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FOREWORD

EUROSIM, the Federation of European Simulation Societies, started in 1990 the publication of the
journal EUROSIM Simulation News Europe (SNE), a newsletter distributed to all members of the
European simulation societies under EUROSIM's umbrella and to people and institutions
interested in simulation. SNE is also part of Simulation Practice and Theory (SIMPRA), the
scientific journal of EUROSIM.

The idea of the journal SNE (circulation 2500; edited by F. Breitenecker and 1. Husinsky, ARGE
Simulation News ( ARGESIM ) , Technical University of Vienna, Austria; three issues per year) is
to disseminate information related to all aspects of modeling and simulation.

The contents of SNE are news in simulation, simulation society information, industry news,
calendar of events, essays on new developments, conference announcements, simulation in the
European Community, introduction of simulation centers and comparison of simulation software,
simulators and (parallel) simulation techniques.

The series on comparisons of simulation software has been very successful. Based on simple, easily
comprehensible models the software comparisons compare special features of modeling and
experimentation within simulation languages:

. modeling technique e postprocessing

. event handling o statistical features

. submodel features e statistical processors
. numerical integration e control strategies

. steady-state calculation e optimization

. frequency domain ¢ random numbers

. plot features e complex strategies

. parameter sweep e animation, etc.

Seven Software Comparisons, four continuous ones and three discrete have been set up.
Furthermore, a second type of comparisons, the Parallel Comparison has been initiated.

The continuous comparisons are:

e Comparison 1 (Cl; Lithium-Cluster Dynamics under Electron Bombardment,
November 1990) deals with a stiff system;

e Comparison 3 (C3; Analysis of a Generalized Class-E Amplifier, July 1991)
focusses on simulation of electronic circuits and eigenvalue analysis;

e Comparison 5 (C5; Two State Model, March 1992) requires very high accuracy
computation;

e Comparison 7 (C7; Constrained Pendulum, March 1993) deals with state events.

iii




S@lx) ARGESIM REPORT NO.7

The discrete comparisons are:
e Comparison 2 (C2; Flexible Assembly System, March1991) gives insight into
flexible structures of discrete simulators;
e Comparison 4 (C4; Dining Philosophers, November 1991) involves not only
" simulation but also different modeling techniques like Petri nets;
e Comparison 6 (C6; Emergency Department - Follow-up Treatment, November
1992) deals with complex control strategies;

SNE 10 introduced a new type of comparison dealing with the benefits of distributed and parallel
computation for simulation tasks. Three test examples have been chosen to investigate the types of
parallelization techniques best suited to particular types of simulation tasks.

Up to now, 100 solutions have been sent in. The table at the end of this ARGESIM report shows the
number of solutions for the Software Comparisons as well as for the Parallel Comparison. The
series will be continued. )

This ARGESIM Report summarizes and discusses the solutions and results sent in for Compa-
rison 1 (C1) ,,Lithium Cluster Dynamics*.

The report starts with a summary, which is an extended version of a contribution to the congress
EUROSIM’95.

The presentation of the solutions sent in starts with the definition of this EUROSIM comparison
(Definition and Definition with remarks, resp), formulated by W. Husinsky in SNE 0 and SNE 1,
resp..

In the following the solutions sent in up to now are printed in chronological order. Each solution is
represented by the page printed in SNE and, if available, by the originals sent in by the originators.

It is evident, that early solutions are accompanied by more original paper work.

As conclusion a Table of the EUROSIM Comparisons and the number of solutions sent in is given.

F. Breitenecker, I. Husinsky, Editors
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About ARGESIM

ARGE Simulation News (ARGESIM) is a non-profit working group providing the infra structure
for the administration of EUROSIM activities and other activities in the area of modelling and
simulation.

ARGESIM organizes and provides the infra structure for
¢ the production of the journal EUROSIM Simulation News Europe
the comparison of simulation software (EUROSIM Comparisons)
the organisation of seminars and courses on modelling and simulation
COMETT Courses on Simulation
"Seminare tiber Modellbildung und Simulation”
development of simulation software, for instance: mosis - continuous parallel
simulation, D_SIM - discrete simulation with Petri Nets, GOMA - optimization in
ACSL
¢ running a WWW - server on EUROSIM activities and on activities of member
societies of EUROSIM

e running a FTP-Server with software demos, for instance

* demos of continuous simulation software

* demos of discrete simulation software

* demos of engineering software tools

* full versions of tools developed within ARGESIM

® & o o o

At present ARGESIM consists mainly of staff members of the Dept. Simulation Technique and of
the Computing Services of the Technical University Vienna.

In 1995 ARGESIM became also a publisher and started the series ARGESIM Reports. These
reports will publish short monographs on new developments in modelling and simulation, course
material for COMETT courses and other simulation courses, Proceedings for simulation
conferences, summaries of the EUROSIM comparisons, etc.

Up to now the following reports have been published:

No. Title Authors / Editors ISBN
#1 Congress EUROSIM'95 - Late Paper Volume F. Breitenecker, |. Husinsky 3-901608-01-X
#2 Congress EUROSIM'95 - Session Software F. Breitenecker, |. Husinsky 3-901608-02-8
Products and Tools

#3 EUROSIM'95 - Poster Book F. Breitenecker, |. Husinsky 3-901608-03-6

#4  Seminar Modelibildung und Simulation - F. Breitenecker, |. Husinsky, 3-901608-04-4
Simulation in der Didaktik M. Saizmann

#5 Seminar Modellbildung und Simulation - D. Murray-Smith, D.P.F. Mélier, 3-901608-05-2
COMETT - Course "Fuzzy Logic" F. Breitenecker

#6 Seminar Modellbildung und Simulation -COMETT - N. Kraus, F. Breitenecker 3-901608-06-0
Course "Object-Oriented Discrete Simulation”

#7 EUROSIM Comparison 1 - Solutions and Results F. Breitenecker, I. Husinsky 3-801608-07-9

#8 EUROSIM Comparison 2 - Solutions and Results F. Breitenecker, I. Husinsky 3-901608-08-7

For information contact: ARGESIM, c¢/o Dept. Simulation Techniques,
attn. F. Breitenecker, Technical University Vienna
Wiedner Hauptstrafle 8-10, A - 1040 Vienna
Tel. +43-1-58801-5374, -5386, -5484, Fax: +43-1-5874211
Email: argesim@simserv.tuwien.ac.at
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Results of the EUROSIM Comparison "Lithium Cluster Dynamics"

F. Breitenecker® and I. Husinsky"

* Dept. Simulation Techniques, fbreiten@email.tuwien.ac.at
Computing Services, husinsky@edvz.tuwien.ac.at
Technical University Vienna, Wiedner Hauptstral3e 8-10, A - 1040 Vienna

This contribution summarizes the solutions of the EUROSIM Comparison on
Simulation Software "Lithium Cluster Dynamics". The EUROSIM Software
Comparisons (up to now eight) and the solutions sent in are published in the journal
EUROSIM Simulation News Europe (SNE). Based on the results some
developments and trends in continuous simulation software and related problems are
briefly sketched.

1. THE EUROSIM COMPARISONS

EUROSIM, the Federation of European Simulation Societies, started in 1990 the publication of
the journal EUROSIM Simulation News Europe (SNE), a newsletter distributed to all members
of the European simulation societies under EUROSIM's umbrella and to people and institutions
interested in simulation. SNE is also part of Simulation Practice and Theory (SIMPRA), the
scientific journal of EUROSIM.

The idea of the journal SNE (circulation 2500; edited by F. Breitenecker and I. Husinsky, ARGE
Simulation News ( ARGESIM ) , Technical University of Vienna, Austria; three issues per year)
is to to dissemination information related to all aspects of modeling and simulation. The contents
of SNE are news in simulation, simulation society information, industry news, calendar of events,
essays on new developments, conference announcements, simulation in the European
Community, introduction of simulation centers and comparison of simulation software,
simulators and (parallel) simulation techniques.

The series on comparisons of simulation software has been very successful. Based on simple,
easily comprehensible models the software comparisons compare special features of modeling
and experimentation within simulation languages:

¢ modeling technique e steady-state calculation
e event handling e frequency domain

e submodel features e plot features

e numerical integration e parameter sweep




ARGESIM REPORT NO.7

postprocessing
statistical features
statistical processors
control strategies

optimization
random numbers
complex strategies
animation, etc.

Seven Software Comparisons, four continuous ones and three discrete ones (a fourth discrete
comparison is in preparation) have been set up., Furthermore, a second type of comparisons, the
Parallel Comparison has been initiated.

The continuous comparisons are: Comparison 1 (C1; Lithium-Cluster Dynamics under Electron
Bombardment, November 1990) deals with a stiff system; Comparison 3 (C3; Analysis of a
Generalized Class-E Amplifier, July 1991) focusses on simulation of electronic circuits and
eigenvalue analysis; Comparison 5 (C5; Two State Model, March) requires very high accuracy
computation; Comparison 7 (C7; Constrained Pendulum, March 1993) deals with state events. ’
The discrete comparisons are: Comparison 2 (C2; Flexible Assembly System, March) gives
insight into flexible structures of discrete simulators; Comparison 4 (C4; Dining Philosophers,
November 1991) involves not only simulation but also different modeling techniques like Petri
nets; Comparison 6 (C6; Emergency Department - Follow-up Treatment, November 1992) deals
with complex control strategies; Comparison 8 (C8, locks on channeis) will deal with variance
reduction methods.

SNE 10 introduced a new type of comparison dealing with the benefits of distributed and parallel
computation for simulation tasks. Three test examples have been chosen to investigate the types
of parallelization techniques best suited to particular types of simulation tasks.

Up to now, 100 solutions have been sent in. Table 1 shows the number of solutions for the
Software Comparisons as well as for the Parallel Comparison. The series will be continued.
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Table 1: EUROSIM Comparisons, publication of solutions
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2. THE EUROSIM COMPARISON C1 "LITHIUM CLUSTER DYNAMICS"

EUROSIM comparison 1 (Lithium-Cluster Dynamics under Electron Bombardment) has been
performed by 26 simulation languages or simulators. This comparison is based on a stiff third
order system of ODE's describing the concentrations f{?), m(t), and r(t) of molecule agglomerates
( F-, M - and R- centers) of alkali halides under electron bombardment:

S S .

dr/dt =-d.r+kmf TN T ORI
dm / dt = drr - dmm + kf./2 - krmf lécem.er - 1 ‘
df/dt =dr+2d,m-kmf 2kf-1f+p & e $orconter

k,=d,=1k=d =0.1,1I=1000
+(0) =9.975, m(0)=1.674, r(0)=84.99

-F~center
F-center

Fig. 1: Comparisonl, physical background

The following three tasks had to be performed:
i) test and comparison of integration algorithms ( t € [0, 10] ),
ii) parameter sweep of /, (100, ... 10000 ) with log plots, and
iii) steady state calculation for p = 0 and p = 10000.

First it has to be noted that all simulation languages fulfilled the tasks with sufficient accuracy.
Table 1 gives an overview about simulation languages and simulators, where solutions were sent
in (column 1). The simulators can be divided roughly into three groups: equation oriented
languages, (graphical) block-oriented languages, application-oriented languages. The table
indicates these different modeling techniques (column 2). As some languages offer different
modeling approaches, the one used in the solution sent in is marked with an asterisk. Special
features and essential properties are remarked in column 3.

