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Abstract 

We present a new PID controller tuning method for higher order process models. 

Existing methods, such as the Ziegler-Nichols (ZN) approach in time domain, are not 

designed according to stability measures, an essential property in feedback control. 

Furthermore they deliver one set of parameters for the controller without regard of the 

special performance requirements. In order to guarantee stability and certain robustness to 

model uncertainties and modeling errors in practical applications we need a criterion e.g. 

such as phase margin, which is applied in the frequency domain. The existing methods in 

the frequency domain propose a tuning algorithm where the phase margin is often used 

only to determine the controller gain [1, 2, 3]. The other parameters are sometimes tuned 

by canceling the poles of the plant [1]. Depending on the required time domain features, 

even better results can be obtained if all controller parameters are fine tuned by loop 

shaping. Loop shaping is a trial and error procedure in frequency domain whereby the 

parameters of the controller are set in order to balance many different requirements [4]. 

This method is often time consuming, especially if a predetermined phase margin and 

different performance specifications are requested. Therefore we propose a supportive 

loop shaping approach which is based on mathematical derivation in the frequency 

domain. Our method guarantees a chosen phase margin and a fast controller response. 

Furthermore the user is enabled to influence different features according to given 

performance requirements. 

We apply our approach to a simulated fill level plant and show its performance, 

comparing it with a Ziegler-Nichols method tuned PID controller and a Bode diagram 

design approach based on pole cancellation [1]. 

 

 

 

 

 



1 Introduction 

 

The proportional-integral-derivative (PID) controller is by far the most common controller 

used in practical application [1]. More than 90% of technical control problems can be solved 

with a PID controller, furthermore the implementation of PID controllers in both analog 

techniques and digital algorithms is easy. Even by developing new controller algorithms often 

a PID controller is used as a benchmark. Subsequently, parameter tuning methods for the PID 

controller are needed to give good performance and good stability margins for the closed loop 

system.  

Several performance specifications in time domain e.g. as rise time, steady state error and 

overshoot are related to the open loop system in frequency domain. Our developed PID tuning 

approach (ALS) calculates the PID parameters with regard to specifications in frequency 

domain, such as phase margin, cross over frequency and a requested controller phase shape. 

For this calculation the formulas for systems with real left half plane poles is derived. Finally, 

the tuning results of our method are demonstrated by applying it to a fill level plant [1]. 

Results are shown in both frequency and time domain and are compared with a ZN tuned PID 

controller and a plant pole canceling PID controller applied to the same plant. 

2 Frequency domain specifications 

 

In practice PID controllers consists of a Proportional, Integral and Derivative element. The 

derivative is often filtered by using a first-order low-pass filter to avoid very high gains for 

high frequency signals. This controller is often referred to as real PID controller or PID 

controller with filtered derivative or in short as PID-T1. ALS is based on the aspect that a 

PID-T1, consists of a PI-part and a PD-T1-part in series as shown in equation (1).  
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(1) 

The transfer function of the controller is GC(s), KC is the controller gain and TC1, TC2, TN are 

controller time constants. This view seizes the idea behind Lead-Lag compensation which 

includes the advantages of both Lead and Lag compensators. 

Figure 1 presents how the bode diagrams of PI and PD-T1 part result in one bode diagram of 

the real PID controller by forming the geometrical sum of both. 
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Figure 1: PID-T1 composed of PI-part and PD-T1-part 

The most important frequency-domain specification is the phase margin mϕ  of the open 

loop. The phase margin is related to the damping ratio of the closed loop system and thus an 

important aspect regarding stability. In accordance to [1] a quite normal command response 

with acceptable overshoot and suitable settling time is expectable for m 50ϕ = °  to 70°. For 

an aperiodic command response an appropriate phase margin mϕ  is 80° to 90°. An acceptable 

disturbance response is already achievable with m 30ϕ ≥ ° . A negative open loop phase 

margin means instability for the closed loop system. The ASL method therefore ensures the 

open loop phase margin which the user predefines in advance. 

The open loop crossover frequency cω is referred to as that frequency at which the gain 

(resp. magnitude) is unity, or 0 dB [2]. It is a criterion for the closed loop speed in time 

domain. 

