whereas the matching section is inserted at
the position of the �rst occurrence of the �rst task in the matching section. Again
the OX2 operator tends to inherit the relative order of the operations.

parent 1: �1 2 �3 |4 �5 6 �7| 8
parent 2: 2 6 4 |5 7 1 3| 8
child 1: 2 4 |5 7 1 3| 6 8

parent 1: 1 2 3 |4 5 6 7| 8
parent 2: 2 �6 �4 |�5 �7 1 3| 8
child 2: 2 |4 5 6 7| 1 3 8

In the generalised order-based crossover a so called index is de�ned to extend the
order-based crossover in case of sequences with repetition. The index shows a counter
for the occurrence of all tasks in the sequence. Now the selected tasks are deleted and
merged corresponding to their indices. Using this technique it may happen that the
indices of some tasks get displaced. Hence GOX introduces an implicit mutation into
the children chromosome. But the choice of the crossover cut takes care of this to be
rare. Because GOX arises from a generalisation of OX2, its application to ordinary
permutations (all counting indices are 1) generates the same results than OX2.

parent 1: �2 |1 �2 2 �3 �1| 3 3 2 �1
index 1: �1 |1 �2 3 �1 �2| 2 3 4 �3
parent 2: 1 |2 2 1 3 1| 2 3 2 3
index 2: 1 |1 2 2 1 3| 3 2 4 3
child 1: |2 2 1 3 1| 1 2 3 3 2

parent 1: 2 |1 2 2 3 1| 3 3 2 1
index 1: 1 |1 2 3 1 2| 2 3 4 3
parent 2: �1 |2 �2 �1 �3 1| �2 3 2 3
index 2: �1 |1 �2 �2 �1 3| �3 2 4 3
child 2: |1 2 2 3 1| 2 1 3 2 3
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Position Crossover

The position and the generalised position crossover work similarly to the order-based
and generalised order-based crossover. The only di�erence is that PX and GPX insert
the tasks of the matching section in the child at that position where it occurs in the
parent. Therefore the absolute order is respected by neglecting the relative order of
the operations.

parent 1: �1 2 �3 |4 �5 6 �7| 8
parent 2: 2 6 4 |5 7 1 3| 8
child 1: 2 4 6 |5 7 1 3| 8

parent 1: 1 2 3 |4 5 6 7| 8
parent 2: 2 �6 �4 |�5 �7 1 3| 8
child 2: 2 1 3 |4 5 6 7| 8

Generalised version of the order-based crossover:

parent 1: �2 |1 �2 2 �3 �1| 3 3 2 �1
index 1: �1 |1 �2 3 �1 �2| 2 3 4 �3
parent 2: 1 |2 2 1 3 1| 2 3 2 3
index 2: 1 |1 2 2 1 3| 3 2 4 3
child 1: 1 |2 2 1 3 1| 2 3 3 2

parent 1: 2 |1 2 2 3 1| 3 3 2 1
index 1: 1 |1 2 3 1 2| 2 3 4 3
parent 2: �1 |2 �2 �1 �3 1| �2 3 2 3
index 2: �1 |1 �2 �2 �1 3| �3 2 4 3
child 2: 2 |1 2 2 3 1| 1 3 2 3

Uniform Crossover

The uniform and generalised uniform crossover purely respect the absolute order of
operations. The children are initially empty. A parent is chosen at random and
the operation at the �rst position of the parental chromosome is appended to the
o�spring. Then this operation is deleted from both parents. This step is repeated
until both parent strings are empty and the children contain all operations involved.
In the generalised version indices are used to distinguish the reoccurring operations.
In the examples below the random strings de�ne which parent is chosen. The bold
tasks are taken to build the selected o�spring.
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parent 1: 1 �2 3 4 5 �6 7 �8
parent 2: 2 6 �4 �5 �7 �1 �3 8
random: 2 1 1 1 1 2 1 2
child 1: 2 1 3 4 5 6 7 8

parent 1: 1 �2 3 �4 �5 �6 7 �8
parent 2: 2 6 4 5 �7 �1 �3 8
random: 1 2 1 2 2 2 1 2
child 2: 1 2 3 6 4 5 7 8

Generalised version of uniform crossover:

parent 1: �2 �1 �2 2 3 �1 3 3 �2 �1
index 1: �1 �1 �2 3 1 �2 2 3 �4 �3
parent 2: 1 2 2 1 �3 1 �2 �3 2 �3
index 2: 1 1 2 2 �1 3 �3 �2 4 �3
random: 2 2 2 2 1 1 2 1 2 1
child 1: 1 2 2 1 2 3 1 3 2 3

parent 1: �2 �1 �2 2 �3 �1 �3 3 �2 �1
index 1: �1 �1 �2 3 �1 �2 �2 3 �4 �3
parent 2: 1 2 2 1 3 1 �2 3 2 �3
index 2: 1 1 2 2 1 3 �3 2 4 �3
random: 2 2 2 2 2 1 2 2 1 2
child 2: 1 2 2 1 3 2 1 3 3 2

4.5.6 Migration
In this work isolated subpopulations can be de�ned for the Genetic algorithm to gain
better solutions. Migration speci�es how individuals move between these subpopula-
tions. When migration occurs, the best individuals from one subpopulation replace
the worst individuals in another subpopulation. Individuals that migrate from one
subpopulation to another are copied. They are not removed from the source subpop-
ulation. Migration can take place in one or both directions:

• Forward - If the direction is set to forward, migration takes place toward
the last subpopulation. That is, the n − th subpopulation migrates into the
(n + 1)− th subpopulation.

• Both - If the direction is set to both, the n − th subpopulation migrates into
both the (n− 1)− th and the (n + 1)− th subpopulation.
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4.5.7 Termination Criteria
For Genetic algorithms the following termination or stop criteria can be chosen and
the optimisation stops if one of these criteria is ful�lled:

• Generations - If a certain number of generations is reached the simulation
stops.

• Time Limit - If the current simulated time exceeds the given time limit the
simulation stops.

• Fitness Limit - If a certain value of the �tness function is reached the simu-
lation stops.

• Stall Generations - Function Tolerance - If the weighted average change
in the �tness function value over the de�ned number of generations is less than
the de�ned function tolerance the simulation stops.

• Stall Time Limit - If there is no improvement in the best �tness value for an
interval of time in seconds speci�ed by Stall time the simulation stops.

4.6 Due-date Scheduling
In many scheduling problems, e.g. production systems, the �nishing times of certain
tasks play an important role concerning the optimisation of the overall cycle time.
In the deterministic case each simulation run of a certain system con�guration yields
exactly the same result. Hence in this work it is possible to extend deterministic
scheduling problems with the capability of due dates for certain and interesting tasks
because the excess of the due dates is signi�cant for each di�erent system con�gura-
tion. If the de�ned due dates are exceeded during the simulation a penalty time will
be added to the overall cycle time at the end of the simulation. Now the objective or
�tness function of the scheduling problem represents the overall cycle time plus the
cumulative penalty time of the due dates. The new value of the �tness function can
be used for the direct optimisation of the scheduling problems and the simultaneous
indirect optimisation of the due dates.
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4.7 Stochastic Optimisation
The analysis and the comparison of the output data of terminating simulation models
using random numbers and stochastic distribution functions is a highly sophisticated
problem. The di�culty is that the simulation output data are stochastic, so compar-
ing two di�erent system con�gurations on the basis of only a single run of each is a
very unreliable approach. The results of one simulation run are not signi�cant and in
general a certain number of replications should be done to avoid making serious errors
leading to fallacious conclusions and poor decisions [43]. In this section a sequential
paired-t test is introduced and a variance reduction is presented.