LANGUAGE | MODEL DESCRIPTION REMARKS

ACSL equations (ODEs) CSSL-language with rich structure; 2 solutions

DESIRE equations (ODEs) combination with neural network simulation; interfaces to

C and Turbo Pascal

DYNAST equations (DAEs) (*) semi-symbolic analysis for linear systems;
graphical blocks (sub models) documentation environment based on AutoCAD or TeX
port diagrams (graphical) for PC version

ESACAP equations (DAEs) (*), nodes / "European Space Agency Circuit Analysis Program";
branches, arbitrary expressions based on numerical algorithm for circuit analysis

ESL equations (ODEs) (*) interpretative and compile mode; graphic postprocessor
graphical blocks (sub models)

EXTEND graphical blocks continuous and next event modeling; mainly Macintosh,

FSIMUL graphical blocks (sub models) "Control Engineering" - optimisation features

HYBSYS blocks (elementary) (*) "Hybrid Simulation System" (1980 TU - Wien)
equations interpretative simulator; direct data base compilation;

Table 1, part 1: General features of simulation languages
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LANGUAGE | MODEL DESCRIPTION REMARKS
IDAS / graphical(ORCAD, ...) specialized for electronic circuits and control problems;
SIMPLORER | equations (Description Language) based on Windows
by dialog (Windows) (*)
I Think graphical blocks modeling based on system dynamics; no slot to other
| modeling or programming languages
MATLAB equations (MATLAB functions) tool for mathematical and engineering calculations
MATRIXx graphical blocks (*) interactive matrix-manipulation; using LINPACK and
matrix manipulation EISPACK
mosis equations "modular simulation system"; CSSL-type on C basis;
features for parallelization on MIMD-systems;
NAP2 blocks (electronic circuits) specialized for circuit simulation
POWERSIM | graphical blocks description based on System Dynamics formulation
PROSIGN equations (ODEs) . "Process Design"; combination of modeling techmques
graphical blocks (sub models) interfaces to C, Fortran, Modula2;
application-oriented components variable number of input and output parameters
SABER equations (ODEs) specialized for analogue circuit simulation
SIL equations (ODEs, DAEs) simulation of discrete and continuous systems; free format
SIMNON equations (ODEs) (*) simulation of discrete and continuous systems; real-time
macro function, sub models features; connecting systems; direct data base compilation
SIMULINK | graphical blocks (sub models) (*) based on MATLAB; special integration-algorithm Linsim;
equations (MATLAB functjons) no limits for number of states and variables; 2 solutions
SIMUL_R equations (ODEs) (*) simulation of discrete and continuous systems; open
bond graphs (graphical preprocessor) | system, based on C; runtime interpreter; combined
blocks (graphical preprocessor) simulation
STEM equations (ODEs) "Sim. Tool for Easy Modeling"; basis on Turbo Pascal
TUTSIM graphical blocks, bond graphs "Twente University of Technology” (NL); simulation of
equations (ODEs) (*) discrete and continuous systems
XANALOG | graphical blocks (sub models) sophisticated linearization, real-time features

Table 1, part 2: General features of simulation languages

3. RESULTS AND EVALUATION OF THE COMPARISON

Simulations show, that in the very beginning
(in the interval [0, 5E-3]) fast transient
dynamic occurs, while later on (in the
interval [SE-3, 10]) the system is relatively
smooth (fig.2, logarithmic axes).

Eigenvalue analysis of the linearized model
results in three eigenvalues being negative
real numbers.

At t = 0 the eigenvalues are -0.00898,
11.06, -1005.66, at t = 10 the values are -
0.0978, -1.018, -1003.4 .

Dividing the absolute value of the biggest
eigenvalue by the absolute value of the
smallest eigenvalue results in a stiffness
factor. At ¢t = 0 this factor is approximately
120000, at ¢t = 10 the factor is about 10000.

Fig.2: Results f{t), variation of I,
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Figure 3 shows this stiffness changing over the time (logarithmic scales): fast transients happen at
the very beginning of the simulation, afterwards the system is relatively smooth.

stiffness factor
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Fig.3: Stiffness of the system over time (logarithmic axes)

3.1 Task i): Test and comparison of integration algorithms

It is relatively difficult to compare the results of this task. Although most languages offer exact -
CPU-times for the different algorithms, these results suffer from side effects like 1/O-time,
straight-forward or tricky modeling, well tuned algorithm parameters (model-dependent!) or
standard values, etc. Therefore, for the comparison of the algorithms the relation between the
different algorithms is more significant than absolute CPU-times (normalized to Euler algorithm).
Table 2, summarizing these results, is mostly restricted to three algorithms: Gear stiff algorithm
(variable stepsize, variable order), Euler algorithm (fixed stepsize) and Runge- Kutta algorithm
(RK4, mainly fixed stepsize), because these algorithms all work "well" (in case one or more of
these algorithms are missing, preferably results of Runge-Kutta-Fehlberg and Adams-Moulton
algorithm are given).

Table 2 generally shows that the Gear algorithm is the best one for this model because of the
stiffness of the system. Unfortunately some reports do not indicate which order the Gear
algorithm had to choose in order to fulfill the constraints on the relative or absolute errors, resp.
Insight into these questions offers for instance ESACAP, which compares different BDF-
algorithms (Backward Differential Formulas, the predecessors of the Gear algorithms) on the
basis of number of steps, function evaluations, calculations of the Jacobian matrix, etc.
Furthermore, the most efficient Gear algorithms or BDFs are offered by languages (DYNAST,
ESACAP, SIL) using model description on basis of DAEs (Differential Algebraic Equations) - by
reformulating the model in implicit form.
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LANGUAGE | SNE-NR | COMPUTER | ALGORITHM STEPSIZE COMPUTATION TIME
C1-NR ACCURACY OTHERS
ACSL SNE-1 [ PC 80287/12 Adams-Moulton | 5.E-3 iss 1 (155.055 sec)
C1-3 Gear 5.E-3 iss 0.022
RKF 4/5, vs 5.E-3 iss 0.355
ACSL SNE-5 | Micro VAX/ Euler 1.LE-5/2.E-1ss 1 (8.43 sec)/ 0.056
C1-17 | Sund RK 4 1.E-5/2.E-1ss 1.981/0.101
Gear 1.E-8 ae, 1.E-5 iss 0.236/0.018
DESIRE SNE-4 | PC 80387/16 Gear 1.E-5 ae, 1.E-6 logiss | 10 sec
Cl- Sun 4c Gear 1.E-5 ae, 1.E-6 logiss | 1.7 sec
DYNAST SNE-3 | PC 80387 Gear-Newton- 1.LE-3re, 1L.LE-S iss 0.506
Cl-12 Raphson 1.E-6 ae, 1.E-5 iss 1 (4.45 sec)
ESACAP SNE-1 | PC 80387 BDF lo, vs 1.LE-3re/ 1.LE-Tre 118ns,237/10271ns,20547f
Ci-1 BDF 2o, vs 1.E-3re/ 1.E-7re 53 ns,105{/ 316 ns, 632f
BDF 3o, vs 1.E-3re/ 1L.E-Tre 51 ns,102f/185 ns,370
ESL SNE-2 |PC 80387 SX/16 |RK 4 1.E-3 ss 0.571
C1-8 Adams Bashforth | 1.E-1 iss 1(21 sec)
Gear 1.E-1 iss 0.01
EXTEND SNE-5 | Macintosh lfx | Euler impr. 12000 ns / 10000 ns | I (1 sec)/ unstable
CI-15 Trapezoidal rule {30000 ns/ 20000 ns | 2.3 / unstable
FSIMUL SNE-1 {PC 80387 /25 AB 20, vs 5.E-4 iss/ 1.E-3 iss 0.556 / unstable
Ci4 implicit Heun 5.E-4 ss/ 1.E-3 ss 0.973 / unstable
RK4 5.E-4 iss/ 1.E-3 iss 1 (187 sec) / unstable
HYBSYS SNE-2 | DECStation ABM 1.E-5 iss 1.983
C1-7 3100/16 Euler 1.E-4 ss 1 (8.47 sec)
RK 4 2.E-4 iss 1.099
IDAS SNE- | Pentium Euler minss=0.002 1 (8 sec)
C1-25 |60mHz Trapezoidal mss=0.01 1
I Think SNE-5 |Macintosh IIfx | Euler 1.E-4 ss/ 1.E-3 ss 1 (420 sec) / unstable
C1-16 RK 2 1.E-4 ss/ 1.E-3 ss 1.286 / unstable
RK 4 1.E-4 ss/ 1.E-3 ss 1.714 / unstable
MATLAB SNE-3 | PC 80387 RKF 2/3 1.LE-5re 739 sec
C1-10 | (PS/S80) RKEF 4/5 1.LE-6/1.E-7re 563 sec / 752 sec
MATRIXx | SNE-10 |PC 80486/33 Euler 1.E4 equ. time points |1 (90.3 sec)
C1-19 RK2 /RK4 1.E4 equ. time points | 1.468/2.411
Sun 4 /40 Euler 1.E4 equ. time points | 1 (8.19 sec)
RK2 /RK4 1.E4 equ. time points | 1.442/2.322
mosis SNE-12 | PC 486/33 Euler 1.0E-3 ss 1 (2.3 sec)
Ci-22 RK4 1.0E-3ss /1.0E-4 ss 1.783 /17.957
Adams Moulton | 1.0E-4 ss,1.0E-8 mae | 1.122
Stiff Alg. 1.0E-4 ss,1.0E-8 mae | 0.039
NAP2 SNE-1 | PC 80387 mod. Gear, vs,vo | 1.E-5 iss 4.56 sec
C1-2 | Norton CI 25,6
POWERSIM | SNE 14 | PC 80486/66 Euler 1.0E-3 ss 1(325s)
C1-25 RK4 vs, 1.0E-3 iss 1.2

Legend: ss ... stepsize; iss ... initial ss; log (i)ss ... logarithmic (i)ss; mss ... max. ss; re ... relative error;
ae ... absolute error; ns ... number of steps; f ... function evaluations, vs ... variable ss; vo ... variable order;
40 ... 4th order; etc.; RK4 ... classical Runge-Kutta; RKF ... Runge-Kutta-Fehlberg;

AB(M) ... Adams-Bashforth(-Moulton); BDF ... Backwards Differential Formulas

Table 2, part 1: Results of task i): test and comparison of integration algorithms
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LANGUAGE | SNE-NR | COMPUTER | ALGORITHM STEPSIZE COMPUTATION TIME
C1-NR ACCURACY OTHERS
PROSIGN SNE-3 | not given Simpson 2o, vs 1.E-3 mss 1 (470 sec)
Cl1-13 AB 40, vs 2.5.E-3 mss 0.434
SABER SNE-11 | Sun Gear 1o/Gear 20 | vs 1(0.75 sec)/ 0.44
C1-20 | SPARCI10/402 |Gear 20/Gear 20 |S.E-4 ss/1.E-3 ss 1 (47.3 sec)/ 0.448
Trapezoidal rule | vs . 0.016
SIL SNE-2 | PC 80387 Stiff alg., vs,vo | 1.E-2re/ 1.E-dre 0.231/0.351
C1-9 1.E-6 re/ 1.E-10re 0.49/1 (11.43 sec)
SIMNON SNE-12 | PC 80386/25 Euler 1.0E-3 1 (23 sec)
C1-23 RKF23 vs, . E-6re 0913
RKF45 vs, 1.LE-6 re 0.652
SIMNON SNE-11 | PC 80386/40 Euler 1.0E-3 11(31 sec)
C1-21 RKF23 vs, 1.LE-6 re 0.39
RKF45 vs, 1.E-6 re 0.264
PC 80486/66 Euler 1.0E-3 1 (9.8 sec)
RKF23 vs, 1.E-6re 0.398
RKF45 vs, 1.LE-6re 0.276
SIMULINK | SNE-3 |Sun4 RK S, vs 1.E-2re,1 E0-E-4ss |1 (10.4 sec)
Cl-11 Gear 1.E-2 re,1. EO-.E-4 ss |0.034
Linsim E-2re, 1. EO-1E-4ss {0.018
SIMUL_R SNE-1 |notgiven Euler 1.E-3ss, 1.E-5re 1 (not given)
Ci-5 RK 4 2.E-3ss, 1.E-Sre 1.9
Euler implicit 1.E-1ss, 1.LE-3re 022
STEM SNE-5 | PC 80287/20 RKF 1720, vs 1.E-6re, 1.E-3 ae 1 (18.84 sec)
Cl-18 RKF 4/50, vs 1.E-6re, 1.E-3 ae 0.574
Gear, vs 1.E-6 re, 1.E-3 ae 0.027
TUTSIM SNE- [PC 80387/16 Euler 5.E-4 mss 1 (44 sec)
Ci-24 AB 5.E-4 mss 1.114
XANALOG | SNE-2 |PC80287/16 RK 4 1.LE-3ss/2.5E-3ss |2.744 /88 sec
Cl-6 Euler 1.E-3ss/2.E-3ss 1 (82 sec) / unstable
mod. Euler 1.LE-3ss/2.E-3ss 1.439 / unstable

Legend: ss ... stepsize; iss ... initial ss; log (i)ss ... logarithmic (i)ss; mss ... max. ss; re ... relative error;
ae ... absolute error; ns ... number of steps; f ... function evaluations, vs ... variable ss; vo ... variable order;
40 ... 4th order; etc.; RK4 ... classical Runge-Kutta; RKF ... Runge-Kutta-Fehiberg;

AB(M) ... Adams-Bashforth(-Moulton); BDF ... Backwards Differential Formulas

Table 2, part 2: Results of task i). test and comparison of integration algorithms

The classical RK4 algorithm works well, if an appropriate stepsize and an appropriate relative
error is chosen, being approximately 10 times slower than the Gear algorithm. RKF algorithms
(Runge-Kutta-Fehlberg) speed up the integration time using stepsize control.