A good tracking performance of command signals and good attenuation of low-frequency 

disturbances is achievable with a large open loop gain at low frequencies [4]. As it can be 

taken from Figure 1 and Equation 1, the low-frequency gain can be increased by the PI-part of 

the real PID controller. Assuming that the crossover frequency cω  of an open loop bode 

diagram is kept constant. Then the PI phase lag PI c( )ϕ ω , referred to as the phase lag that is 

contributed too by the PI part at cω , affects the value of the controller nominator time-

constant TC1 and the controller gain KC as well. Subsequently, the integrating controller action 

and thus the open loop gain at low frequencies is influenced by PI c( )ϕ ω . An accurate value 

for PI c( )ϕ ω  depends on the process dynamics and the requirement on closed loop 

performance terms. 

In order to avoid the amplification of high-frequency noise, the high-frequency gain of the 

open loop should be low [4]. In case of actuator saturation such a so-called high-frequency 

roll-off is also useful to keep the controller output within the operating range of the actuator, 

even if a large derivative control error is present. The derivative controller action is 



effectively reduced by the high-frequency roll-off. Criteria for the derivative controller action 

in frequency-domain are the maximal PD-T1 phase lead 
maxPD T1−ϕ , referred to as the 

maximal phase lead that is contributed too by the PD-T1-part and the frequency 
PD T1max−ϕω , 

referred to as that frequency at which 
maxPD T1−ϕ  occurs in the controller bode plot. Assuming 

that 
PD T1max−ϕω  is kept constant. Then changing the amount of 

maxPD T1−ϕ  is the only way to 

influence the derivative controller action and the high-frequency roll-off. For processes with 

distinct dead time it is recommended to set 
maxPD T1−ϕ  to zero, because then the derivative 

action is useless and can even cause unwanted oscillations. In this case a PI controller accrues 

since the controller denominator time constant TN compensates the second controller 

nominator time constant TC2. Furthermore, 
maxPD T1−ϕ  should be kept very low if the process 

consists of numerous dominant poles. This is because a higher order system can be 

approached by a dead-time and a first order delay element in series. The ratio of the 

equivalent dead time to the equivalent time constant becomes larger with the number 

dominant poles. For many processes with numerous dominant poles it makes sense to 

renounce derivative action and apply a PI controller directly. 

 

ALS is based on the user-defined frequency-domain specifications: phase margin mϕ , PI 

phase lag PI c( )ϕ ω  and maximal phase lead 
maxPD T1−ϕ . It is applied to calculate the PID 

parameters in order that the user-defined frequency specifications are fulfilled and the open 

loop crossover frequency cω  is maximized. Therefore ALS positions the controller time 

constants TC2 and TN in a way that 
PD T1max−ϕω  complies cω . 

The developed PID tuning approach enables the user to shape the open loop bode diagram 

and thus the time domain performance of the closed loop system in a certain range. Thereby 

ALS supports by optimizing the closed loop speed with respect to the predetermined 

frequency domain specifications.  

3 ALS Derivation 

 

For maximizing the crossover frequency cω  the frequency 
PD T1max−ϕω  has to comply with 

cω . Hence, 

PD T1max
c−ϕω = ω  (2) 

The ALS method and its equations which are needed to calculate the parameters for a first 

order time delay process are derived below. 
 

3.1 Determination of cω  

First the maximum possible closed loop crossover frequency cω  is determined. Therefore 

the maximum allowed phase lag of the process at cω  plant c( )ϕ ω  is calculated by 



maxplant c m PD T1 PI c( ) 180 ( )−ϕ ω = − ° + ϕ −ϕ − ϕ ω . (3) 

With the bode diagram of the plant that frequency is determined at which the plant phase 

plantϕ  complies plant c( )ϕ ω . The determined frequency is the desired open loop crossover 

frequency cω . Now all four parameters of the real PID controller are determined by means of 

the plant transfer function and the three chosen frequency domain specifications of the closed 

loop bode diagram. 