4.7.1 Paired-t Con�dence Intervall
In this work the comparison of di�erent system con�gurations is reduced to a pairwise
comparison. For stochastic simulation models it is di�cult to get exact comparable
and signi�cant results for many di�erent system con�gurations. Therefore only two
di�erent system con�gurations are taken into account to decide which one of the
two alternatives is better. On this account the stochastic optimisation is only im-
plemented for Simulated Annealing and Threshold Accepting. The comparison is
e�ected by forming a con�dence interval for the di�erence in the two expectations
to see whether the observed di�erence is signi�cantly di�erent from zero. If the
con�dence interval misses or contains zero the test for the di�erence is accepted or
rejected, respectively [43].
For i = 1, 2, let Xi1, Xi2, . . . , Xin be a sample of n observations from system con-
�guration i and let µi = E(Xij) be the expected response of the interest. Now a
con�dence interval for ζ = µ1 − µ2 is constructed. X1j and X2j can be paired to
de�ne Zj = X1j − X2j, for j = 1, 2, . . . , n. Then the Zj's are random variables and
E(Zj) = ζ de�ne the quantity for the interesting con�dence interval:
Using

Z̄(n) =

n∑
j=1

Zj

n

and

V̂ ar[Z̄(n)] =

n∑
j=1

[Zj − Z̄(n)]2

n(n− 1)

forms the approximate 100(1− α) percent con�dence interval

Z̄(n)± tn−1,1−α
2

√
V̂ ar[Z̄(n)]
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If the Zj's are normally distributed, this con�dence interval is exact, i.e., it covers ζ

with probability 1− α. Otherwise it can be relied on the central limit theorem [43],
which implies that this coverage probability will be near 1−α for large n. The de�ned
con�dence interval is called the paired-t con�dence interval and in its derivation the
two-system problem is essentially reduced to one involving a single sample, namely,
the Zj's. In this sense the paired-t approach is the same as the method for analysis
of a single system where well-known sequential con�dence-interval procedures can be
applied. Another important point is that X1j and X2j do not have to be indepen-
dent nor does it have to be assumed that V ar(X1j) = V ar(X2j). Allowing positive
correlation between X1j and X2j can be of great importance, since this leads to a
reduction in V ar(Zj) and thus to a smaller con�dence interval. Variance reduction
techniques like Common Random numbers (CRN) can be used to induce this positive
correlation between the observations on the di�erent system con�gurations [43].

4.7.2 Sequential Estimation
Law and Kelton [43] propose a sequential procedure for estimating a con�dence in-
terval for the output of a single system with a speci�ed relative error that takes only
as many replications as are actually needed. Let X1, X2, . . . be a sequence of random
variables of the replications that need not be normal. The speci�c objective of the
procedure is to obtain an estimate of µ = E(Xi) with a relative error of γ (0 < γ < 1)

and a con�dence level of 100(1 − α) percent. Now an initial number of replications
n0 ≥ 2 is chosen and let

δ(n, α) = tn−1,1−α
2

√
S2(n)

n

be the usual con�dence-interval half-length. Then the sequential procedure is as
follows:

1. Make n0 replications of the simulation and set n = n0

2. Compute X̄(n) and δ(n, α) from X1, X2, . . . , Xn.

3. If δ(n, α)

|X̄(n)| ≤ γ′ stop, where γ′ = γ(1 + γ) is the adjusted relative error.

I(α, γ) = [X̄(n)− δ(n, α), X̄(n) + δ(n, α)]

is an approximate 100(1−α) percent con�dence interval for µ with the desired preci-
sion. Otherwise, n is replaced by n+1 and an additional replication is done following
step 2 of the procedure.
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4.7.3 Variance Reduction
Variance reduction techniques try to reduce the variance of the sample mean. Depend-
ing on the selected problem there exist many di�erent variance reduction techniques.
In this case Common Random Numbers (CRN) are used [43, 44]. This technique is
applied when two or more alternative system con�gurations are compared. Let X1j

and X2j be the observations from the �rst and second con�gurations on the j − th

independent replication, and ζ = µ1 − µ2 = E(X1j) − E(X2j). Let Zj = X1j −X2j

for j = 1, 2, . . . , n replications, then E(Zj) = ζ so

Z̄(n) =

∑n
j=1 Zj

n

is an unbiased estimator of ζ and

V̂ ar[Z̄(n)] =
V ar(Zj)

n
=

V ar(X1j) + V ar(X2j)− 2Cov(X1j, X2j)

n

If the simulations of the two di�erent con�gurations are done independently, i.e., with
di�erent random numbers, X1j and X2j will be independent, so that Cov(X1j, X2j) =

0. On the other hand, if the simulations of the con�gurations 1 and 2 can be done
somehow that X1j and Xsj are positively correlated, then Cov(X1j, X2j) > 0, so that
the variance of the estimator Z̄(n) is reduced. CRN is a technique where this positive
correlation is tried to be induced by using the same random numbers to simulate all
con�gurations. Therefore the deterministic, reproducible nature of random number
generators is used. Unfortunately, there is no completely general proof that CRN
works which means that it will always reduce the variance. Even if it does work, it
is not known beforehand how great a reduction in variance might be. The e�cacy of
CRN depends wholly on the particular models being compared. To implement CRN
properly, the random numbers have to be synchronized across the di�erent system
con�gurations on a particular replication. Ideally, a speci�c random number used for
a speci�c purpose in one con�guration is used for exactly the same purpose in the
other con�guration [43].
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Chapter 5

MATLAB PetriSimM Toolbox

5.1 Introduction
MATLAB, the classical engineering tool, does not really o�er tools to handle discrete
event systems based on Petri Nets. One commercial tool can be obtained by the
MATLAB Connections Program [45, 46]. There are few Petri Net tools based on
MATLAB which are free but these tools are rudimentary and can handle only the
basics of Petri Nets. A lot of other tools exist for analysis, modelling and simulation
of discrete event systems using the advantages of Petri Nets [47, 48] but all these
tools cannot handle the optimisation of scheduling problems.
In this work an open source MATLAB toolbox for Petri Nets is presented and intro-
duced. The so called MATLAB PetriSimM toolbox is based on a basic toolbox [49]
which deals with analysis, supervisory control synthesis, and non-timed simulation.
This basic toolbox is programmed in MATLAB version 5.3 and is therefore adapted
to MATLAB version 7.2 (R2006a) to form the MATLAB PetriSimM toolbox. The
toolbox is embedded in the MATLAB environment and its usage requires version 7.0
or higher. Furthermore the toolbox is extended with the capability of Timed Petri
Nets and timed simulation using the holding durations principle [50, 51, 52]. In an-
other step Coloured Petri Nets are developed for the use in the MATLAB PetriSimM
toolbox. The enabling duration principle is added as a second approach of implement-
ing time into Petri Nets. A new way of de�ning �ring sequences is found to be able
to model scheduling problems being independent of the occurrence of any con�icts
[53, 54]. Finally the toolbox is extended with the optimisation of scheduling prob-
lems containing heuristic algorithms like Simulated Annealing, Threshold Accepting
and Genetic Algorithms. In case of stochastic processes a sequential paired t-test
and variance reduction techniques are used and implemented to solve the stochastic
optimisation for sequencing and scheduling problems. To sum up, the sophisticated
MATLAB PetriSimM toolbox o�ers the capabilities of analysis, modelling and sim-
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ulation of Petri Nets. Furthermore it is possible to optimise scheduling problems
based on Timed, Coloured, and Stochastic Petri Nets. The open source MATLAB
PetriSimM toolbox can be used for education in a graduate level and for modelling
and simulating real life processes of discrete event systems in equal measure.
In this chapter the used software MATLAB is introduced. Furthermore the basic
features of the MATLAB PetriSimM toolbox are outlined and the underlying data
structure is shown. Next follows an introduction to the Priority wizard of the toolbox
containing the capabilities of de�ning priorities and sequences to Petri Nets. Another
part is the visualisation of results using Gantt charts and marking plots. Afterwards
the colour and transition wizards are discussed concerning the use of Coloured Petri
Nets. Next follows the implementation of the sophisticated optimisation containing
algorithms and the use of the optimisation wizard. Finally, selected benchmarks of
the MATLAB PetriSimM toolbox are shown.

5.2 MATLAB
This section should introduce the used software environment MATLAB by answering
the following two questions: "What is MATLAB?" and "Why MATLAB is used?".

5.2.1 What is MATLAB?
MATLAB is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment where
problems and solutions are expressed in familiar mathematical notation. Typical uses
include

• Math and computation

• Algorithm development

• Data acquisition

• Modelling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scienti�c and engineering graphics

• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does
not require dimensioning. Therefore many technical computing problems, especially
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those with matrix and vector formulations, can be solved in a fraction of the time it
would take to write a program in a scalar noninteractive language such as C or For-
tran. The name MATLAB stands for matrix laboratory. Today, MATLAB engines
incorporate special libraries, embedding state-of-the-art software for matrix compu-
tation. MATLAB has evolved over a period of years with input from many users.
In university environments, it is the standard instructional tool for introductory and
advanced courses in mathematics, engineering, and science. In industry, MATLAB is
the tool of choice for high-productivity research, development, and analysis. MAT-
LAB features a family of add-on application-speci�c solutions called toolboxes. Very
important to most users of MATLAB, toolboxes allow them to learn and apply spe-
cialised technology. Toolboxes are comprehensive collections of MATLAB functions
that extend the MATLAB environment to solve particular classes of problems. Areas
in which toolboxes are available include signal processing, control systems, neural
networks, fuzzy logic, wavelets, simulation, and many others [41].