It is known from theory that the Adams-Moulton and /or Adams-Bashforth-algorithms are not
suitable for this kind of systems; but it is astonishing that they are really very slow.

Another astonishing phenomenon is the result of the Linsim algorithm of SIMULINK, which is
twice faster than the classical Gear algorithm. This algorithm extracts the linear parts of the
models and calculates the linear dynamics via power series, the nonlinear parts are integrated in
the usual manner.
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Three solutions sent in showed that it is worth thinking over a model before simulating it. The
authors made use of the fact that fast transients happen only at the very beginning.

Consequently, the second ACSL solution choose exponentially spread sampling points, resulting
also in related stepsize (also better suited for log plots).

The DESIRE solution and the first SIMNON solution performed this exponential time shift
directly in the model equations (logarithmic time transformation). As a consequence, the
integration algorithms became (much) faster, the system became nearly non-stiff.

3.1 Task ii): Parameter sweep and log plots

The second task should test whether a simulation language offers features for parameter sweeps.
Table 3 summarises the results in column 2, where it is tried to distinguish between parameter
loops in the model description and at run-time level. In case of graphical model description model
frame and experimental frame are mixed, so that this distinction becomes difficult.

Furthermore, it turned out that the additional requirement of a logarithmic paranieter sweep and
logarithmic plot was no further challenge: if parameter loops are available, different increments
can be used; if the parameter sweep has to be formulated in a "manual" way, the logarithmic
sweep is also simple. The third column in table 3 therefore indicates only, whether logarithmic
representations are supported directly ("standard") or not ("manual” transformation).

3.3 Task iii): Steady state calculation:

The third task should check which languages offer features for steady state calculation. The
model is simple enough to calculate the steady states analytically, so all results could be
compared with the exact values:

p = 10000: £, =10, m; =10, r,=1000
p=0: fi=m;=r,=0).
Languages with steady state finder (column 3 of table 3 ,"trim command, iteration") calculated

the results for both cases with sufficient accuracy. Usually the iterative solution of the steady state
equations started with the initial values for f, m and r.

Languages without a steady state finder ("longterm simulation") simulated over a long period
stopping when derivatives are nearly zero (approx. at t+ = 100), getting as accurate results as the
steady state finders.
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LANGUAGE PARAMETER VARIATION LOG. STEADY STATE CALC.
ACSL manual variation at runtime standard | trim command, iteration
DESIRE parameter loop in model description manual not given
DYNAST | manual variation in model description standard | long term simulation
ESACAP parameter loop in model description standard | long term simulation
ESL parameter loop in model description standard | trim command, iteration
EXTEND manual variation in graphic model description |standard | long term simulation
FSIMUL parameter loop in graphic model description standard | long term simulation
HYBSYS parameter loop at runtime standard | trim command, iteration
IDAS manual variation in model description standard | long term simulation
I Think manual variation in graphic model description |standard | long term simulation
MATLAB | parameter loop in model description standard | trim command, iteration
MATRIXx |manual variation in model description standard | trim command, iteration
mosis parameter loop at runtime standard | trim command, iteration
NAP 2 manual variation in model description standard [ long term simulation
POWERSIM | parameter loop in model desrc.(co-models) manual not given
PROSIGN | parameter loop in graphic model description standard | trim command, iteration
SABER parameter loop in model description standard | trim command, iteration
SIL parameter loop at runtime manual trim command, iteration
SIMNON parameter loop at runtime manual long term simulation
SIMULINK | manual variation in graphic model description |standard | trim command, iteration
SIMUL_R | parameter loop at runtime standard | trim command, iteration
STEM manual variation in model description manual trim command, iteration
TUTSIM parameter loop at runtime standard | long term simulation
XANALOG | parameter loop in graphic model description standard | trim command, iteration

Table 3: Results of tasks ii) and iii): Parameter sweep and steady state calculation

4. TRENDS AND DEVELOPMENTS

The results of this comparison also allows a view on developments and trends of simulation
languages and simulators. In the following some trends are listed, but also the problems which
may arise:

Developments: Problems:
Implicit model descriptions Loss of input-output relations
Submodel features Conflicts with macro features

Graphical model descriptions
Graphical preprocessors
Sophisticated integration algorithms
State event handling

New methods (formula manipul.)
Separation of model and experiment
More powerful runtime interpreters
Windows Implementations

Loss of segment structure

Overhead in generated equations
Overhead for about 80% of problems
Dependent on modeling technique
CSSL structure too weak

Interpreters not powerful enough
Documentation with model

Loss of speed, esp. on PC
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In general, it is interesting, that

e Big enterprises tend to develop their own language, which are marketed, too

e Universities and institutions develop also new languages, which partially are
successfully marketed

¢ In continuous simulation on the one side CSSL standard - languages become a
common denominator for modeling, on the other hand a block-oriented graphical
description based on control technique is frequently used.

10
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Comparison of Simulation Software

In the early 70's only a few simulation languages
existed. But soon, together with the use of PCs, the
number of languages increased rapidly. Looking at the
catalogue of simulation software over the years the in-
crease started exponentially, but now a limited growth
can be observed.

Even for a specialist in simulation it is now difficult to
overview all languages and their features. A lot of bench-
marks have been developed, but they are quite compli-
cated.

EUROSIM - Simulation News Europe now starts a
series using another approach for comparison of simula-
tion software. Based on simple, easily comprehensible
models special features of modelling and experimenta-
tion within simulation languages, also with respect to an
application area, shall be compared.

We invite all institutes and companies developing or
distributing simulation software .to participate in this
comparison:

Please, simulate the model described and send a
report to the editors in the following form:

o short description of the language

o model description (source code, diagram, ...)

o results of the tasks with experimentation comments
e approx. 1/2 page A4

Reports will be published in EUROSIM - Simulation
News Europe.

New comparisons will be prepared for the next issues.
As it is difficult to find suitable "simple” models and re-
levant tasks we would like to ask you to contact the
editors if you have an idea for a model to be compared
in different simulation languages.

Comparison 1: Lithium-Cluster Dynamics
under Electron Bombardment

The first model to be compared is taken from solid
state physics. The special features to be compared are
rate cquations (application area), stiff systems (numeri-
cal integration), parameter sweep and steady-state cal-
culation (experimentation).

The model describes formation and decay of defect
("F-centers") aggregates in alcali halides. The defects are
produced by electron bombardment near the surface of
the crystal and can cither form aggregates or will evapo-
rate if they reach the surface.

L 11
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The variable f(t) denotes the concentration of F-
centers, m(t) and r(t) respectively denote the concentra-
tion of aggregates consisting of two (M-center) or three
F-centers (R-center). In principle the system can be
easily extended taking into account formation of larger
aggregates (n F-centers). The variable p(t) is the produc-
tion term of F-centers due to electron bombardement
(irridiation):

dr/dt = -der + kemf
dm/dt = dyr - dmm + ke - kemf
df/dt = der + 2dmm - kemf - 2kef* - If + p

The parameter lf measures the loss of F-centers at the
surface. kr and kg are rate constants describing the for-
mation of an M-center out of two F-centers, or the for-
mation of an R-center out of an M-center and an
F-center. The decay of an R-center into an M-center and
an F-center is described by the rate constant dr and the
decay of an M-center into two F-centers by the rate con-
stant dm. Investigations arc startcd aftcr constant elec-
tron bombardment p(t) = = 10* of approximately
10 s; the production term has to be set to zero (p(t) =
0), the initial values are:

f(0) = 9.975
m(0) = 1.674
r(0) = 84,99
The parameter values are:
kr = 1
ke =01
It =

F-cénter

The following tasks should be performed

a) simulation of the stiff system over [0,10] with indi-
cation of computing time depending on different integra-
tion algorithms

b) parameter variation of lf from 1.0E2 to 1.0E4 and
a plot of all f(t;), logarithmic steps preferred.

c) calculation of steady states during constant bom-
bardment p(t) = pc = 1.0E4) and without bombardment

(p(t)=0).

11
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Comparison of Simulation Software

In the last issue (November 1990) EUROSIM-Simu-
lation News Europe started a series on comparisons of
simulation software.

This idea has become a great success: Based on sim-
ple, casily comprehensible models special features of
modelling and experimentation within simulation lan-
guages, also with respect to an application area, are being
compared.

In this issue the first results for "Comparison 1I:
Lithium-Cluster Dynamics under Electron Bombard-
ment" are published. Here we would like to thank all the
authors who solved the problem and sent in their contri-
butions. Some of the reports contained complete de-
scriptions of various experiments and different model-
ling approaches. Therefore we have excerpted abstracts
from the reports received. Those who are interested in
the full descriptions of the comparisons may write to the
editors. If many people are interested we will consider to
edit a special issue containing the full contributions. Re-
ports on Comparison 1 will be continued to be published
in the next issue, so please send in your contribution for
simulation languages that have not yet been introduced.

Comparison 1 - Physical background

The "Lithium-Cluster Dynamics Model” describes the
behaviour of defects under electron (and photon) bom-
bardment of alkali halides. Among many others, one of
the important consequences of these electronic defects
is the desorption of surface atoms. The understanding
and the control of such clectronic desorption processes
is essential for these materials when used in an environ-
ment of intensive radiation such as lasers.

During exposure to radiation F centers are created in
the surface and near surface bulk region of the crystal.
The diffusion time of these F centers to the surface at ele-
vated temperatures is very fast (msec timescale). It is a
good assumption that every F center reaching the surface
creates an neutral alkali atom which can desorb if the

temperature is sufficiently high. In the experiments
which are simulated by the model system discussed here
the desorbing alkali atoms (Li) have been monitored
with a quadrupol mass analyzer or via Laser Induced
Fluorescence. (The temperature of the LiF crystal was
400°C to assure fast F center diffusion and evaporation
of every Li atom created at the surface by a F center).
Hence the amount of detected desorbed Li atoms is
identical with number of F centers.

The essential experimental observation is that after ir-
radiation (production term set to 0 in the equations) the
amount of desorbed Li drops by one to two orders of
magnitude but lasts for several tens of seconds beyond
irradiation. Furthermore, provided the experimental
para- meters are set accordingly, a maximum in the de-
sorption yield has been observed several seconds after
beam turn off. This result must be imaged by the F center
behaviour. Because the F center diffusion is so fast, the
experimental data imply that F centers must be "stored"
in so called agglomerates which are formed from - and
can then disintegrate into - F centers. In reality agglome-
rates with many constituents can form. For simplicity
only those with two and three atoms (M and R centers)
are included here (We have shown that a good quantita-
tive description can be obtained considering at least Fo
centers, the qualitative behaviour can be already seen
with R centers).

The experimental parameters in the present simula-
tion represented by the k, If..... values and initial condi-_
tions have been chosen in such a way that the charac-
teristic (experimentally observed) maximum in F center
concentration is qualitatively simulated. In order to "see"
the maximum, however, a logarithmic plot of the concen-
tration axis is needed, because otherwise the prompt
decay by more than one order of magnitude would mask
the maximum,

The model has been simulated with Mathematica
using the standard Runge-Kutta package on a Macintosh
II Si with floating point accelerator.

Wolfgang Husinsky, Institut fiir Aligemeine Physik,
Technische Universitit Wien, Wiedner Hauptstrafe 8- 10,
A - 1040 Wien, Austria
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Comparison 1 - ESACAP

Simulation carried out by means of the simulation
program ESACAP at ElektronikCentralen, Denmark:

ESACAP is a general purpose program for simulation
of non-lincar dynamic systems. The first version of
ESACAP (ESA Circuit Analysis Program) was develo-
ped in 1979-80 for the European Space Agency (ESA)
by ElektronikCentralen, Denmark.

Problems are formulated in terms of a structure
(nodes/branches) and/or arbitrary expressions. Besides
node potentials and branch-flow, a so-called auxiliary va-
riable can be specified.

Differential equations may be introduced by means of
the auxiliary variable. If one of the variables can be iso-
lated on one side, the procedure is straightforward.
Otherwise, a pseudo-explicit expression is formed.

For example:

F(x, y, dx/dt, dy/dt) = 0, G(x, y, dx/dt, dy/dt) = 0
becomes:

x=x+F(x, y, d&/dt, dy/dt), y =y + G(x, y, dx/dt, dy/dt)

ESACAP employs numerical integration implemen-
tcd as backward differential formulas of max order 6.
Order and steplength are controlled by the relative trun-
cation error. Non-linear systems are solved by a combi-
ned gradient/Newton method.