3.2 Determination of the controller time constants 

First the controller time constant TC1 is calculated. Therefore the controller PI-part as 

represented in (1) is rearranged and transformed to frequency domain, such that 

C
PI C C1

K
G (j ) K T

j
ω = + ⋅

ω
. (4) 

In (4) the PI-part is shown in its additive form (integrating action plus proportional action). 

Expanding the equation with 
j
j  yields  

C
PI C C1

Re
Im

j K
G ( j ) K T

⋅
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ω �����
���

. 
(5) 

An equation for TC1 as a function of ω  and PI ( )ϕ ω  is derived if we rearrange Equation (5) 

as follows: 

{ }C1

PI

1
T

tan ( )

−
=
ω⋅ ϕ ω

, (6) 

It follows from Equation (6) that 

{ }C1

c PI c

1
T

tan ( )

−
=
ω ⋅ ϕ ω

. (7) 

Equation (7) can be applied since cω  has been determined in 3.1 and PI c( )ϕ ω  is 

predetermined by the user. 

 

Now the controller time constants TC2 and TN are calculated. The following Equations (8) 

and (9) are transferred from Ogata´s tuning approach for a lead compensator [4]. The constant 

α  is defined as the ratio TN/TC2. 

{ }
maxPD

1
sin

1

− α
ϕ =

+ α
 (8) 

PDmax
C2

1

T
ϕω =

α ⋅
 (9) 



In order to calculate α  Equation (7) is rearranged to 

{ }
{ }

max

max

PD T1

PD T1

1 sin

1 sin

−

−

− ϕ
α =

+ ϕ
. (10) 

An equation for TC2 is derived if we rearrange Equation (9) and substitute 
PD T1max

c−ϕω = ω . 

C2

c

1
T =

α ⋅ω
 (11) 

With the definition of α  as the ratio TN/TC2 we find that 

N C2T T= ⋅α  (12) 

3.3 Determination of the controller gain KC 

Finally, an equation to calculate the controller gain KC needs to be found. Therefore the 

plant frequency response PF ( j )ω  which is modelled with a series of n first order elements is 

considered as shown in equation (13). 

( )

p
p n

i
i 1

K
F ( j )

1 T j
=

ω =
+ ⋅ ω∏

 
(13) 

The open loop frequency response follows from the series of plant and controller frequency 

response as it is outlined in Equation (14). 

( )( )

( ) ( )

C p C1 C2
C n

N i
i 1

K K 1 T j 1 T j
F ( j )

j 1 T j 1 T j
=

⋅ + ⋅ ω + ⋅ ω
ω =

ω⋅ + ⋅ ω ⋅ + ⋅ ω∏
 

(14) 

The magnitude 0F ( j )ω  can be determined by 

2 2 2 2 2 2 2 2
C Cp p C1 C2

C n
2 2 4 2 2

N i
i 1

K K K K T 1 T
F ( j )

T 1 T
=

+ ω + ω
ω =

ω + ω ⋅ + ω∏
. 

(15) 

In order to achieve an expression for the controller gain KC Equation (15) is rearranged such 

that 

( ) ( )
( )( )

n
2 2 2 4 2 2

C N i
i 1

C 2 2 2 2 2 2
p p C1 C2

F ( j ) T 1 T

K
K K T 1 T

=
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=

+ ω + ω

∏
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(16) 

Finally, with C cF ( j ) 1ω =  at cω  Equation (16) can be applied to 
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In summary the ALS tuning method consists of six steps: 

1. Calculation of plant c( )ϕ ω  with Equation (2) 

2. Determination of cω  by using the bode diagram of the plant as explained in 3.1 

3. Calculation of TC1 with Equation (6) 

4. Calculation of the factor α  with Equation (9) 

5. Calculation of TC2 and TN with the Equations (10) and (11) 

6. Calculation of KC with Equation (16) 

4 Comparison with other tuning methods 

 

In order to show the results that can be achieved with ALS the parameter tuning is shown 

by a concrete example and compared with a ZN tuned PID controller and a PID controller 

based on plant pole cancellation [1]. The example process is a fill level plant which has the 

transfer function (18) [1]. 