5.2.2 Why MATLAB is used?
This glorious description of MATLAB suggests that the MATLAB environment can
solve nearly every problem. But with a critical point of view MATLAB is only the
second best solution for the problem in many cases. As mentioned in the previous
section speed and time spent for solving and modelling is an interesting factor of
solving problems. On the one hand it is important to be fast in modelling and on
the other hand the speed of the simulation should not left out. In this case there are
many reasons for using MATLAB. First of all, the previous version of the toolbox is
programmed in MATLAB version 5.3. But this is also done because Petri Nets can be
described as matrices and the simulation is done by the use of matrix manipulations.
MATLAB o�ers a lot of built-in matrix manipulation functions which are very fast
if they are used in the right way. This means that the user should avoid using
loops during the programming. Hence using MATALB seems to be a very good
solution for modelling and simulation of Petri Nets. Further advantages are the easy
development of graphical user interfaces including the use of graphical objects and the
whole powerful MATLAB environment can be used for statistical post-processing and
external data �le handling. One disadvantage could be the speed of the simulation and
optimisation depending on the size of the Petri Net and the underlying matrices. But
also other programming languages would have problems with the size of the matrices
and the needed memory resulting in speed problems. To sum up, MATLAB seems to
be a very good solution and tool for this purpose because the MATLAB PetriSimM
toolbox is embedded in the whole MATLAB environment where all features can be
used and the toolbox can be easily extended with further functionalities.
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5.3 Basic Features
This section should give a short overview on the basic features of the MATLAB
PetriSimM toolbox which can be used for modelling, simulation and analysis of dis-
crete event systems based on the behaviour of Petri Nets.

5.3.1 GUI
Figure 5.1 shows a screenshot of the graphical user interface (GUI) of the PetriSimM
toolbox. The GUI is divided into a menu bar, a button bar and an axes area. In
the menu bar di�erent modes can be chosen. The user can switch between analysis,
non-timed simulation, timed simulation based on the holding durations principle,
and timed simulation based on the enabling durations principle. Furthermore models
can be saved, loaded, exported and printed. For each type of simulation several
parameters can be set. Another important part of the menu bar is the options menu
where the priority wizard and Gantt chart wizard can be started. Next to the options
menu the optimisation menu is placed. There several parameters and modes for the
optimisation can be changed and selected. The button bar contains several buttons
for building, changing, zooming, simulating and analysing the Petri Net models. In
the axes area the Petri Net models can be created, simulated and the so called token
game can be shown. Figure 5.1 also contains the Petri Net model of a production
cell which is later used for the otpimisation.

Figure 5.1: Graphical User Interface
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5.3.2 Analysis
The PetriSimM toolbox o�ers several features for the analysis of the modelled Petri
Net. In the analysis section interesting properties like P-invariants, T-invariants,
reachable sets, cover-ability tree, marking bounds and dead markings can be derived.
Furthermore supervisory control methods can be used. All these analysis and con-
trol features are developed in the previous version of the toolbox [49] and are not
further treated in this context. In this work they are only mentioned for the sake of
completeness.

5.3.3 Simulation
The simulation is a main part of the PetriSimM toolbox. It is separated into non-
timed simulation, timed simulation using holding durations and timed simulation
using enabling durations. For all three simulation modes an animation of the token
game can be visualised. But this feature is only used for educational purposes because
through the animation the simulation speed is highly increased. It is possible to
change2 the animation speed in the parameter section and for the optimisation the
animation is deactivated. Another interesting parameter for non-timed simulation is
the �ring probability. This parameter controls the �ring of enabled transitions. This
means that it is randomly decided if an enabled transition can �re or not depending
on the de�ned �ring probability. For timed simulation time delays can be assigned
to the transitions which can be deterministic or stochastic. This means that any
probability distribution function can be de�ned to each transition. For this purpose,
any MATLAB m-�le can be written resulting to a single positive value, or existing
MATLAB probability distribution functions, which can be used to model stochastic
time delays. Only the positive part of the used function is taken. If the result of the
used stochastic function is negative the time delay is set to zero and a warning is
displayed.

5.4 Data Structure
The Petri Net model is created in the axes area of the GUI by using the place,
transition, token, and arc buttons. Each object is placed into the axes by clicking
the left mouse button while the corresponding button is selected. The Petri Net
consists of rectangle and line objects which can be accessed through their handles.
The objects are only used for graphical manipulations. They can be moved, created
or deleted and they are used to realise the animation of the token game. The handles
of the objects are stored and added as application data to the GUI. The simulation
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functions need the matrices describing the Petri Net and therefore a function called
getdata is de�ned to create the input and output matrices using the objects and their
connections. All used data and parameters are also stored as application data. The
MATLAB commands getappdata and setappdata are used to retrieve and save data
associated with the �gure of the GUI. The following �ve data sets are de�ned to store
all objects, parameters and results:

• menus - In this data set all handles of the menu bar are stored. It is used for
changing the menus and their submenus depending on the selected state and
mode of the toolbox.

• buttons - The buttons data set contains all handles of the buttons to control
their visualisation.

• simulation - In the simulation data set all relevant parameters for the simula-
tion are stored. Furthermore all simulation results can be accessed.

• optimisation - The optimisation data set contains all parameters and results
for the optimisation.

• petrinet - In this data set all used object handles of the Petri Net are stored.

5.5 Colour Wizard
The PetriSimM toolbox is supposed to be user friendly and therefore several wizards
are used and implemented to assign the di�erent parameters and to modify the di�er-
ent settings and properties. Figure 5.2 shows a screenshot of the Colour Wizard. The

Figure 5.2: Colour Wizard
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di�erent colours represent the di�erent types of tokens. In the parameter section the
number of desired distinguishable tokens can be de�ned. If more than one tokens are
chosen the so called Colour Wizard can be shown. The Colour Wizard can be used to
change the look and the names of the di�erent token colours. The colours are coded
as RGB values and can be easily modi�ed. It is also possible to reset all settings to
the default values and names. The colours of the used di�erent tokens are interesting
for the animation of the simulation. The so called token game is mainly used for
educational purposes. The colours of the tokens are also used for the visualisation of
the results of the simulation shown in one of the next sections.

5.6 Transition Wizard
The Transition Wizard is used to modify and de�ne the transitions in case of Coloured
Petri Nets. Figure 5.3 shows the Transition Wizard containing 10 transitions. The
graphical description of Petri Nets can be simpli�ed if many identical sub nets are
used. Therefore the transitions of the sub nets are merged together and one transition
of the Petri Net can represent and contain many other transitions. The Transition
Wizard consists of several buttons corresponding to the following functionalities:
transitions can be deleted, new transitions can be added, the names of the transitions
can be modi�ed and the weights of the corresponding arcs can be de�ned.

Figure 5.3: Transition Wizard
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5.7 Priority Wizard
Another important wizard is the so called Priority Wizard. Figure 5.4 shows a screen-
shot of the Priority Wizard. This wizard is used to realise and assign the priorities
and sequences to the transitions. It is possible to switch between priorities and se-
quences and the wizard can therefore be used for both modes. In case of priorities
transitions can be selected and added to disjoint groups and afterwards priority vec-
tors can be assigned.

Figure 5.4: Priority Wizard

Figure 5.4 shows the Priority Wizard displaying the sequence mode. In this example
several sequence groups can be seen. Each group of transitions can be selected and
by the use of the sequence button a sequence or �ring list can be assigned. In special
cases and models it may happen that the same �ring list should be used for other
groups similar in size. Sequence lists can then be de�ned as so called source lists.
This means that for each group there are two possibilities to assign a sequence list.
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On the one hand a sequence list can be directly set and on the other hand another
existing sequence list can be taken corresponding to another group of transitions sim-
ilar in size. Further, a sequence priority vector can be de�ned to the group to o�er
the correct and controlled solving of con�icts between two or more groups of sequence
transitions.
Depending on the modelled scheduling problem the assigned sequence list can di-
rectly represent the �ring list for the respective transitions. It may also happen that
the de�ned sequence contains the information of scheduling but a special function is
needed to decode the sequence to the right �ring list. Another problem speci�cation
is described by the following case. The selected scheduling problem consists of many
di�erent sequences but one sequence is a�ected by another sequence. This means that
a change of the �rst sequence leads to a simultaneous change of the second sequence.
The PetriSimM toolbox o�ers a solution of such problems where sequences depend
on other sequences or conditions. In the parameter section it is possible to register
a so called sequence function handle and several function arguments. This function
handle has to correspond to an existing m-�le representing the user de�ned sequence
function. The prede�ned output and needed input of the sequence function are given
by the simulation part of the stored data structure. Therefore this functionality
should only used by advanced users. The modelling of scheduling problems based on
Petri Nets is limited by the size and the properties of Petri Nets. Using Coloured
Petri Nets enables the modelling of complex problems. Scheduling problems mainly
depend on the used sequences. By the use of arbitrary sequence functions the �ring
of the transitions does not directly depend on the given input sequences. More infor-
mation is put into the Petri Net model and therefore the complexity of the scheduling
problem being modelled can be extended again.