The ESACAP formulation of the actual problem is as
follows:

KR=1;, KF=.1; LF=1000; DR=.1; DM =

%R = %R-F%R'-DR* %R + KR * %M* %F;

%M = $%oM-FM’ + DR*%R-DM* %M + KF* %F* %F-
KR*%M* %F,

9oF = %F-%F +DR*%R +2°*DM* %M-KR* %M * %F-
2°KF* %F* %F-LF* %F + P;

1; P=1EA4;

The prefix % indicates a system variable and *(apostro-
phe) stands for time-derivative.

The graphics presentation of the results from task a)
is shown in the figure.

2.1t
004 Lithium-Cluster Dynamics under Electron Bombsrdesent

T ANALYSIS 23-JAN-91
xR M

T

10.

w
»”

$002. (C) 1989 ElektronikCentralen DK2970 Horsholm Dennrk
15: 07: 13 ‘

| LF:

The task has been run on a PC under DOS with a
80387 math. co-processor. CPU time for the numerical
calculations is masked by the time needed for I/O ope-
rations. An impression of the numerical effort may be
gained from the following table in which the four num-
bers in each entry indicate: entry 1: number of integra-
tion steps, entry 2: number of equation factorizations,
entry 3: number of substitutions (new right hand sides),
entry 4: total operation count (number of double preci-
sion multiplications)

Order

Error | | | i | | |
le-3 | 118 | 59 | S3 51 st | 51 |
| o122 | & ] s 55| 55| 55|
| 237 | 118 | 105 102 | 102 | 102 |
1 1321 | 669 | 600 | s81 | 581 | 581 |
le-5 | 1043 | 206 | 124 105 | 106 | 106 |
{ 1051 | 212 | 132 113 | 116 | 114 |
{ 2091 | 410 |} 250 216 ) 216 | 216 |
| 11528 | 2290 | 1410 | 1207 | 1218 | 1218 |
le-7 | 10271 | 8«3 | 36 | 208 | i8S | 185 |
[ 10279 | ss1 | 32 26 | 193 | 193 |
| 20547 | 1689 | 632 416 | 370 | 370 |
| 113036 | 9322 | 3sié 2328 | 2075 | 2075 ¢

The next figure shows the results from task b). The
graphic shows logarithmic time and parameter steps.
The experimentafion commands for the parameter
sweep are:

$INIT: VF=9.975; WM=1.674; AR=84.99; END;
$PARAMETERS :

TIME=0,10; HFIRST=5E-5; ERROR=15-7 MAXORD=6 ;
SH!!P(LP*IBZ 1B4,L0G:2); END

$PLOT:
X(.001,10,L0G:50)=TIME;
Y(AUT)=AR1; Y(AUT)=%M!;

Y(AUT)=\F!; END;
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The steady state solution during constant bombard-
ment for different values of p is computed by the follo-
wing experimentation commands (in the time domain):
SPARAMETERS :

$PLOT:
X=P;

ERROR=1E-7; SWEEP(P=0,1E4,1E2); END;

Y(AUT)=AR!; Y(AUT)=Mt; Y(AUT}=\F1; END;
Paul Stangerup, ElektronikCentralen, Venlighedsvej 4,
DK-2970 Horsholm, Denmark. Tel: + 45428677 22. Fax:

+454286 58 98
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COMPARISON OF SIMULATTION SOFTWARE

Comparison 1: Lithium-Cluster Dynamics under Electron Bombardement

Simulation carried out by means of the simulation program ESACAP at
‘ElektronikCentralen, Denmark:

ESACAP is a general purpose program for simulation of non-linear dynamic
systems. The first version of ESACAP (ESA Circuit Analysis. Program) was
developed in 1979-80 for the European Space Agency (ESA) by Elektronik-
Centralen, Denmark.

Problems are formulated in terms of a structure (nodes/branches) and/or
arbitrary arithmetic expressions. Besides node potentials and branch-
flow, a so-called auxiliary variable can be specified.

Differential equations may be introduced by means of the auxiliary varia-
ble. If one of the variables can be isolated on one side, the procedure
is straight-forward. Otherwise, a pseudo-explicit expression is formed.

For example: F(x, y, dx/dt, dy/dt) = 0
G(x, y, dx/dt, dy/dt) = 0

becomes: x = x + F(x, y, dx/dy, dy/dt)
y =y + G(x, y, dx/dt, dy/dt)

ESACAP employs numerical integration implemented as backward different-
iation formulas of max order 6. Order and steplength are controlled by

the relative truncation error. Non-linear systems are solved by a com-

bined gradient/Newton method.

The ESACAP formulation of the actual problem is as follows

KR=1; KF=.1; LF=1000; DR=.1; DM=1; P=1E4;

AR=ZR-ZR' - DR*ZR+KR*XM*XF;
IM=XM-ZM' +DR*%R - DM*AM+KF* X F*LF-KR*XM*XF :
XF=XF-XF'+DR*XR+2*DM*XM- KR*AM*XF- 2*KF* X F*XF-LF*XF+P;

The prefix X indicates a system variable and ' (apostrophe) stands for
time-derivative.

The grapics presentation of the results from task a) is shown in fig.1.

The task has been run on a PC under DOS with a 80387 math. co-processor.
CPU time for the numerical calculations is masked by the time needed for
1/0 operations. An impression of the numerical effort may be gained from
table I in which the four numbers in each entry indicate:

14
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Entry 1. Number of integration steps

Entry 2. Number of equation factorizations

Entry 3. Number of substitutions (new right hand sides)

Entry 4. Total operation count (number of double precision multipli-

cations) :
TABLE I

Order 1 2 3 4 5 6

Error | I I I I I I

le-3 | 118 | 59 | 53 | 51 | 51 | 51 |
| 122 | 63 | 57 | 55 | 55 | 55 |
| 237 | 118 | 105 | 102 | 102 | 102 |
| 1321 | 669 | 600 | 581 | 581 | 581 |

le-5 | 1043 | 204 | 124 | 105 | 106 | 106 |
| 1051 | 212 | 132 | 113 | 114 | 114 |
| 2091 | 410 | 250 | 214 | 216 | 216 |
| 11528 | 2290 | 1410 | 1207 | 1218 | 1218 |

le-7 | 10271 | 843 | 316 | 208 | 185 | 185 |
| 10279 | 851 | 324 | 216 | 193 | 193 |
| 20547 | 1689 | 632 | 416 | 370 | 370 |
| 113036 | 9322 | 3516 | 2328 | 2075 | 2075 |

..................................................................

In ESACAP, the user can specify various degrees of non-linearities there-
by controlling how often the Jacobian is updated. Table II shows the in-
fluence of specifying the system as nearly linear and as strongly non-1li-
near. When compared with the default specification, it is seen that the
number of factorizations can be dramatically reduced. However, the gain
is nearly lost by the greater number of integration steps.

TABLE 11

Error: le-5

Order: 3
Nearly linear Strongly linear
| 211 | 124 |
| 23 | 250 |
| 427 | 250 |
| 1396 | 2000 |

...................................

Fig.2 shows the results from task b). The graphics shows logarithmic
time and parameter steps

Fig.3 shows the results from task c). The effect of constant electron
bombardment is shown for various values of p.

Fig.4 shows a simulation over 20 secs. The bombardment is stopped after
10 sec.

15
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EUROSIM. 001

Lithium-Cluster Dynamics under Electron Bombardement

# This ESACAP example shows the formulation and simulation of a dynamic
% system representing the concentration vs. time of various aggregates

4 in alcali halides. For details, please refer to:

# Ref: Compatison‘of software. Comparison 1: Lithium-Cluster Dynamics

# under Electron Bombardement.

# EUROSIM Simulation News Europe. Nov.1990. Page 25
$$DES

$NET:

KR=1; KF=.1l; LF=1000; DR=.1; DM=1;

P=0;

$R=%R-%R'-DR*%R+KR*$M*%F;
EM=$M-%M'+DR*$R-DM*EM+KF*$F*$F-KR*$M*%F;

$F=%F~%F ' +DR*$R+2*DM*EM-KR*EM*FF-2*KF*$F*$F-LEF*$F+P;

END;

$$TRANSIENT

$INIT: %F=9.975; $M=1.674; %R=84.99; END;

$ PARAMETERS:

TIME=0,10; HFIRST=5E-5; ERROR=1E-7; MAXORD=6; END;
$PLOT:

X=TIME; Y(AUT)=%R!; Y(AUT)=%M!; Y(AUT)=%F!; END;

¢ $STOP
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EUROSIM.002 Lithium-Cluster Dynamics under Electron Bombardement

# This ESACAP example shows the formulation and simulation of a dynamic
§ system representing the concentration vs. time of various aggregates
$ in alcali halides. For details, please refer to:

# Ref: Comparison of software. Comparison 1: Lithium-Cluster Dynamics.
% under Electron Bombardement.
# EUROSIM Simulation News Europe. Nov.1990. Page 25

$$DES

$NET:

KR=1; KF=.1l; LF=1000; DR=.1; DM=1l; § Specification of
§ parameters

P=0;

%$R=%R-%R'-DR*$R+KR*$M*%F; $ Differential

$M=%M-$M'+DR*$R-DM* §M+KF*$F*$F-KR*$M*%F; § equations trans-

$F=%$F-%F ' +DR*$R+2*DM*$M-KR*$M*$F-2*KF*$F*%F-LF*%F+P; § formed to pseudo
$§ explicit expres-

END; # sions

# In this example, the parameter LF is stepped betwen le2 and le4 in 5

# logarithmic steps.
# Graphics outputs have been changed to logarithmic scale as well

$$TRANSIENT

$INIT: $%$F=9.975; $M=1.674; %$R=84.99; END; Start vector
Analysis para-
meters

Stepped LF value

$ PARAMETERS :
TIME=0,10; HFIRST=5E-5; ERROR=1E-7; MAXORD=6;
SWEEP(LF=1E2,1E4,LOG:2); END

Desired outputs,
log scale
for graphics

$PLOT:
X(.001,10,L0G:50)=TIME;
Y(AUT)=%R!; Y(AUT)=%M!; Y(AUT)=%F!; END;

= o e 3= o e 3=

$$STOP

18
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EUROSIM.003 Lithium-Cluster Dynamics under Electron Bombardement (st.s
§ This ESACAP example shows the formulation and simulation of a dynamic
# system representing the concentration vs. time of various aggregates
§ in alcali halides. For details, please refer to:

# Ref: Comparison of software. Comparison 1: Lithium~-Cluster Dynamics

# under Electron Bombardement. .

$ EUROSIM Simulation News Europe. Nov.1990. Page 25

$$DES

$NET: .

KR=1; KF=.1; LF=1000; DR=.1; DM=1; 4 Specification o
{ parameters

P=0;

$R=%R-%R' -DR*$R+KR*$M*{F; 4 Differential

$M=%$M-%M ' +DR*$R-DM*$M+KF*$F*$F-KR*$M*%F; § equations trans

$F=%$F-%F'+DR*$R+2*DM*$M-KR*$M*EF~-2*KF*$F*$F-LF*$F+P; §# formed to pseud
§ explicit expres

END; # sions

$ In this example, steady state solution during constant bombardment is
$ computed for varying values of P

$§$D.C

$PARAMETERS: ERROR=1E-7; SWEEP(P=0,1E4,1E2); END; § Analysis parame
§ meters. The val
§ of P is swepped
$PLOT: # Desired outputs
X=pP; Y(AUT)=%R!; Y(AUT)=%M!; Y(AUT)=%F!; END; 4 for graphics
$$STOP
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EUROSIM.004

&

# system representing the concentration vs. time of various aggregates
# in alcali halides. For details, please refer to:

4 Ref: Comparison of software. Comparison 1: Lithium-Cluster Dynamics

# under Electron Bombardement. :

# EUROSIM Simulation News Europe. Nov.1990. Page 25

# In this example, the simulation is carried out over 20 secs. The consH
# tant bombardment is stopped after 10 secs. Initialization is the zero-
§ vector.

$$DES

$NET:

¥R=1; KF=.1; LF=1000; DR=.1; DM=1;

IF(TIME.LT.10) THEN
P=1E4;

ELSE

P=0;

ENDIF;

$R=%R-%R'-DR*$R+KR*¥M*%F;
$M=%M-%M' +DR*$R-DM* $M+KF *$F*$F-KR*tM*%F;
$F=%F-%F'+DR*3%R+2*DM*$M-KR*$M*$F-2*KF*$F*$F-LF*$F+P;

END;

$$TRANSIENT

$PARAMETERS :
TIME=0,20; HFIRST=5E-5; ERROR=1E-7; MAXORD=6; END;

$PLOT:

X=TIME; Y(AUT)=%R!; Y(AUT)=%M!; Y(AUT)=%F!; END;

$$STOP
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Lithium-Cluster Dynamics. Bombardment during 10 secs.