P 2

4.57
G (s)

(1 175.4 s)(1 s)(1 0.47 s)
=

+ ⋅ + + ⋅
 (18) 

The high-frequency noise is already damped by the low-pass character of the actuator [1]. For 

this reason the maximum PD-T1 phase lead of the ALS tuned controller is chosen 

appropriately. The ZN tuned PID controller as well as the pole cancelling PID controller in 

subchapter 4.2 and 4.3 are even tuned as ideal PID controllers without additional low-pass 

filter. 

In order to get a suitable close loop command response and a certain robustness against model 

uncertainties the open loop bode diagram should have the phase margin m 60ϕ ≈ ° . 

Furthermore, the fill level has to be controlled as fast as possible for a specified tolerance 

sx 5%∆ = ±  around the reference. 

 

 

 

 

 



4.1 ALS tuned PID controller 

The following frequency-domain specifications were predetermined with which the given 

tolerance sx∆  is utilized to achieve a very fast close loop performance. 

 

 

• Phase margin m 60ϕ = °  

• PI phase lag PI c( ) 30ϕ ω = − °  

•  Maximum PD-T1 phase lead 
maxPD T1 85−ϕ = °  

The resultant PID-T1 controller which is tuned by ALS is given by 

( )( )
( )C

1 26.38 s 1 2 s
G (s) 0.976

s 1 0.05 s

+ ⋅ + ⋅
=

+ ⋅
. (19) 

The results in both frequency and time domain are shown below in Figure 2 and Figure 3. 
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Figure 2: Bode diagrams of the plant simulation, the ALS tuned PID-T1 controller and the 
open control loop 
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Figure 3: Unity closed loop reference step response simulated with the ALS tuned PID 
controller 

4.2 ZN tuned PID controller (open loop method) 

 

The resultant PID-T1 controller which is tuned by the ZN open loop method is given by 

C

1
G (s) 26.65 1 0.93 s

3.71 s

 = + + ⋅ ⋅ 
. (20) 

 

The ZN open loop method is not based on bode diagrams but only on an empirical 

determination of the controller parameters from the process step response. The ZN tuning 

results are shown in time domain (Figure 4). 

2∆xS 
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Figure 4: Unity closed loop reference step response simulated with the PID controller tuned 
by ZN open loop method 

4.3 PID controller tuned by pole cancellation 

The resultant PID-T1 controller which is tuned by pole cancellation is given by 

( )( )
C

1 175.4 s 1 s
G (s) 0.134

s

+ ⋅ +
= . (21) 

The results in both frequency and time domain are shown below in Figure 5 and Figure 6. 
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Figure 5: Bode diagrams of the plant simulation, the PID controller tuned by plant pole 
cancellation and the resultant open control loop 
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Figure 6: Unity closed loop reference step response simulated with the PID controller tuned 
by plant pole cancellation 

 



5 Conclusion 

 

The advantage of our ALS method compared to empirical tuning methods like e.g. ZN is 

that a desired phase margin value can be assured. The results in subchapter 4.2 demonstrate 

that the ZN tuned PID controller obtains a phase margin less then the here requested 60°. 

Subsequently, the settling time of the closed loop system is large due to vast oscillations and 

the closed loop system lack robustness. The advantage of ZN methods is that only little 

process information is required whereas the ALS method needs the exact model of the 

process. 

The PID controller which is tuned by pole cancellation offers the required phase margin 

too and a good performance is obtained with short rise time, acceptable overshoot and 

suitable settling time. With the ALS method tuned PID controller the response speed of the 

closed loop is better, which is characterized by the fast rise time and short settling time. This 

is because the given tolerance about 5%±  are utilized. This is only possible due to the 

appropriately chosen and balanced frequency-domain specifications PI phase lag and 

maximum PD-T1 phase lead. The advantage of a possible fine tuning of the ALS method is 

disadvantage of it as well, as sometimes several trials are needed until all closed loop 

performance specifications are sufficient fulfilled. 

In further studies we will test the ASL method in real applications with different plant 

models. Furthermore we will compare the method to cases, when cancellations methods are 

disastrous because the canceled factors are unstable [4]. A similar PD controller tuning 

method for systems with integral behavior is planned. Furthermore, we are going to establish 

a graphical user interface for a PID tuning by ALS, which will be running on a web server on 

our homepage. 
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