5.8 Results
Results are an important and interesting part for each simulation study. Scheduling
problems focus on the allocation and the utilisation of resources over time. Using
Petri Nets o�er a very simple approach for getting the measurement of the interesting
parameters. In this case only the number of tokens in the places are stored over time
during the simulation. Afterwards it is possible to access and to show selected results
for each place of the Petri Net. Figure 5.5 shows the Gantt Chart Wizard. This
wizard can be used to select arbitrary places and to show a Gantt chart or a marking
plot considering several parameters and properties. The Gantt Chart wizard can
have di�erent buttons and functionalities depending on the selected simulation mode
and the number of used colours. In this case �gure 5.5 shows the Gantt Chart
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Figure 5.5: Gantt Chart Wizard

Wizard for the holding durations principle. The results can be separated to the
information for available, unavailable or all tokens. Furthermore, it is possible to show
the information combined in one graphic for all selected places using the "add places"
check box. The information concerning due dates can be visualised in the Gantt chart
by activating the "due dates" check box. For Coloured Petri Nets the desired colours
represented by the di�erent token types can be de�ned. The number of tokens in each
place can be bounded and de�ned by the use of the bound button. The results in the
graphics are then inverted. This means that the bound values minus the numbers of
tokens are shown. In this section the di�erent and used types of graphics are shown
and explained. First the Gantt chart is introduced and afterwards the marking plot
is shown. Next follows the implementation of the data handling because storing of
all information for a simulation can be a highly sophisticated problem.

5.8.1 Gantt Chart
A Gantt chart is the graphical representation of the duration of tasks against the
progression of time. Figure 5.6 shows an example of a Gantt chart.
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Figure 5.6: Gantt Chart
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5.8.2 Marking Plot
Among the Gantt chart functionality it is possible to show a so called marking plot.
Any places can be selected and after a timed simulation run the number of tokens
over the places can be shown depending on the simulation mode. Figure 5.7 displays
the number of all tokens inside one place over simulated time for �ve di�erent colours.
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Figure 5.7: Marking Plot

5.8.3 Data Handling
The allocation of the places over time is needed to show and to analyse results of
the simulation. This means that the number of tokens has to be stored for each
place and for each colour in each iteration step. The number of iterations depends on
the speci�c problem. Therefore this value is not �xed and in general it can be very
large. On this account very big matrices are created during the simulation. Dynamic
memory allocation could be used to solve this problem. But the access to big matrices
causes speed problems corresponding to the size of the used matrices. If the matrices
and the stored information are increased too much memory problems can also occur.
In the PetriSimM toolbox these problems are solved by the use of external binary
�les. The built-in MATLAB command fwrite is used to store the data during the
simulation. At the end of the simulation the fread command is used to store the
matrices in MATLAB as application data of the GUI. If the memory of the program
is exceeded the binary �les are transformed to text �les in order that they can be used
for post-processing using other tools or programming languages. The big advantage
of this implementation is the fact that the data storing takes the same time in each
iteration of the simulation algorithm. The used built-in functions are very fast and
therefore only a marginal increase of computation time can be determined for the
simulation function.
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5.9 Optimisation

5.9.1 Introduction
The optimisation is one of the main parts of the PetriSimM toolbox. All described
heuristic algorithms are implemented, whereas Simulated Annealing and Threshold
Accepting are not included in the version 7.2 of MATLAB (R2006a). Therefore these
two algorithms are newly developed and added to the MATLAB PetriSimM toolbox.
The MATLAB environment contains the so called Genetic Algorithm and Direct
Search Toolbox. This toolbox already provides the optimisation based on Genetic al-
gorithms but the special case of scheduling problems is not really covered. The direct
coding of scheduling problems is not implemented and no crossover and mutation
functions are de�ned. The existing MATLAB toolbox o�ers the possibility to create
user-de�ned functions for special purposes. This means that a user can program and
add functionalities if it is necessary for selected problems. Hence, the existing Genetic
algorithm toolbox could be used and extended to realise the optimisation of schedul-
ing problems. For this purpose it seems more practical to use selected functions of
the existing Genetic algorithm and to adapt them to the MATALB PetriSimM tool-
box. This approach prevents the system from the overhead caused by the general
programming of the original MATLAB toolbox. Additionally needed functionalities
are directly implemented to the PetriSimM toolbox. On the one hand �tness scaling,
selection, and migration are realised by existing functions and on the other hand
population coding, crossover, and mutation are newly implemented. Furthermore,
newly developed features are the simultaneous optimisation of more than one input
sequences and the stochastic optimisation using a paired t-test and variance reduc-
tion techniques.
In this section the optimisation wizard is shown and the used options and features are
described. Next follows the di�erent parameters and functions of the optimisation
algorithms. Furthermore, the possible results of the optimisation are discussed. An
important part of the deterministic optimisation is due-date scheduling. It is there-
fore shown how due dates are de�ned and assigned to Petri Nets. Last but not least
the implementation of the variance reduction techniques are described.

5.9.2 Optimisation Wizard
The optimisation wizard contains the basic control of the optimisation. Figure 5.8
shows a screenshot of the optimisation wizard. First of all the optimisation mode can
be selected whereas the Genetic algorithm is only available in the deterministic mode.
Next follows the selection of the optimisation algorithm. The sequence button of the
optimisation wizard plays an important role because the underlying functionality is
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Figure 5.8: Optimisation Wizard

used to de�ne and to select the di�erent transition groups including the sequences for
the optimisation. In the parameters section all settings for the selected optimisation
algorithm can be de�ned. But these functionalities are treated in the next section.
During the optimisation it is possible to show a progressbar to watch the progress of
the optimisation and to hold up the interaction to the optimisation function for the
possibility of user-de�ned program aborts. The progressbar can also be deactivated
to increase the computational speed of the optimisation function.

5.9.3 Parameters
The results of the optimisation can be in�uenced by the choice of the used parameters.
Depending on the di�erent modes and algorithms all used parameters are listed below.

Genetic Algorithm:

• Population - The population parameters are the population size, the creation
function and a possible initial population. The default setting for the creation
function is an uniform function but also a user-de�ned function can be used to
create the initial population. If a matrix of correct values is de�ned as initial
population no creation function is used.

• Fitness scaling - For �tness scaling the built-in MATLAB functions Rank,
Proportional, Top and Shift linear can be selected. Furthermore, user-de�ned
functions can be implemented and de�ned as function handles.

• Selection - Selection can be done by the built-in MATLAB functions Stochas-
tic uniform, Remainder, Uniform, Roulette, Tournament and by user-de�ned
functions.
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• Reproduction - The reproduction parameters control the elite count and the
crossover fraction.

• Mutation - Mutation is realised by order-based mutation (OBM), swap-based
mutation (SBM), position-based mutation (PBM), and by their generalised ver-
sions (GOBM, GSBM, GPBM). Custom functions can be developed with arbi-
trary function arguments to de�ne new mutation functions.

• Crossover - On the one hand order crossover (OX1) and partially matched
crossover (PMX) can be used and on the other hand the other six crossover
functions described in this work can be selected for crossover: order crossover
(OX2), position crossover (PX), uniform crossover (UX), and their generalised
versions (GOX, GPX, GUX).

• Sequence - repetition - In case of sequences with repetition the initial se-
quences can be transformed to sequences without repetition whereas equal tasks
are treated as unequal ones.

• Migration - If the population is de�ned as vector, migration can be de�ned
between subpopulations. The migration parameters are given by direction,
fraction of migrating individuals, and the interval de�ning the occurrence of
migration.

• Stop criteria - The stop criteria are de�ned by generations, time limit, �tness
limit, stall generations, stall time limit, and function tolerance.

• Optimisation - The optimisation parameters include the choice between min-
imisation and maximisation. Furthermore, due-date scheduling can be activated
and deactivated.

Simulated Annealing - Threshold Accepting:

• Neighbourhood functions - All mutation functions of the Genetic algorithm
can be selected as neighbourhood functions.

• Cooling - Lowering - Cooling and lowering, respectively, is done by the use of
the following three functions: exponential, linear and logarithmic. User-de�ned
functions with arbitrary function arguments can be added.

• Stop criteria - The stop criteria are de�ned by generations, time limit, and
�tness limit for both algorithms.

• Statistical parameters - In case of stochastic optimisation the statistic pa-
rameters are given by initial runs, con�dence level, and relative error.
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• Optimisation - Next to the choice between minimisation and maximisation
the variance reduction can be activated and deactivated.