This ESACAP example shows the formulation and simulation of a dynamic

- e A

== e it o o

3= A= 3= ot

Specification of
parameters

Stop bombardment
after 10 secs

Differential
equations trans-
formed to pseudc
explicit expresH
sions

Analysis para-
meters

Desired outputs
for graphics




EUROSIM COMPARISON | - SOLUTIONS AND RESULTS

| INIL
.om .m« .m« o.m c.v oo.

000°

4% WX
H%

8

0°0

021

(RS
n

4% W% HY%
gy 62 .G} T6-NVM-€2 SISATYNY INIISNVHL
*§235 (0} Butunp juswpJequog °SITWRUAQ J3ISNTJ-WNTYITT P00 WISOHN3
3JewuaQ WIOYSJOH 0/62)0 USTBJIUIDNTUOJINSTI 6B6T (J) '200# 1TT1°2 dVIVS3

23



ARGESIM REPORT NO.7

Comparison 1 - NAP2

Simulation Language

ANP3 & NAP2 - A package for circuits and system
simulation.

An old idea: If you sct up your differential equations
and algebraic equations on an ideal analog computer
then you may use an electronic circuit analysis program
for the simulation.

The ideal integrator is modelled as a capacitor loaded
current source. The voltage of the capacitor is the time
integral of the current.

For "Comparison 1: Lithium-Cluster Dynamics under
Electron Bombardment” the following input file for a
general purposc electrical and electronic circuit analysis
program is produced (model and experiment descrip-
tion): .

scireuits *lisc 1, 9 1 £1le TURGSINI.MAP,

;x Comparison 1: Lithium-Cluster Dynamice under Electron Bombardement >
+ ref. EUVROSIN - Simulation News Burope, pg.25, Numbar 0, Novamber 19%0

1
1integrating capacitors;
ver = vl = g{t), R-center conc.;

101
201 1 vomn » v] ® mit), M-center conc.:
301 : vef = v) = f{t), F-Centar conc.;

2ss

1 dr/dt = ~drer ¢ krem*f;

ier 01 -0.1 ver 1 dr » +0.1,
irmf 0 1 +1.0°cwm vef 1 kr = ¢1.0;

dm/dt ® +dr°r - da*m ¢+ k{*({**2) - Kkr*m°f;

tmr 0 2 +0.1 ver 1 dr @ +0.1;
i 02 -1.0 vem 3 4m e 41,0,
imf 0 2 s0.1°vef wvef 1 kf = 40.1;
fwaf 0 ) -1.0°vem vol 1 kr = ¢1.0;

df/dt = dry ¢ 2°dm*m - kremef - I°Rf*(f£*°2) - 1f°f ¢+ p

1fr 0 ) +0.) wver 1y dr m #0.1,
itm 0 ) 2.0 vem 3 dm = 41.0;
ifmf 0 ) -1.0°vem vef 1 kr & +1.0;
Lf2f 0 ) -0.2°¢ct wet : kf = +0.],
1f=1.0¢);
L1f»1.0e2 : redefine 1f;

11 0 3 -1.0°lf wef : If = 1000;
ebomd /tabl/ 01, 10 1, 10 o, 0 o;

QP ey o jelevitebombitime);

*modify v1s84.99, vis)l.674, v3Is9.97% : initial condition;
: rto) »i0) 1103

‘cime O 10 : variable order variable step integration)

*tr vnall *plot{+30) vl v v) > + linear time scale
*plot{+50) vl v2 v} » : logarithmic time scale
*plot{+5%0) control.st control.or 0 10
*plot(-%0) control.st control.or 0 10

integration step tntgr. method order

°*probe ;

‘run holé cycles$500 minstepsie-20 stape=in
*end

variastion of parameter 1f

*modify vaalled, ifall=0

*modify vi=84.99, viIxl. 674, vI=3 978
L1€22.0el

“run hold cycles’00 minstep=le-20 step=in

: reset solution
: initial condition:

Please observe that it is not necessary to draw the
cquivalent circuit scheme. The integrating capacitors are
given values 1 and placed between the reference node 0
and the nodes 1, 2 and 3. The coefficients of the differen-
tial equations are modelled as controlled current
sources: ix <from-node> <to-node> <value>
<control >.

The actual electronic circuit analysis program used
(NAP2) is based on the extended node equations formu-
lation. The integration method used is a modified Gear
method with variable order variable step integration.
The size of the program is: 256.143 kbytes. The compu-
ter used is IBM AT compatible. Operating system: DOS
3.30. Main processor: Intel 80386, Co-processor: Intel
80287. Norton computing index relative to IBM/XT:
25.6. Disk index: 3.4.

The following table summarizes the integration effort
of the stiff system over {0,10].

initial integration-step = minstep = 10*le-6 = l0usec

final CAME ... itii ittt e 10.00 s
nr. of integrationsteps .............c........ 5S4
nr. of Lterations .......cciiiiiiiiieennann 125
nr. of rejected StePs ... .. ...t 1
max. nr. of fterations pr. integration step .. 25
ny. of NO CONVERGENCE ..... Ceate e 0
total cpu-time consumption ..........c.0.... 4.56 s

The figure shows a simple simulation of the system in
the interval [0, 10] sec with the given initial conditions
(task a).

10¥ y------- *——5.*--4- ....... w—ciianen PO - 1

: N
: \
: N,
(7] TR, ———eaeen ——————— -y
o v{3}
10V govevnne ——eeecen ———een= - ceen--- -—aeceee R R T
ovi ------- —eeranen —eemene > aemneen - emmesne. o mvone - rememan 4.
o v(2)
100V oo “—vesmane —eeanca L R TERT RS -resmeaw dmseance > masmens T
3 N
T S aanes ———ee ———eaee —eeean ——nen ——enae .
1 Ous 10us 100us 1 Das 10ms 100us 10s  10s
s v()
TirE

The parameter sweep (task b) is formulated within the
model description, the Gear integration method works
with sufficient accuracy for all values of Is.

Steady state calculation is performed by time domain
computation over {0,1000] with following experimenta-
tion description and results (If = 1000, p = 10000:)

*MODIFY Vis=Q, v2=0, vi=0Q : INITIAL CONDITION;
r{0) n(0}) (0}

initial integration-step = linsec
ninimum integration-step = le-20

final time ... ... ... .. i 1000.00 sec
max. ar. cf iterations pr. integration step .. 25

total cpu-time consumption .........cieeicnnan 88.10 sec
nr. of integrationsteps ..............c.ciiannn 2896

nr. of fterations ...... ... ... ...l

nr. of rejected scteps ..
ar. of NO CONVERGENCE
solution at final time

1 9.998667D+02
2 9.998793D+00 m(1000)

{1000}

3 9.999996D+00 £({1000)

Erik Lindberg, Institute of Circuit Theory and Tele-
communication, 343 Technical University of Denmark,
DK - 2800 Lyngby. Tel: +45 45 93 12 22 3650. Fax: +45
45930355
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" EUROSIM COMPARISON I - SOLUTIONS AND RESULTS

A contribution to the Comparison of Simulation Software

Erik Lindberg
Institute of Circuit Theory and Telecommunication
343 Technical University of Denmark
DK-2800 Lyngby, Denmark.

"Comparison 1: Lithium-Cluster Dynamics under Electron
Bombardment"

Simulation language: Electrical circuit analogy.

——— - — . G w— - e - - —

If you set up your differential equations and algebraic equa-
tions on an ideal analog computer then you may use an electronic
circuit analysis program for the simulation.

The ideal integrator is modelled as a capacitor loaded current

source. The voltage of the capacitor is the time integral of the
current.

For "Comparison 1l: Lithium-Cluster Dynamics under Electron Bom-
bardment" the following input file for a general purpose electri-
cal and electronic circuit analysis program is produced. Please
observe that it is not necesessary to draw the equivalent circuit
scheme. The integrating capacitors are given values 1 and placed
between the reference node 0 and the nodes 1, 2 and 3. The coeffi-
cients of the differential equations are modelled as controlled
current sources: ix <from-node> <to-node> <value> <control>.

circuit; *list 2, 9; : file EUROSIM1.NAP;

: Comparison 1: Lithium-Cluster Dynamics under Electron Bombardement >
ref. EUROSIM - Simulation News Europe, pg.25, Number 0, November 1990

integrating capacitors;

cr 1 01 : ver = vl = r(t), R-center conc.;

cm 2 01 : vem = v2 = m(t), M-center conc.;

cf 301 vcf = v3 = f(t), F-center conc.;
dr/dt = -dr*r + kr*m*f;

irr 01 ~-0.1 ver : dr = 4+0.1;

irmf 0 1 +1.0*%vem vef : kr = +1.0;
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dm/dt = +dr*r - dm*m + Kf*(f**2) - kr*m*f;
imr 0 2 +0.1 ver : dr = +0.1;
imm 0 2 -1.0 vem : dm = +1.0;
imf 0 2 +0.1*vcf vcf : kf = 4+0.1;
immf 0 2 -1.0*vcm vef : kr = +1.0;
df/dt = dr*r + 2*dm*m - kr*m*f - 2*kf*(f**2) - 1f*f + p
ifr 0 3 +0.1 vcr : dr = +0.1;
ifm 0 3 +2.0 vem : dm = +1.0;
ifmf 0 3 -1.0*vem vef : kr = +1.0;
ifff 0 3 -0.2*vcf vef : kf = +0.1;
1f=1.0e3;
.1f=1.0e2 : redefine 1lf;
iff 0 3 -1.0*1f wvecf : 1f = 1000;

ebomb /tab2/ 0 1, 10 1, 10 O, 20 0O;

gp 03 O j=le+4*ebomb(time) ;

*modify v1=84.99, v2=1.674, wv3=9.975 : initial condition;
r(0) m(0) £(0)
*time 0 10 : variable order variable step integration;
*tr vnall *plot(+50) vl v2 v3 > : linear time scale
*plot(-50) vl v2 v3 > : logarithmic time scale
*plot(+50) control.st control.or 0 10 >
*plot(-50) control.st control.or 0 10 *probe ;

integration step intgr. method order

*run hold cycle=500 minstep=le-20 step=ln
*end .

variation of parameter 1f

*modify vnall=0, iall=0 : reset solution ;
*modify wv1=84.99, v2=1.674, v3=9.975 : initial condition;
.1f=2.0e2

*run hold cycle=500 minstep=le-20 step=1ln

P I e e T

lines deleted

*modify vnall=0, iall=0 : reset solution ;
*modify v1=84.99, v2=1.674, v3=9.975 : initial condition;
.1f=1.0e4

*run cycle=500 minstep=le-20 step=ln

*end
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The actual electronic circuit analysis program used (NAP2) is
based on the extended node equations formulation. The integration
method used is a modified Gear method with variable order variable
step integration. The size of the program is: 256.143 kbytes. The
computer used is IBM AT compatible. Operating system: DOS 3.30.
Main processor: Intel 80386. Co-processor: Intel 80287. Norton
computing index relative to IBM/XT: 25.6. Disk index: 3.4.

of 1e-6.