5.9.4 Results
The results of the optimisation are automatically shown in a special results window
after the termination of the optimisation algorithm. The results can also be accessed
by clicking into the optimisation menu of the menu bar. Figure 5.9 shows a screenshot
of the optimisation results window. All used algorithms can be selected if optimisation
results are existing. Otherwise the radio buttons corresponding to the algorithms are
disabled. The results for each optimisation mode can be shown by selecting one of
the enabled radio buttons. The used computational time for the optimisation can
then be seen. Other interesting information is the number of computed generations
and the termination reason of the optimsiation algorithm. Furthermore, the overall
cycle time for the initial and best solution are displayed. The optimised and initial
sequences can be accessed by using the sequence button of the results window. A
modi�ed priority wizard is opened to select each optimised transition group. Each
transition group can then be chosen and the initial and best solution for the selected
sequence are shown.

Figure 5.9: Results window
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The results window additionally o�ers a plot function. Plots of existent data can
be shown and compared for each optimisation algorithm. The plot button is used to
open the plot window after selecting the corresponding check boxes. Figure 5.10 shows
the plot window including results of an optimisation using Threshold Accepting. In
this example 100 iterations are done. Two graphs are shown where the green line
represents the best solution and the blue line represents the value of the objective
function for each iteration.
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Figure 5.10: Plot of Optimisation Results

Gantt charts can be used to compare di�erent system con�gurations. In particular,
they can visualise the di�erence between the initial and best solution derived from
the optimisation of scheduling problems. Each optimisation mode can therefore be
selected in the results window to realise this functionality. The gantt button is used
to simulate the solution corresponding to the selected check box. In principle, the
simulation function works without storing allocation data to gain speed during the
optimisation. In this case the allocation data storing is activated and the allocation
of the places over time is added as application data to the �gure of the PetriSimM
toolbox. Consequently, a Gantt chart of the simulated solution can be shown using
the functionalities of the Gantt Chart Wizard.

5.9.5 Due Dates
Due-date scheduling is an important tool for the deterministic optimisation of
scheduling problems. The �nishing times of certain tasks can be essential for the
optimisation. The PetriSimM toolbox o�ers the possibility to de�ne and assign
due dates to each place of the Petri Net. Figure 5.11 shows a screeshot of the due
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Figure 5.11: Due dates input box

dates input box. Desired �nishing times and penalties can be de�ned for each colour
and for each entity of the system. If the de�ned due dates are exceeded during the
simulation, the de�ned penalty times are multiplied with the di�erence of the real
and desired �nishing times. There are two approaches to implement the calculation
of the overall penalty time. On the one hand the information about the allocation of
all places over time can be stored during the simulation and on the other hand the
needed values can be computed during the simulation without storing unessential
data. The latter approach is realised by the following MATLAB code called in each
iteration of the simulation function:
for j=1:length(optdata.duedatesidx)

if m(optdata.duedatesidx(j)) > start(j) && countvec(j) > 0

diff=m(optdata.duedatesidx(j)) - start(j);

for k=1:min(diff,maxn(j))

start(j)=start(j)+1;

countvec(j)=countvec(j)-1;

casvectmpj(mm(j))=t;

mm(j)=mm(j)+1;

end

elseif m(optdata.duedatesidx(j)) < start(j) && countvec(j) > 0

start(j)=start(j)-max(1,m(optdata.duedatesidx(j)));

end

end

This variant should yield a decrease of computational speed because not all infor-
mation is needed and stored during the simulation. At the end of the simulation the
penalty times can be calculated using the computed �nishing times which are stored
in the variable casvectmp. The following MATLAB code is used to get the overall
penalty time of the simulation run:
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penalty=0;

for j=1:length(optdata.duedatesidx)

tmp=casvectmpj-optdata.duedatesj;

pen=optdata.duedatespenaltyj;

idx=find(tmp>0);

tmpval=tmp(idx)*pen(idx)’;

if isempty(tmpval)

tmpval=0;

end

penalty=penalty+tmpval;

end

t=t+penalty;

Both approaches are implemented in the MATLAB PetriSimM toolbox to compare
the used computational speed. Table 5.1 shows the results of the comparison for
the simulation of a Petri Net consisting of 14 places, 9 transitions and 31 colours
corresponding to a 434 × 270 matrix . The size and unit of the values and the
power of the used computer system are not relevant because the percentage of the
interesting di�erence should be signi�cant for the comparison. The due dates column
represents the cumulative number of due dates which are assigned to the places of
the Petri Net using all colours and tokens.

Due dates Approach 1 Approach 2 Di�erence
92 (1 place) 7.84 7.46 -5.09 %
276 (3 places) 7.85 7.56 -3.84 %
460 (5 places) 7.88 7.74 -1.81 %
644 (7 places) 7.93 7.95 +0.25 %
828 (9 places) 7.99 8.13 +1.73 %

1104 (12 places) 8.05 8.41 +4.28 %
1288 (14 places) 8.11 8.65 +6.24 %

Table 5.1: Comparison of Due Dates Calculation

The use of the di�erent approaches depends on the number of assigned due dates.
If this number exceeds the value corresponding to half the places using all colours
and tokens, approach one should be selected instead of approach two and vice versa,
respectively. The di�erence is calculated for one simulation run and it therefore plays
an essential role for the duration of the optimisation where usually a large number of
simulation runs are needed.
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5.9.6 Variance Reduction
In this work Common Random Numbers (CRNs) are implemented because di�erent
system con�gurations are compared. As mentioned in the last chapter, the syn-
chronisation of the use of random numbers is one of the most important conditions.
MATLAB provides randomness and several stochastic distribution functions based
on the two basic random number functions rand and randn. Rand returns a
pseudo-random, scalar value drawn from a uniform distribution on the unit interval
and randn returns a pseudo-random, scalar value drawn from a normal distribution
with mean 0 and standard deviation 1.
In the PetriSimM toolbox the variance reduction can be chosen as an option of the
stochastic optimisation using Simulated Annealing and Threshold Accepting. The
synchronisation of the random numbers is done in the following way. Each stochastic
distribution function assigned to a transition has its own random number stream.
First of all, di�erent initial states of the used random number generators are de�ned
for all transitions. The following MATLAB code is used to set the initial seeds for
the transitions:

current=rand(’state’);

currentn=randn(’state’);

sim.statistic.rand=random(state.StatisticCount+options.seed,optdata.dT);

sim.statistic.randn=randomn(state.StatisticCount+options.seed,optdata.dT);

rand(’state’,current);

randn(’state’,currentn);

The current states are temporarily stored to reset them after assigning the initial
states to the data structure of the PetriSimM toolbox. The input seed is randomly
changed for each di�erent iteration using the following code at the beginning of the
simulation run:

options.seed=unidrnd(100000);

The following two functions implement the assignment of the initial states to each
transition for the rand and randn function:
function rnd=random(count,dT) function rndn=randomn(count,dT)

rnd=zeros(35,dT); rndn=zeros(2,dT);

for i=1:dT for i=1:dT

rand(’state’,dT*count+i); randn(’state’,dT*count+i);

rnd(:,i)=rand(’state’); rndn(:,i)=randn(’state’);

end end
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If the variance reduction technique is activated for the stochastic optimisation the
following code is performed to evaluate the stochastic distribution functions assigned
to the transitions. The states for the needed random number functions are rede�ned
corresponding to the involved transition. After evaluating the distribution function
the new states are stored again for the use in the next evaluation.

current=rand(’state’);

currentn=randn(’state’);

rand(’state’,sim.statistic.rand(:,fire(j)));

randn(’state’,sim.statistic.randn(:,fire(j)));

ti=eval(TimeTfire(j));

sim.statistic.rand(:,fire(j))=rand(’state’);

sim.statistic.randn(:,fire(j))=randn(’state’);

rand(’state’,current);

randn(’state’,currentn);

Table 5.2 shows the results of the additional computational e�ort using the imple-
mented variance reduction technique. One simulation run is performed for a selected
Petri Net model whereas di�erent numbers of transitions can be de�ned. Again
the percentage of the di�erence is signi�cant and independent of the used computer
architecture.

Transitions Normal VR Di�erence %
18 0.057 0.063 0.006 +9.52%
45 0.256 0.267 0.009 +4.12%
90 0.782 0.793 0.009 +1.39%
135 1.725 1.735 0.010 +0.58%
180 2.910 2.920 0.010 +0.34%
225 7.895 7.916 0.021 +0.27%
270 11.364 11.374 0.010 +0.09%
315 18.323 18.337 0.014 +0.08%

Table 5.2: Results with and without Variance Reduction

The increase of the additional e�ort for the variance reduction is marginal. The
percentage of the di�erence is decreasing relatively to the increasing of the used
transitions. The speed di�erence results from only one simulation run but in the
next chapter it can be shown that the additional e�ort is accounted for because for
the sequential paired t-test the number of needed runs can be decreased and therefore
the overall computational time for the stochastic optimisation can be decreased.
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5.10 Benchmarks

5.10.1 Introduction
Petri Nets o�er the possibility to model on a very low level. The use of Coloured Petri
Nets provides a way of de�ning compact graphical descriptions for great models. But
problems of great complexity result in very big underlying matrices. Therefore Petri
Nets are bounded and limited to the size of their corresponding matrices because
the algorithmic manipulation realising the simulation implies great computational
e�ort. The number of enabled transitions has to be checked and computed in nearly
every iteration of the simulation function. Furthermore, the resolution and processing
of con�icts are time and memory consuming. The use of more powerful computer
systems would extend the limitations and constraints of modelling and simulation
but the increase of complexity accompanies the increase of the needed computational
power.
In this section several benchmarks are done to test and compare the used algorithms
and functions concerning the size of the used matrices. Furthermore, the di�erent
implemented simulation modes and time approaches are considered. As mentioned
in the previous section absolute values and results are not signi�cant. In this case the
relative di�erence of the selected comparisons are used because these results should
be more or less independent of the power of the used computer system.

5.10.2 Deterministic - Stochastic
In the PetriSimM toolbox deterministic and stochastic time delays can be assigned to
the transitions. To realise the stochastic simulation the use of stochastic distribution
functions is implemented. In the process, it is tried to ensure a fast implementation
concerning the simulation and a simultaneous �exibility to assign arbitrary functions
based on built-in functions or user-de�ned m-�les. Table 5.3 shows the results of
the comparison. In this case computational times of simulation runs are compared
whereas deterministic and stochastic time delays are used. The size of the Petri Net
model is iteratively increased. It is shown that the additional computational e�ort
for the stochastic simulation amounts to about 40 percent of the deterministic one.
The increase of the size of the used matrices do not really in�uence the additional
e�ort. The amount of the additional e�ort depends on the number of transitions
using stochastic time delays. In this example nearly all time delays change from
deterministic to stochastic.
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Size of Petri Net Deterministic Stochastic Di�erence %
84 x 45 0.163 0.275 0.112 +40.73%
154 x 90 0.453 0.788 0.325 +41.77%
224 x 135 0.861 1.519 0.658 +43.32%
194 x 180 1.451 2.598 1.147 +44.15%
364 x 225 4.446 7.588 3.142 +41.41%
434 x 270 6.213 11.008 4.795 +43.56%
504 x 315 10.448 18.563 8.115 +43.72%
574 x 360 15.447 27.561 12.114 +43.95%

Table 5.3: Di�erence Deterministic and Stochastic Simulation

5.10.3 Holding - Enabling
In this work two di�erent approaches of time implemented to Petri Nets are used.
The holding duration and enabling duration principles di�er in their implementation
and modelling power. This benchmark should compare the use of the two principles
concerning the computational e�ort of the simulation for di�erent dimensions
and di�erent numbers of con�icts. The information about the number of enabled
transitions is needed in every iteration of the simulation function. For the holding
duration principle two di�erent checks are necessary. On the one hand the number
of enabled transitions for available tokens is needed and on the other hand this
information for all tokens is additionally required in some cases to decide whether a
deadlock is occurred to detect the desired end of the simulation. This computation
can be easily done using the following MATLAB commands and functions:

idx=idxvec(all(M(:,ones(dT,1))>=I))

In contrast to holding durations the enabling duration principle de�nes one type of
token and therefore only one check has to be done in every iteration of the simulation
function to compute the number of enabled transitions. Transitions using enabling
durations o�er the capabilities of multiple enabling and preempting. Therefore
additional information is needed in every iteration. To handle the multiple enabling
the degree of enabling is calculated by the following command:

degreetmp=floor(min(iv(iv>0).\m(iv>0)))

Con�icts also cause an additional e�ort using enabling durations. Each involved
con�ict has to be checked after �ring to realise the possible preempting and to
handle the de�ned memory management of the transitions.
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Both approaches have advantages and disadvantages depending on the characteristic
of the present problem. Therefore two di�erent scenarios are simulated and modelled
using holding and enabling durations principles to compare the needed computational
speed of the simulations. The �rst problem which is modelled and compared includes
many con�icts whereas the second scenario is con�ict-free.

Size of Petri Net Con�icts Holding Enabling Di�erence %
84 x 45 14 0.152 0.315 0.163 +107.23%
154 x 90 24 0.553 1.024 0.471 +85.17%
224 x 135 34 1.354 2.289 0.935 +69.05%
294 x 180 44 2.546 4.287 1.741 +68.38%
434 x 270 64 6.470 9.358 2.888 +44.64%
574 x 360 84 15.521 21.805 6.284 +40.49%
714 x 450 104 27.979 36.096 8.117 +29.01%
1064 x 675 154 85.702 97.249 11.547 +13.47%
1414 x 900 204 204.635 229.234 24.599 +12.02%
1484 x 945 214 241.003 268.560 27.557 +11.43%

Table 5.4: Di�erence Holding and Enabling I

Table 5.4 shows the results of the �rst scenario. The holding durations principle al-
ways leads to faster computational times than the enabling durations principle. The
percentage of the needed additional time decreases depending on the increase of the
number of con�icts and the size of the Petri Net. These results arise from the fact
that the additional processing of the con�icts is the decisive factor in case of small
matrices. By contrast, the determination of the number of enabled transitions implies
a greater computational e�ort for large-sized matrices. On this account the enabling
durations principle regains lost time because in this case less checks have to be done
to compute the number of enabled transitions.
Table 5.5 presents the di�erence of the holding and enabling durations principles
concerning the second scenario. Maybe this con�ict-free situation is not a typical
problem modelled by Petri Nets but such problems can appear if scheduling prob-
lems are considered. This scenario shows that the enabling durations principle is
faster than holding durations if few or no con�icts have to be treated.
The results of the two scenarios show that the use of the implemented time approach
depends on the characteristic of the present problem. Basically, the enabling dura-
tions principle is more powerful and therefore only transitions including in�nite-server
semantics are used to realise the conducted comparisons. If many con�icts have to

71



be resolved the holding durations principle should be chosen. Otherwise enabling
durations should be used in case of few con�icts. Therefore the choice of the time
de�nition a�ects the computational duration of the simulation. This is an important
factor for the duration of the optimisation of scheduling problems because basically
a lot of simulation runs are needed to �nd a feasible and good solution of the optim-
siation problem.

Size of Petri Net Holding Enabling Di�erence %
3 x 190 0.020 0.019 0.001 -5.26%
3 x 435 0.037 0.035 0.002 -5.71%
3 x 780 0.065 0.062 0.003 -4.84%
3 x 1225 0.107 0.093 0.014 -15.05%
3 x 1770 0.175 0.141 0.034 -24.11%
3 x 3160 0.342 0.297 0.045 -15.15%
3 x 4950 0.713 0.594 0.119 -20.03%
3 x 11175 2.383 1.834 0.549 -24.48%
3 x 19900 5.536 4.464 1.072 -24.01%
3 x 31125 10.260 7.857 2.403 -30.58%
3 x 44850 18.429 15.098 3.331 -22.07%

Table 5.5: Di�erence Holding and Enabling II

The results of the benchmarks show the high increase of the needed computational
e�ort corresponding to the size of the Petri Net and its underlying matrices.
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Chapter 6

Case Studies

6.1 Introduction
In this chapter two case studies are processed to test and compare the implemented
optimisation algorithms. Both problems described here are already used for the
benchmarks in the previous chapter. The �rst case study contains the modelling, sim-
ulation, and optimsiation of a special type of production cell [55, 56]. The Petri Net
model of this problem consists of many con�icts and therefore the holding durations
principle is used to model the production cell. All used time delays are deterministic
and due dates and arrival times are therefore assigned for selected products. This
is a second reason for choosing holding durations because the arrival times can be
easily realised by the use of initial unavailable tokens.
The modelling, simulation, and optimisation of the well-known travelling salesman
problem [57] is done in the second case study. Maybe Petri Nets are not really the
best solution for modelling this problem but it is very useful to show the capabilities
of the MATLAB PetriSimM toolbox. The con�icts of the underlying Petri Net are
disabled by the de�nition of the sequence list and therefore no real con�icts have to
be considered. For this reason the enabling durations are used to model this problem
to reduce the computational duration of the optimisation. Furthermore, a stochastic
version of the travelling salesman problem is implemented. In this case the time
delays of the transitions are modelled by stochastic distribution functions. Variance
reduction is used to speed up the stochastic optimisation and selected benchmarks
are done to show the advantage of the implemented technique.
This chapter is divided in two parts. Both scenarios are treated in own sections. First
of all, the problem formulation is described for the selected problem. Second of all,
follows the implementation and last but not least selected results of the case studies
are shown.
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6.2 Production Cell

6.2.1 Problem Formulation
In this production cell di�erent types of products can be processed. Each product
type requires a special �xture and for each type exist only one �xture. This �xture
is used to �x the product into the suitable position for processing. Platforms are
used to move and shift the products inside the production cell.