- . - - e e e e - - - W . ROt e G e s e G L e G e WE R A R G G A -

Final tiMEe i it ien et enreessnorosanseeseecsans 10.00 sec

nr. of integrationsteps ...ccieveiiitecrecnnns 54

nr. of iterations .....ii ittt ectecaacnnnnas 125

nr. of rejected steps ...ttt ittt 1

max. nr. of iterations pr. integration step .. 25

nr. of NO CONVERGENCE ... ..ttt etenacnsonenss 0

total cpu-time consumption ......ceciietecanns 4.56 sec

order 0 1 2 3 4 5 6

ORDER COUNT 1 4 12 11 11 8 6

order 0 = Forward Euler, order 1, 2, ... 6 = modified Gear method

solution at final time 10 sec

VNALL
1 3.174401D+01 r(10)
2 3.478937D+00 m(1l0)
3 1.009811D-02 £(10)
Task b) Parameter variation of 1f from 1.0e2 to 1.0e4d
*MODIFY V1=84.99, v2=1.674, V3=9.975 : INITIAL CONDITION;
r(0) m(0) £(0)

initial integration-step = lnsec
minimum integration-step = le-20
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final time ...... .. .. . . 10.00 sec
max. nr. of iterations pr. integration step .. 25

total cpu-time consumption ................... 24.99 sec
LF=1.0E2

nr. of integrationsteps ...................... 87

nr. of iterations ................ ... 153

nr. of rejected steps ................ ..., 1

nr. of NO CONVERGENCE .........vuiuuuununnnn. .. 0

ORDER COUNT 1 1 15 14 12 11 32

solution at final time
1 3.549103D+01
2 3.478331D+00
3 1.015861D-01

LF=2.0E2

nr. of integrationsteps ......... et e e 82

nr. of iterations ............ ... 0 145

nr. of rejected steps ................ e et 0

nr. of NO CONVERGENCE ................. C e e e 0
ORDER COUNT 1 3 13 15 12 14 23

solution at final time
1 3.353713D+01
2 3.487958D+00
3 5.078264D-02

LF=5.0E2

nr. of integrationsteps ...................... 81

nr. of iterations .................... f e e 145

nr. of rejected steps ...................... .. 0

nr. of NO CONVERGENCE ............. ettt e 0
ORDER COUNT 1 4 12 13 14 15 21

solution at final time
1 3.221956D+01
2 3.483658D+00
3 2.024122D-02

LF=1.0E3

nr. of integrationsteps ...................... 79

nr. of iterations ............. ..., 139

nr. of rejected steps ...................... .. 0

nr. of NO CONVERGENCE ...........couvununo.. .. 0
ORDER COUNT 1 4 15 13 11 12 22

solution at final time
1 3.173990D+01
2 3.479105D+00
3 1.009804D-02
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LF=2.0E3

nr. of integrationsteps .......oiiiiiiienennn. 77

nr. of iterations ......c..iiiiiiin it 137

nr. of rejected StePS ...ttt ittt 1

Nnr. O0f NO CONVERGENCE ...ttt itnnerennennnenns 0
ORDER COUNT 1 5 11 12 12 13 22

solution at final time
' 1 3.149317D+01
2 3.475384D+00
3 5.041528D-~03

LF=5.0E3

nr. of integrationsteps ........c.iiiiiiiiin., 74

nr. of iterations ...ttt it 125

nr. of rejected StePS ..ttt ittt 0

nr. of NO CONVERGENCE ......... et e e e 0
ORDER COUNT 1 6 11 13 12 12 18

solution at final time
1 3.135069D+01
2 3.474231D+00
3 2.015346D-03

LF=1.0E{4

nr. of integrationsteps ........iiiiiiiiienn. 72

nr. of iterations .........ciiiiiiian., e e 119

nr. of rejected StePS ..t ii ittt ittt 1

nr. 0f NO CONVERGENCE ... it iiinrnnnerennnnenas 0
ORDER COUNT 3 4 12 11 12 10 19

solution at final time
1 3.129986D+01
2 3.472832D+00
3 1.007225D-03

- ——— - . ——— " e —— - - —— e W e e e e m e

*MODIFY V1=0, v2=0, V3=0 : INITIAL CONDITION;
r(0) m(0) £(0)

|
—
oo
0
o
Q

initial integration-step =
minimum integration-step = le-20

—— . ———— - —— . n G G A S A G v W= . - - — . e

final time ....... e e ettt e ettt e e 1000.00 sec
max. nr. of iterations pr. integration step .. 25
total cpu-time consumption .......oviieeeecen. 88.10 sec
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LF=1000

nr. of integrationsteps ........ciuiniinnnnn. 2896

nr. of iterations .........iiiiiiiintennnennns 1.83e+4
nr. of rejected StePS ...ttt 985

nr. of NO CONVERGENCE . i ittt vt ennrennnnnnnn. 3
ORDER CCUNT 113 1595 913 173 25 25 51

solution at final time
1 9.998667D+02 1r(1000)
2 9.998793D+00 m(1000)
3 9.999996D+00 £f(1000)

Task: c) Steady state analysis, p(t)=0 at time 10 sec

L —— R G e A G e e e e 6 Su E Gm M Em - e ma e e me e . e e . A A e e b -

p(t)=1.0e+4 for O < t < 10 sec

*MODIFY V1=0, V2=0, V3=0 : INITIAL CONDITION;
r(0) m(0) £(0)

{
[
ol
0
o
O

initial integration-step =
minimum integration-step = le-20

- e - . G ——— - - G - - TS —— e Sm = e

final time ...ttt it e i et et 100.00 sec
max. nr. of iterations pr. integration step .. 25

total cpu-time consumption .........c. 0., 11.64 sec
LF=1000

nr. of integrationsteps ..... ettt 333

nr. of iterations ....iiiiiiiiiit ittt 859

nr. of rejected stepPs .... ittt 18

Nr. O0f NO CONVERGENCE vttt tvtenneennnenennnn 0

ORDER COUNT 2 58 111 50 26 31 54

solution at final time
1 2.338100D-02
2 2.597860D~03
3 7.534555D-06

p(t)=1.0e+d4 for 0 < t < 10 sec

*MODIFY V1=0, v2=0, V3=0 : INITIAL CONDITION;
r(0) m(0) £(0)

|
fary
o
n
o®
Q

initial integration-step =
minimum integration-step = 1le-20

final time ....iiiiii ittt i i i et 10.00 sec
max. nr. of iterations pr. integration step .. 25
total cpu-time consumption ........eoeeeeennnn 8.74 sec
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LF=1000

nr. of integrationsteps ...........0.. ... ..., 215

nr. of iterations ......... ... .., 542

nr. of rejected steps ....... i 18

nr. of NO CONVERGENCE . ...'ivnmenommeni 0

ORDER COUNT 1 1 60 53 23 25 51

solution at final time :
1 8.498983D+01 r(0) 84.99 ok
2 1.674199D+00 m(0) 1.674 ok
3 9.948318D+00 £(0) 9.975 ?

.—.._—....—.—.—..————..—————.——.—.—_—_—_—__—.-__-_..-__._____—_—............_——-—-——————-———-.—_—
 ———— i 2 o ——— —— —— — —— — o — . 7

Erik Lindberg, ANP3 & NAP2 - A package for Circuits and Systems
Simulation, pages 686-700 in R.A. Adey (Edt.), Engineering Softwa-
re II, CML Publications, Southhampton 1981.

Erik Lindberg, Circuits and Systems Simulation by means of Elec-
tronic Circuit Modeling, SIMS 83 - Simulation Today and Tomorrow,
25. anniversary - Scandinavian Simulation Society, Odense, Den-
mark, May 30 - June 1, 1983, 28p.

Erik Lindberg, Analysis Programs for Analog Circuits and Systems,
ECCTD-83, 6'th European Conference on Circuit Theory and Design,
Sept. 4 to 9, 1983, sStuttgart, GFR, Proceedings page 433-435.

Erik Lindberg and Thomas Ribner-Petersen, The Theory behind NAP2,
Report IT-32, October 1981, Inst. of Circuit Theory and Telecommu-
nication, 343 Tech. Univ. Denmark, DK-2800 Lyngby, Dermark, 71p.

.....—_...——_—_.——-—.—..—_—.—_—.-_—_—.—_.___.___..———._.—_.-—_-_.__-__.__._____._-.__—._—.__—_.

Fig. 1 shows the result of task (a) Simple simulation of the sy-
stem in the interval [0, 10] sec with the given initial condi-
tions. (A = linear, B = logarithmic time scale).

Fig. 2 shows the result of task (b) Parameter variation of 1f in
the interval [1.0e2, 1.0e4].

Fig. 3 shows the result of task (cl) Calculation of steady state
during constant bombardment p(t)=1.0e4.

Fig. 4 shows the result of task (c2) Calculation of steady state
with bombardment p(t)=1.0e4 in the interval [0, 10] sec.
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EUROSIM COMPARISON | - SOLUTIONS AND RESULTS

Comparison 1 - ACSL

ACSL (Advanced Continuous Simulation Language)
is a widely used language obeying the CSSL-68 standard
for simulation languages. ACSL consists of an ACSL
precompiler translating ACSL syntax into FORTRAN
and a runtime interpreter handling the generated simu-
lation object program.

Model Description:

PROGRAM EUROSIM EXAMPLE No. 1

' Language ACSL Level 9, Mitchell & Gauthier Ass., US A

' prepared by Dr. Ingrid Bausch-Gall, January 2nd, 1991°
CONSTANT kr=1, kf=0.1, if = 1000, dr=0.1,dm=1,p=0.
CONSTANT fnull = 9.975, mnull = 1.674, mull = 84.99 $ 'init. cond.’

ALGORITHM IALG =2 $ ‘take Gears stiff for integration ’
CINTERVAL CINT =0.05  $ 'store results at multiples of CINT
CONSTANT TEND = 10. $ 'simulation time'

! ---—— model equations ~—-———
r = integ(-dr'r + kr*m*{,mull)
m = integ(dr®r - dm*m + kf*f*f -kr*m*(,mnuil)
f = integ(dr®r + 2.°dm°m-kr*m*f-2.°kf*f*f-If*{ + p fnull)
TERMT(T.gt. TEND) $ 'stop at simulation time'
END

ACSL-Runtime-Commands:

* a) Comparison of computer time *

prepar t,r,m,[ $ 'store results of these variables’
sialg=1 3 ‘cake. with ADAMS-Moulton method’
spare $ start § spare $ 'give computer time’

sialg=2 $ ‘choose now Gear's stiff”

spare $ start $ spare
sialg=9

sparc § start $ spare

' b) Parameterstudies
sialg=2

slf=1c2

start

sarwitg= 1.

slf=1.c3

start

sif=1c4

start

s title = 'Example EUROSIM 1, Parameterstudies’
stitle(11)="If = 1.e2 (1), L.e3(2), L.ed (3)

s fispht = .t symcpi = .t npcepl = 40

plot {,’xhi’ = 10.,'char’ =1’ § plot results

* ¢} Calculate steady state result

sp=lecd

analyz 'list’ = .t.'tnm’

sp=0.

analyz 'tnm’

stop

$ 'one step Runge-Kutta order 4/5’

$ ‘wrnite all results on one file’

Results:

All calculations have been done on a Commodore PC-
40(AT) with 12 MHz and a 80287 numeric co-processor.

Comparison of computer time (task a):

Adams-Moulton-Predictor-Corrector Method,
IALG =1 155.055 sec.

Gear's Stiff, IALG =2 3.460 sec.

Runge-Kutta order 4/5 with stepsize control,
IALG =9 55.035 sec.

Parameterstudies:

The parameter sweep may be fromulated either "ma-
oually” at runtime level (see runtime commands) or au-
tomatically by programming a loop in the model de-
scription. The following figure shows the results of the
parameter sweep with seven different values.

VARTATIIN OF LF=1000, =22, 200, 100.33. ¢
230
T
1] Y | ]
‘.\ i
" A L4
2 - il | LI )
- EE :E - T Q
1 44 -4
Bili maiil mati i |
a a B11HY =t ..
. — &S
- -‘ (\‘
= it | | 4 e
o LH n ! o~
-— -a ~
" - o
1 us 1 13
| i —H a
I i
L P r«
' ’ Lo
E —Ir- “'J ¥ T} =
1076 1075

1074 10'3T 10°2 ol 300 10!

Calculate steady state result for Iy = 1000:

ACSL offers within the frequency domain analysis the
TRIM command for the calculation of steady states (by

$ 'choose Gears StfT for parameterstudies’ means of iterative solution of 0 = x = f(x)). The results

in this iteration (see also runtime commands) are:

p = LE4 gives as last iteration:

Newton step 0.24366500 Steep desc step 0.11443300 mu 0

State vector - iteration number 11
F 10.0000000 M 10.0000000 R 1000.00000

Derivative vector - residual is 53226E-05 previous 0.02483470
Scaled residual is 9.9485E-05 previous 0.04599450
209996 5.15S46E-05 209997 SA8S4E-0S  Z09998-5.37S1E05

p=0. gives as last iteration:

Newton step 0.12913000 Steep desc step 0.06764160 mu 0
State vector - iteration number 8
F-1.5045E-12 M-15373E-09 R 1.3290E-07
Derivative vector - residual is 1.3339E-08 previous 0.01348860
Scaled residual is 25906E-08 previous 0.02502220
209996 1L1T0E(08 209997 1.482TE08  209998-13290E-08

Ingrid Bausch-Gall, BAUSCH-GALL GmbH, Wohl-
fartstrafie 21b, D - 8000 Miinchen. Tel: +49-(0)89
3232625. Fax: +49-(0)89 3231063
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Comparison 1 - FSIMUL

Description of FSIMUL

The blockoriented simulation package FSIMUL was
developed at the Lehrstuhl fiir Regelungssysteme und
Steuerungstechnik, Universitat Bochum, FRG. The first
usable version ran on a PDP 11 around 1975, the first ef-
fective PC version 1986 the actual version 1990 with
windows, pulldown-menus, and comfortable editor
functions. (Reference: K H. Fasol, K. Dickmann (ed.):
Simulation in der Regelungstechnik, Springer Verlag
1990.)