The process �ow is separated into �ve di�erent production steps (�gure 6.1):
Setup of �xtures: If the �xture for the next product is not mounted onto a
platform it has to be mounted onto an empty one. This procedure takes the
setup-time for the �xture. Otherwise the platform with the �xture for the next
product is taken without loosing time.
Setup of products: Products are mounted onto the �xtures. For this step the
setup-time for the product is needed.
Processing: In this step the product is processed automatically and computer
controlled. This procedure takes the processing time for the product and the
processing is characterised by long process times.
Dismounting of products: After the processing step the products are dismounted
from the �xture. For this process part the dismounting time for the product is
needed.
Dismounting of �xtures: Fixtures are dismounted depending on the sequence
order of the products. If the �xture is dismounted it takes the dismounting time for
the �xture. Otherwise the platform with the �xture on it is waiting for setup the
product.

processing dismounting of
products

platform

product

fixture

setup of products

platform

product

fixture

platform

product

fixture

setup of fixtures

platform

fixture

dismounting of
fixtures

platform

fixture

Figure 6.1: Process Flow of Production Cell
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The processing of the products is automated and is independent of any restrictions.
By contrast, one resource is shared by the four other process steps of the process �ow.
This means that the process steps have to be operated one after another. Therefore
the following prioritisation is used and implemented to optimise the process �ow:

1. dismounting of �xtures

2. dismounting of products

3. setup of products

4. setup of �xtures

Due Dates

In case of due dates selected products have given arrival and �nishing times. After
the products have passed the processing part of the production cell they are �nished.
If the desired �nishing times are exceeded a penalty time will be added to the overall
cycle time of the production.

6.2.2 Implementation
The Petri Net model of the production cell is automatically generated by the use
of a programmed template. The function productioncell() creates all needed places,
transitions, tokens and colours whereas the following input parameters can be used:
names of the products, the number of platforms, the initial sequence order of the
products, and the time delay matrix.

fixture

platform

products

storage

empty platformsnext

free resource

setup fixture dismount fixture

setup product process product dismount product

12

36

5

Figure 6.2: Model of Production Cell
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The model (�gure 6.2) is separated into the �ve parts of the process �ow. The sharing
of the resource is implemented as a con�ict of the place "resource" and its connected
transitions (setup �xture, dismount �xture, setup product and dismount product).
The di�erent colours represent the di�erent product types and �xtures. In this case
an additional colour is used to model the empty platforms, the availability of the
resource and all other constraints. The determination of the optimal dismounting
sequence for the �xtures is a highly sophisticated problem. Usually there are less
platforms than �xtures available in the production cell. On this account the �xtures
have to be dismounted on time. On the one hand, a deadlock can occur if the �xtures
are not dismounted because then all platforms are occupied and no new �xture can
be set up. On the other hand, needless time consuming steps are done if the �xtures
are dismounted too early. A user de�ned sequence function called platformsequence()
is used and implemented to solve this problem. The dismounting sequence of the
�xtures is calculated depending on the current sequence of the products and the
number of used platforms.

6.2.3 Results
In this case study a production cell is considered where 15 di�erent products can
be processed. The batch size for each product is de�ned from 2 to 4 resulting in 45
processed products and a Petri Net model consisting of 224× 135 sized matrices.
150 iterations are performed for the Simulated Annealing and Threshold Accepting
algorithm to optimise the production sequence. The implemented cooling strategies
and neighbourhood functions are compared. For the Genetic algorithm three
di�erent population sizes are considered and 20 generations are derived. Selected
parameter speci�cations are tested and the di�erent implemented crossover functions
are compared. Finally, the results for all algorithms are compared and shown.
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Figure 6.3: Gantt Chart of Initial Solution
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Figure 6.3 shows the Gantt chart for the initial sequence of the products representing
the initial solution of the optimisation problem. The coloured vertical lines stand
for the desired �nishing times of the selected products. In the initial sequence not
all products are available on time and therefore additional gaps are created in the
present Gantt chart.

Simulated Annealing
Figure 6.4 shows the results of the comparison of the di�erent cooling strategies for
the SA algorithm. In this case the exponential and linear cooling strategies lead to
equal results after 150 iterations. The logarithmic strategy yields a worse output
because this strategy allows an increase of the objective function in an advanced
phase of the optimisation.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

exponential

linear

logarithmic

Figure 6.4: Comparison of Cooling Strategies
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Figure 6.5: Comparison of Neighbourhood Functions - SA
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Figure 6.5 shows the comparison of the neighbourhood functions. In this production
cell the same products can occur more often. Therefore sequences with repetition
have to be used for the optimisation. For this reason the generalised versions of the
neighbourhood functions are compared. All three functions lead to nearly the same
results and so they are suitable for the present optimisation problem in equal measure.

Threshold Accepting
Figure 6.6 and �gure 6.7 show the comparison of the cooling strategies and neigh-
bourhood functions for the Threshold Accepting algorithm. Again the exponential
and linear strategies yield better results than the logarithmic strategy. In this case
all neighbourhood functions are also similarly suitable for the optimisation.
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Figure 6.6: Comparison of Lowering Strategies

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

gobm

gsbm

gpbm

Figure 6.7: Comparison of Neighbourhood Functions - TA
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Genetic Algorithm
Figure 6.8 shows the comparison of di�erent population sizes for the Genetic
algorithm. The population based on 100 individuals leads to the best results. This
population contains the most di�erent solutions and therefore the optimisation starts
with a better initial best solution.
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Figure 6.8: Comparison of Initial Populations

Figure 6.9 shows the comparison of di�erent crossover functions for the GA. As
mentioned before, the generalised versions of the crossover functions are used because
the optimisation problem consists of sequences with repetition. In this case the GOX
and GPX operators both yield the best results.
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Figure 6.9: Comparison of Crossover Functions
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Comparison
Figure 6.10 shows the results of the comparison for Simulated Annealing, Threshold
Accepting and the Genetic Algorithm. All three heuristic algorithms lead to very
good and similar results.
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Figure 6.10: Comparison of SA, TA and GA

Table 6.1 contains the needed computational times for each optimisation algorithm
and the calculated duration of the production. In this example the Genetic algorithm
produced the best result but 2000 simulation runs are needed for 20 generations using
a population of 100 individuals. Therefore the computational e�ort for GA amounts
to about fourteen times as much as that for 150 iterations of the two other algorithms.
The TA algorithm performs the optimisation in the fastest way.

SA TA GA
Comp. Times 133.9 129.4 1775.4

Results 9976 9984 9949

Table 6.1: Comparison of Duration - SA, TA and GA

The Gantt chart of the optimised sequence representing the best solution of the
optimisation problem is shown in �gure 6.11. Now all products are available on
time and therefore no additional gaps are created in the present Gantt chart.
Furthermore, all products are �nished on time and therefore no penalty times are
added to the overall cycle time of the production.

Table 6.2 shows the additional penalty values for the initial and best solution. If
the de�ned due dates are exceeded the di�erence of the real and desired �nishing
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Figure 6.11: Gantt Chart of Best Solution

times is multiplied by the factor 100. Hence, the cumulative penalty time for the
duration of the production amounts 2942 time units. The second results shown in
the table 6.2 are the so called setup times for the initial and best solution. In this
example the setup time means the time when no product is in the processing part of
the production cell. The optimised solution brings in about 89 per cent improvement
for the setup time.

Initial Best
Penalty 294200 0

Setup time 4.39 % 0.49 %

Table 6.2: Comparison of Penalty and Setup Times

6.3 Travelling Salesman Problem

6.3.1 Problem Formulation
The well-known Travelling Salesman Problem (TSP) asks for the shortest route to
visit a collection of cities and return to the starting point. In this work the symmetric
version of the TSP is treated. This means that, for any two cities A and B, the
distance from A to B is the same as that from B to A. The costs for each connection
are derived depending on the distance and the average speed of the salesman. In the
deterministic case this speed is constant but also the stochastic case is considered
where the average speed is modelled as stochastic distribution function.
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6.3.2 Implementation
Many approaches and algorithms exist to model and to solve the Travelling Salesman
Problem. Maybe Petri Nets are not really the best and fastest solution but the TSP
can be easily modelled and optimised by the use of the MATLAB PetriSimM toolbox.
Figure 6.12 shows the Petri Net model for the TSP which is automatically generated
by the use of a programmed template. The function tspsym() creates all needed
places, transitions and tokens whereas the following input parameters can be used:
number of the cities, the initial sequence order of the visits, and the distance matrix.

cities

50

Figure 6.12: Model of Travelling Salesman Problem

In this case only one colour is used to model the di�erent cities. The symmetric
TSP consists of n2−n

2
di�erent transitions representing all possible movements for n

cities. The arising con�icts of the Petri Net are deactivated by the use of a sequence
list. The input sequence contains only the city numbers and therefore a user de�ned
sequence function (tspsequence()) is implemented to transform the input sequence to
the corresponding sequence list for the transitions.