The numerical integration algorithms used are:
e Adams-Bashfort (2nd order) - AB
e predictor-corrector method (Adams-Bashfort
Moulton) - PECE
o implicit method of Heun
¢ cxplicit method, Runge-Kutta (4th order) - RK4

Model description

The model (EUROSIM no. 0, November 1990, p. 25)
was programmed on a 80386DX-25 w/ 80387 AT-type
system, memory size 640 kB, VGA graphics board.

Model description (listing and graphical repre-
sentation):

 FEIMOL  IBM S.0

file: di\felmel\sin\lithim.oin
medels Lithiwe-Cl

Results of the tasks

a) table of computing time (in sec.) depending on the
integration algorithms with different stepsize

me thod h=S5.0E-4 hs1,0€-3 h=2.0€-3 h=2 . 5€E-3
A8 104 - - -
PECE 163 -

Heun 182 90 - -

RK4& 187 93 4“8 39

(-) :numertically instable

b) parameter variation of I, the terminal values are:

l¢ f(t=10sec)
10E2  0.1015
20E2 - 0.05076
50E2  0.02025
1.0E3 00101
20E3  0.005044
SO0E3  0.002016
1.0E4 - 0.001008

c) calculation of steady states (It = 1000), calculations
in the time domain result in: v

o during constant bombardment (p(t) = 1.0E4)
f(t=95sec.) = 9.99
f(t=313 sec.) = 9.999
f(t=435sec) = 10.0

« without bombardment (p(t) =0.0)
f(t=0.0023 sec.) = 1.005
£(t =0.0046 sec.) = 0.111
f(t=3325 sec.) = 0.00101
f(t=79 sec.) = 1.0E-5

The figure shows the results of the parameter sweep:

wster Dymanics under Llectren Bomberdesent
parsnsters w. ,Typ,isputs Josunentaty
X 110008 1) oo, 1X{=1000.¢
X 11.0008 2 oo, 1xr=1.8
X 19.1000 3 SO, 1kf=8.3
K 10.1800 ¢ Lcon, 14r=0.1
K 11.0008 3 LCon, 1de=1.0
x 110808, L3 L0, sp=3.084
IC 154.990 1@ LINT,—40 ¢ 1E(t)
1€ 11.6740 20 INT,. 40 0 40 Im(t)
IC 1 9.978 39 ,INT,40 108 ~68 ~90 -0¢ 12(e)
@ W4 30 1drer
W ,WL,S 30 rdnen
[l L, 2 20 Je Ikremeg
76 WIL,) )6 3¢ ixteg"3
" SML,1 38 F23 424
K 12,8000 ” LGAL, 70 130kt L2
X 311.0000 169 ,CAlL e 121%dmen
sutput: Bleck ne. 38
time parsmetars: 1 18.8 sec.
stepeize: h=3.0L-4
Lithive~Cluste urder Electron Bosbardeent.
et B3 ] [ ] Pudesa i %] kw2
o LTS }_< CJ] w1} L
s - ] ] ) I "
oreg.1 orec Pty fu ™2
o }_ na ol 1
. o8 = J
kfel.
o
L3
r<t) fuf
mwmr - na
1 L]
ey
Ny -
4 s
1(=1.000

Disgres 11 FEINA. desigwd bleck diagram

(T =
- /\
o} ) if=i.
g /_\\
162 .4
s.ma m
ifws.
foam—"" 1C=3
.0
ams .| “.00 c.. a.08
.20 -
s.15m }
2.0 1€o2 .8
.08 M
11
[ N ]
... 2.8 ~ 08 .| .00
m——lthlim Clustar Jfo2.053 S 8EY 1.8F

Bisgram 21 FEINA resutts of e sisutsted LithiwClurter

K.H. Fasol, Lehstuhl fiir Regelungssysteme und Steu-
erungstechnik, Ruhr-Universitdt Bochum, Universitits-
strafle 150, Geb. IB 3/152. Postfach 10 21 48. D - 4630
Bochum
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Description of FSIMUL ‘
The blockorient ed simulation package FSIMUL was developed at the

Lehrstuhl far Regelsysteme und Steuerungstechnik, Universitat
Bochum, FRG. The first usable version run on a PDP 11 around 1975.
First effective PC version 1986. Actual version 1990 with windows,
pulldown-menues, and comfortable editor functions.
(Reference: K.H. Fasol, K. Diekmann (ed.): Simulation in der Rege-
lungstechnik, Springer Verlag 1990)
The used numerical integration algorithms are:
- Adams-Bashfort (2nd. order)
- predictor-corrector method
- implicit method of Heun
- explicit method, Runge-Kutta (4th. order)

(Adams-Bashfort Moulton)

Model description
The model (EUROSIM no. 0, November 1990, p. 25) was programed on a

80386DX-25 w/ 80387 AT-type systenm, memory size 640 kB, VGA
graphics board.

FSIMUL-listing of the demanded task:

FSIMUL IBM 5.0

file: d:\fsimul\sim\lithium.sim

model: Lithium-Cluster Dynamics under Electron Bombardement

parameters no. ,typ,inputs ;icommentary
K £1000.0 1 +CON, 11£=1000.0
K £1.0000 2 . CON, tkr=1.0
K :0.1000 3 +CON, 1kf=0.1
K :0.1000 4 CON, ;dr=0.1
K $1.0000 5 , CON, ;1dm=1.0
K :10000. 6 ,CON, ;p=1.0E4
IC :84.990 10 INT,~-40 60 ;r(t)
IC :1.6740 20 ,INT,40 -50 70 -60 ;m(t)
IC : 9.975 30 +INT,40 100 -60 -90 -80 JE(E)

40 ,MUL, 4 10 ;dAr*r

50 MUL,5 20 sdm*m

60 (MUL,2 20 30 tkr*m*f

70 +MUL,3 30 30 tKEXE™2

80 (MUL,1 30 t1f*f
K :2.0000 90 +GAI,70 72*kKEXf"2
K :2.0000 100 (GAI,50 ;2*%dm*m
output: block no. 30
time parameters: endtime: 10.0 sec.

stepsize: h=5.0E-4
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Results of the tasks
a) table of computing time (in sec.) depending on the integration
algorithms with different stepsize

method h=5.0E-4 h=1.0E-3 h=2.0E-3 h=2.5E-3

AB
PECE
Heun
RK4

104 - - -
163 - - -
182 90 - -
187 S3 48 39

(=) :numerically instable

b) parameter variation of le

1

f(t=10 sec.)

I?OEZ
2.0E2
5.0E2
1.0E3
2.0E3
5.0E3
1.0E4

0.1015
0.05076
0.02025
0.0101
0.005044
0.002016
0.001008

C) calculation of steady states
(dr/dt=dm/dt=df/dt=0 f=p/lg 1£=1.0E3)

- during constant bombardment (p(t)=1.0E4)

f(t=95 sec.)
f(t=313 sec.)
f(t=435 sec.)

9.99
9.999
10.0

nuu

-~ without bombardment (p(t)=0.0)
f(t=0.0023 sec.) = 1.005

f(t=0.0046 sec.)
f(t=33.25 sec.)

f(t=79 sec.)

0.111
0.00101
1.0E-5
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Lithium-Cluster under Electron Bombardment

da=1.0 dmae oxdmam f(t) kfxf~g
CDN . — - BR1 >_J'——:INT V-8
s 188 - 38 - va
de=0.1 dese ek nf~a
CON jg— MUL - BGAI
4 L] 2]
kf=8.1
CON
3
<t) 1fuf
INT - HUL L
18 13— e
m(t)
Pyt
=]
1 f=1.808
CoN
1
krxmu ¥
¢ L —]._J
68
kr=1.8
CoN
Disgram 11 FSIMUL designed block diagram | 2
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0°G WAl TNNWISA

Diagram 2t FSIMUL results of the simulated Lithium=Cluster
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b) The commands for the desired parameter sweep

Comparison 1 - SIMUL R are:

preparc t,LIf; * specify values to be prepared *
wine=9; ynum = 3; yline=3; " plot legends "

number_text = true;

plot_text = Lithium Cluster Dynamics: If variation’;

SIMUL R is a compiling simulation language for

continuous and discrete systems. The system offers gra- #horiz_screen * use horizontal plot legends *
fical and textual modelling, using one or more models in #forIf_log=24,5# * for loop: with exponents "
one simulation program. Examinations are done by using If = “1;(/11:_108"03(10)): " compute "t‘"“‘ 10"',-3"13 forlf "
3 3 cint = 1/if; " set accurate step width *
menus and/or a strong runtime interpreter. Gstep = (INOU/I0; * each cstepth point is recorded *
The interpreter allows the usage of loops, command start; " start simulation run *

“ plot flogarithmic over (0.001,10), using t over (0,tend)
files (recursive, too) and arbitrary expressions with as- a5 x-axis, writing If = ... to special positions of the curve *

signments and displaying. A special feature are user plot! (t(0,tend)) *£(0.001,10) = If_log*2-2 : 'If = '(If);

defined functions, which enable the user to add new com- plot_del = false;  prevent deletion of last plot *
mands to the system (commands for steady state, zero ;-:::_newnfalsc; " avoid drawing new axes twice *
search, continuous and discrete optimization, statistical Tot: « recall the last plot *
cvaluations are available as well). plot rocall the fast plot
A huge grafical library supports among others mo- The figure contains the corresponding plot.
ving plots, 3D-plots, niveau lines, cross plots (for display- - .
ing solutions of PDEs), animation for both, continuous Lithiun Cluster Dunenics: {F veriotion
and discrete systems. "
SIMUL R is an open system as it allows data input
and output from and to other systems, including user '
input dunng simulation (by keys or grafical) as well as
hardware in the loop. | 1108
Model description: b L$=316.228
ol 121009
Lithium_Qluster { . 1§=3162.28 ——
CONSTANT kr=1, kf = 0.1, If = 1000, dr = 0.1, dm =1, p=0; | —
CONSTANT r0=84.99, mO=1.674, f0=9.975; 1£=10000
CONSTANT tend = 10; ) <l
DYNAMIC { . . 10
DERIVATIVE {
drr =dr*r .
kmf=kr*m*f SIMUL_R’s TSCHEDULE command could have
:fm nm ‘;fdmf m; been used to set the step width to a higher value after the
first computation steps (for integration algorithms with
r = INTEG (- dr_r + kr_m_{, r0); constant step width).
?-NI'EG (f,fr,'+ dz?d: :\ Hhﬂm '}’ ;"kff '?20)'“.{ +p, 0); ) 'I'hc.commands'for the steady state analysis and the
} results printed are:
TERMINATE t> =tend; * termination condition *
If = 1000;
} p=10000;
STEADY STATE;
a) A relative comparison of some of SIMUL _R’s in- disp stcady state for p ="p, ,m,f;
tegration algorithms (examinations are performed with = .
SIMUL _R 1.13) results in: steady state forp = 10000 : 1000 10 10
p=0;

Inteqgration alg. step width time (rel to Euler) rel. ac S:I'EADY_STATE;
disp ’steady state for p =,p,”’",r, m, f;

Euler 0.001 1 < 10-+

Euler (improved) 0.001 0.74 < 10-¢ =0- .

Paney (iwproved)  2.901 074 <107 steady state forp = 0:06.75016¢-014 -1.38778¢-017
implicit Euler 0.003 5.00 < 10-+

implicit Euler 0.1 0.22 () < 10-*

Adams-Bashforth- 0.01 2.5 < 10-*

Moulton (initial qu information and comments, please phone or fax
step width) or write to

R. Ruzicka, SIMUTECH, Hadikgasse 150, A-1140
Vienna, Austria. Tel: +43-(0)222-82 03 87; Fax: +43-
(0)222-82 93 91.
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SIMUL R

SIMUL R 1is a compiling simulation language for continuous a4
discrete systems. The system offers grafical and textual modellin
using one or more models in one simulation program. Examinations 4
done by using menus and/or a strong runtime interpreter.