6.3.3 Results

Figure 6.13: Plan of Initial Solution
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In the deterministic case a TSP consisting of 50 cities is optimised. The corre-
sponding Petri Net model is made up of 1 place and 1225 transitions. Figure 6.13
shows the plan of the cities and their connections representing the initial solution
of the optimisation problem. In this context 1000 iterations are done for the SA
and TA algorithm. Again, the neighbourhood functions are compared whereas the
exponential cooling and lowering strategy is used. 100 generations are performed for
the Genetic algorithm based on a population of 100 individuals to test and compare
di�erent parameter speci�cation including the di�erent crossover functions.
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Figure 6.14: Comparison of Neighbourhood Functions - SA
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Figure 6.15: Comparison of Neighbourhood Functions - TA
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Figure 6.14 and �gure 6.15 show the comparison of the neighbourhood functions for
the Simulated Annealing and Threshold Accepting algorithms. Each city is uniquely
found in the sequence of the visits and therefore the normal and not generalised
neighbourhood functions OBM, SBM and PBM are used. The PBM function leads
to the best results in both cases. The progress of the optimisation based on the
SBM function suggests the impracticalness of this neighbourhood function for the
optimisation of the Travelling Salesman Problem.

Genetic Algorithm
Figure 6.16 shows the comparison of the crossover functions. As mentioned before
the normal and not generalised crossover functions can be used for this problem. In
this case the OX1 and OX2 crossover functions yield the best results whereas the
OX2 operator is superior to the OX1 operator.
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Figure 6.16: Comparison of Crossover Functions

Comparison
Figure 6.17 shows the results of the comparison for all three heuristic algorithms.
The optimisation of the Travelling Salesman Problem leads to very good and similar
achievements using Simulated Annealing, Threshold Accepting and the Genetic
algorithm. Table 6.3 presents the needed computational times and the �nal duration
of the round trip for all optimisation algorithms. In this example the Genetic
algorithm leads to the best result but 10000 simulation runs are performed to
realise 100 generations based on a population size of 100 individuals. Therefore the
computational e�ort for GA amounts about ten times as much as for 1000 iterations
of the two other optimisation algorithms. Again, the Threshold Accepting algorithm
is the fastest method relating to computational speed .
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Figure 6.17: Comparison of SA, TA and GA

SA TA GA
Comp. Time 92.25 86.17 1022.66

Results 203120 210500 186470

Table 6.3: Comparison of Duration - SA, TA and GA

Figure 6.18 shows the plan of the cities containing the best and optimised route of the
present TSP. This result visualises the improvement of the optimisation compared to
the initial solution of the problem.

Figure 6.18: Plan of Best Solution
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Stochastic

In the stochastic case the average speed of the salesman is modelled by the use
of stochastic distribution functions. The stochastic optimisation is only possible
for Simulated Annealing and Threshold Accepting algorithms because two di�erent
system con�gurations are always compared. Basically a certain number of simulation
runs are needed to get signi�cant results. In this example 20 cities are taken into
account to realise the Travelling Salesman problem for stochastic time delays. 150
iterations are done for each optimisation algorithm. Figure 6.19 shows the plan of
the cities and their connections representing the initial solution of the problem.

Figure 6.19: Plan of Initial Solution
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Figure 6.20: Comparison of SA and TA
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Figure 6.20 shows the comparison of Simulated Annealing and Threshold Accepting.
After 150 iterations the TA algorithm leads to better results.

Table 6.4 contains the comparison of the duration for both algorithms and presents
the time improvement achieved by the use of variance reduction. It can be seen
that the variance reduction highly reduces the computational e�ort for the stochastic
optimisation. In both cases about 70 percent of time can be saved.

Duration Normal VR Di�erence %
TA 6555.7 1416.1 5139.6 -78.40%
SA 2543.1 898.3 1644.8 -64.68%

Table 6.4: Time Improvement of Variance Reduction

The decrease of the computational e�ort accompanies the reduction of needed sim-
ulation runs. Table 6.5 shows the di�erence for both optimisation algorithms. The
use of variance reduction techniques decrease the number of needed simulation runs
in an essential way. About 80 percent of runs can be saved in both cases.

Runs Normal VR Di�erence %
TA 138598 23834 114764 -82.80%
SA 53318 14857 38461 -72.14%

Table 6.5: Reduction of needed Simulation Runs

Figure 6.21 shows the plan of the cities containing the optimised route of the TSP.

Figure 6.21: Plan of Best Solution
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Chapter 7

Summary and Outlook

This work provides a general framework for modelling, simulation and optimisation
of scheduling problems based on Petri Nets. The basic de�nitions of Petri Nets are
extended with the capability of time delays to enable the simulation over the time
domain. Two di�erent approaches of adding time to Petri Nets are implemented.
The holding durations and enabling durations principles provide a suitable basis for
modelling time dependent problems. Coloured Petri Nets o�er an easier graphical
description for building more complex models. Stochastic Petri Nets introduce the
use of stochastic time delays realised by stochastic distribution functions. Petri Nets
are extended with the capability of modelling scheduling problems whereas arbitrary
�ring sequences can be de�ned. If all con�icts are solved beforehand the scheduling
problem is modelled by the use of the basic properties of Petri Nets.
All features and functionalities are developed and implemented in the open source
MATLAB PetriSimM toolbox which is embedded in the powerful MATLAB envi-
ronment. The toolbox is suitable for educational purposes as well as for modelling,
simulation, and optimisation of real life processes. Several results can be shown and
all produced data can be used for internal or external post-processing. Only two
steps have to be done by the user of the toolbox. The �rst one is the development of
the Petri Net model, which is building all needed conditions and constraints of the
present scheduling problem. The second step is the choice of the best optimisation
method and the correct and optimal speci�cation of the needed parameters for the
otpimisation algorithm. Three di�erent heuristic methods are implemented and can
be selected. Simulated Annealing, Threshold Accepting, and Genetic algorithms are
forming the choice for realising the optimisation of scheduling problems. Depending
on the present problem each optimisation algorithm has its advantages and disad-
vantages. No general proof can be done to decide which algorithm �ts the best for
all problems. Many optimisation studies and runs have to be processed to get sig-
ni�cant results because in this case randomness plays a certain role. Furthermore,
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the search for the optimal and best suited parameters is a highly sophisticated prob-
lem and mainly depends on the present problem speci�cation. The heuristics are
implemented to form and o�er a wide spread basis for the optimisation of scheduling
problems. All methods can be easily extended with further functionalities and func-
tions and new algorithms can also be implemented to the open source toolbox.
The implemented methods and functionalities are tested in two case studies. The
optimisation leads to good and similar results for all three algorithms and no sig-
ni�cant di�erence can be determined. Threshold Accepting is the fastest algorithm
because of the simpler de�nition. No randomness is needed to check and to decide if a
worse solution is accepted or not. Genetic algorithms are the most extensive method
because the computational e�ort of each generation depends on the population size.
The stochastic optimisation is time-consuming because in this case the number of
needed simulation runs is modelled by a random number. If the di�erence of two
alternative system con�gurations is nearby zero, basically a lot of simulation runs
are needed to get a signi�cant decision. The use of variance reduction shows a high
decrease of computational time because many simulation runs can be saved for each
comparison.
The di�erent benchmarks point out the main limitation of Petri Nets. Due to the
fact that Petri Nets model processes on a very low level the underlying matrices can
get very big for complex problems. A high amount of computational speed is needed
for checking the number of enabled transitions and for processing and resolving the
occurring con�icts. The increase of the power of the used computer system would in-
crease the speed of the simulation. The speed of one simulation run highly in�uences
the duration of the optimisation because basically a lot of simulation runs are needed
to optimise a certain scheduling problem. Future work can be the improvement of the
used algorithms with respect to the computational speed. Furthermore the number
of enabling checks could be reduced to gain speed during the simulation.
Genetic algorithms can be a very useful heuristic method for many di�erent schedul-
ing problems because the optimisation is based on a wide spread pool of possible
solutions. On this account Genetic algorithms take more simulation runs and com-
putational e�ort compared to Simulated Annealing and Threshold Accepting. In
future work a parallelisation can be implemented to get rid of this disadvantage.
The calculation and evaluation of the particular individuals of the population could
be split into several network computers in each generation. This concept of par-
allelisation can also be used for the stochastic optimisation to improve the needed
computational time for getting signi�cant results. Further investigations could be the
extension and graphical integration of the analysis capabilities and the continuative
development of the automated creation of Petri Net models based on templates or
based on input and output matrices.
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