The interpreter allows the usage of 1loops, command fil
(recursive, too) and arbitrary expressions with assignments and di
playing. A special feature are userdefined functions, which enable t
user to add new commands to the system (commands for steady state, =ze
search, continuous and discrete optimization, statistical evaluatio
are available as well). A

A huge grafical library supports among others moving plots, 3
plots, niveau 1lines, cross plots (for displaying solutions of PDEs
animation for both, continuous and discrete systems.

SIMUL R is an open system as it allows data input and output fr
and to other systems, including user input during simulation (by ke
or grafical) as well as hardware in the loop. :

Fig. 1 shows the simple model for Comparison 1.

Lithium Cluster ({

CONSTANT kr=1, kf=0.1, 1£f=1000, dr=0.1, dm=1, p=0;
CONSTANT r0=84.99, m0=1.674, £0=9.975;
CONSTANT tend=10;

DYNAMIC ({
DERIVATIVE {
dr r =dr * r;
kr m £ = kr *m * f;
dmm =dm * m;
kf f2 =kf » £ * f;
r = INTEG (- dr_r + kr m £, r0);
m = INTEG (dr_r - dm m + kf f2 - kr m f, m0);
f = INTEG (dr_ r + 2*dm m - kr m_f - 2*kf f2 - 1f*f + p, £0);
}
TERMINATE t>=tend; " termination condition "
}
}
Fig. 1 SIMUL_ R model forxr Comparison 1.
Fig. 2 contains a comparison of some of SIMUL R's integratic

algorithms (examinations are performed with SIMUL R 1.13).

Integration alg. step width time (rel to Euler) rel. accuracy
Euler 0.001 1 < 10—=
Euler (improved) 0.001 0.74 < 10-%
Runge Kutta 4=k 0.002 1.90 < 10—4
implicit Euler 0.003 5.00 < 10—+
implicit Euler 0.1 0.22 (!) < 10-2
Adams-Bashforth- 0.01 2.5 < 10—#
Moulton (initial
step width)
Fig. =2 Comparizson of integration algorithms.
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ig.- 3 shows the commands for the desired parameter variation, Fig. 4
ontains the corresponding plot. SIMUL R's TSCHEDULE command could have
een used to set the step width to a higher value after the first
omputation steps (for integration algorithms with constant step width).

repare t,f,1%f; " specify values to be prepared "
line=9; ynum=3; yline=3; " plot legends "

umber text=true;

lot text='Lithium Cluster Dynamics: 1f variation';

horiz screen " use horizontal plot legends "
for 1f log=2,4,.5% " for loop: with exponents "

lf=exp(1lf log*log(10)); " compute value 102f_.%e9 for 1f "

cint=1/1f; " set accurate step width "

cstep=(int)1£f/10; " each cstep*® point is recorded "

start; " start simulation run "

" plot f logarithmic over (0.001,10), wusing t over (0,tend)
as x-axis, writing 1f=... to special positions of the curve "

plot! (t(o0,tend)) *£(0.001,10) = 1f log*2-2 : '1f='(1f);

plot_del=false; W prevent deletion of last plot "

axes_new=false; " avoid drawing new axes twice "
end
lot; " recall the last plot "

Fig. 3 Commands for parameter variation.
Lithiun Cluster Dynenics: If veriation
19
=100
AT S 1£+316.228

111000
ve 1F=3162.28
/’/#———~_-~“‘-‘Eﬁ§?“‘*“-~

L] 19
t

e.091

Fig. 4 FPlot of parameter variation.

lg. 5 shows the commands for the steady state analysis and the
3sults printed.

=1000;
:10000;
'EADY STATE;
.sp 'steady state for p =',p,':',r, m, f;
steady state for p = 10000 : 1000 10 10
:O;
'EADY STATE;
.sp 'steady state for p =',p,':',r, m, f;
steady state for p = 0 : 0 6.75016e-014 -1.38778e-017
Fig. s Commands and results for steady states.

r information and comments, please phone or fax or write to
MUTECH, Hadikgasse 150, A-1140 Vienna, Austria.
11 A-(0)222-82 03 87; Fax A-(0)222-82 93 91.
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Lithiun Cluster Dynanics: |f variation

11-168

1=316.228

T

111008
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0.01 |

1=3162.8
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. showing corresponding results for If =200, 500 and 1000
Comparison 1 - XANALOG respectively. These two figures show very clearly the stiff
nature of this simulation problem. They also provide an
illustration of two of the many different forms of graphi-

XANALOG is a block-oriented simulation system. A 1 ti ible with the faciliti
rersion is available for IBM PC/AT (or 100% Compati- cax A Pp'rdclsconéaﬁc;l e %)gz:ai: P‘lel-Pr © ag;.n ies of the
sle), Compaq 386 (or 100% Compatible) and IBM PS/2
viodels 50, 60, 70, 80 and 30-286. -

[

viodel Description

The model is described in terms of the XANALOG
lock diagram of Figure 1.

) . =]
Figure 2
\ ]
N
. N
~t.00ene ‘\
Figure 1 . N LT
Results . ~"‘~:_.
All calculations were done using an NCR PC (80286 - T
srocessor with 80287 numeric co-processor). - .
Comparison of Computer Time (task a): Figure 3
ntegration Step Computing Calculation of Steady State (task ).
Method Sie(sec)  Time (scc) s of Steady State (task 9
Calculations in the time domain for l¢= 1000 resulted
RK4 0.001 25 in the following: , .
0.002 112 ‘
0.0025 88 During constant bombardment (p = 10000)
0.003 Numerically f(t=100 sec.) = 9.98991
-unstable
Suler 0.001 82 Without bombardment (p =0)
0.002 Numerically f(t=100scc.) = 12772E6
unstable
Modified Euler 0.001 118 '
0.002 Numerically D. Murray-Smith, Department of Electronics and Elec-
uastable trical Engineering, University of Glasgow, Glasgow G12

Variation of Parameter If (task b). 8QQ, Scotland, UK
~ Simulations were carried out for values of I¢ of 100,

200, 500 and 1000. The results are shown in Figures 2 and

3. Figure 2 is a graph of 2*In(f) versus time on a lincar

scale. Figure 3 is a graph of 2*in(f) versus time on a lo-

zarithmic scale. In both cases the top curve represents

‘he response for parameter = 100, with the lower curves
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Comparison 1 - HYBSYS

The development of the Hybrid Simulation System
HYBSYS has been started 12 years ago at the Technical
University of Vienna, Austria, on a hybrid machine. Now
the latest version 7.0 runs on AT-compatible PCs under
DOS 3.2 or higher and on UNIX-based workstations
with the X-Window-System. HYBSYS is a simulation en-
vironment that supports modelling, identification, and
optimization, working interpretative. So there is no need
of any FORTRAN or C-Compiler, although tested
models can be compiled in memory for faster run.

Model desc:'iptionf

par
kr=1,kf = 1If = 1000,dr = .1,dm = 1;
0 = 9975, m0 = 1.674, 10 = 84.99;
p =00
end
var
fim,r,
krmf kff2,dmm drr;
end
equ
krmf = mult(kr* m,f);
kff2 = mult(kf*{,f);
dmm = muit(dm,m);
drr = mult(dr,r);
r = integ(x0,-drr,krmf);
m = integ(mO0,drr,-dmm, kff2,-krmf);
f = mteg(fO,dn’,Z‘dmm, krmf,-2° KT2,-If*f,p);
cnd
run.mtd = 7
runstep = le-5;
plotxaxtyp = 4; plotzaxtyp = 4; plot.ziog = 1
plotxtext = “T™; plotztext = *LOG10( F)";
plot.htext = “LITHIUM-CLUSTER DYNAMICS™;
plotaxmode = 0; plotxsctyp = °; plotasctyp = *;
plotxmin = 0; plotxmax = 10;
plotzmin = l.e-3; plotzmax = 10;
runssize = S000;
mtd smmo:etime = 9;

To accelerate the calculation (larger stepsize after
tend = 1) and to measure the time the macro LCD1.HYB
has been used:

tend=1;

etime;f;t0= 1;tend = 10;run.ic = G;plots = 1;
ndt = 1000;run.step = 1.c-4;(;ctime:

t0 = 0;run.ic = 1;run.step = 1.¢-5;ndt = 100;

The model was tested on a DECStation 3100 (MIPS
R2000 processor, R2010 coprocessor, 16.67 MHz) under
Ultrix 3.2 and X-Windows X11R4.

Results of the tasks:
a)
method step time in sec.

1 (Euler) 1.E-04 8.47

4 (Runge Kutta 4th order) 2E-04, 931

7 (Runge Kutta Fehlberg) 1. E-OS 9.98

7 (same, with LCD1.HYB) l.E-OS 938

8 (Adams Moulton) 1. E-OS 16.80

8 (same, with LCD1.HYB) 1.E-05° 18.00

" initial stepsize

b) The command for the parameter loop is:
If = {100,200,500,1000,2000,5000,10000} ! lcd1; If, f:
LITHIUM-CLUSTER DYNRMICS

)

LOG10( F

here the ’etime’ command in LCD1.HYB is not nc-
cessary; the command for the next figure is:

If = {100,200,500,1000,2000,5000,10000}! {
LITHIUM-CLUSTER DYNAMICS

-1

LOG10( F )

-2

-3

T

c) The following parameters and commands for the
steady state analysis

p=00

If = 1000
trim.ceps = l.c-S
trim.dmax = 100
trim, |

(p = 1000.0)

deliver these results:

Solution after 15 Evaluations
r = 4684E-03

m = - 7858E-08

f = -2328E-09

respectively:

Solution after 34 Evaluations
r = 1000E+04

m = .1000E +02

f = .1000E +02

For further informatiop, please contact:

Dietmar Solar, Schénbrunnerstrafie 65, A - 1050
Vienna, Austria, Tel: + 43-(0)222 5562864
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Comparison 1 HYBSYS

The development of the Nybride~$inulation-$ystem HYBSYS has been
started 12 years ago at the Technical University of Vienna, Austria,

on a hybride machine.

Now the latest version 7.0 runs on every AT-compatible PC under DOS 3.2
or higher and_on UN!X-based workstations with the X-Window-System.

and optimization working interpretative. So there is no need of any FORTRAN
or C-Compiler, although tested models can be compiled in memory for faster
run.

Model description:

par
kr =1, kf = .1, If = 1000, dr = .1, dn = 1;
f0 = 9.975, m0 = 1.674, r0 = 84.99;
p = 0.0; ’
end
var
f,m,r;
krmf,kff2, dmm,drr;
end
equ
krmf = mult(kr*m,f);
kff2 = mult(kf*f, f);
dmm = mult(dm,m);
drr = mult(dr,r);
r = integ(r0,-drr, krmf);
m = integ(mo,drr,-dun,kff?.,-krmf):
f= integ(fO,drr,Z"dnn,-krmf,-Z*kffz,-lf‘f,p);
end
run.mtd = 7

run.step = 1,e-5;

plot.xaxtyp = &;

plot.zaxtyp = 4;

plot.zlog = 1;

plot.xtext = “T»; plot.ztext = "LOG10C F ),
plot.htext = YLITHIUM-CLUSTER DYNAMICSH,
plot.axmode = 0; plot.xsctyp = *;: plot.zsctyp = *;
plot.xmin = 0; plot.xmax = 10.;

plot.zmin = 1.e-3; plot.zmax = 10.;
run.ssize = 5000;

mtd smmo:etime=9;

To accelerate the calculation (smaller stepsize after tend=1) and to
measure the time the macro LCD1.HYB has been used:

tend=1;
etime; f;t0=1; tend=10; run. ic=0;plot.s=1;ndt=1000;run.step=1 .e-4;f;etime:
t0=0;run.ic=1;run.step=1 .e-5;ndt=100;

The model was tested on a DECStation 3100 (MIPS R2000 processor, R2010
coprocessor, 16.67 Mhz) under Ultrix 3.2 and X-Windows X11R4.

a)
method step size time in sec.

1 (Euler) 1.E-04 8.47
4 (Ruge Kutta 4th order) 2.E-04 9.31
7 (Runge Kutta Fehiberg) 1.€-05% 9.98
7 (same, with LCD1.HYB) 1.E-05* 9.38
8 (Adams Moulton) 1.E-05* 16.80
8 (same, with LCD1.HYB) 1.E-05* 18.00

(* initial step size)

b) The command for the parameterioop is:
1£=(100,200,500, 1000, 2000, 5000, 10000) | ledl; Lf, f:

see graphic 1, here the ‘etime’ command in LCDT.HYB is
not necessary; the command for graphic number 2 is:

L£=(100, 200, 500, 1000, 2000, 5000, 100003 ¢ f

¢) The following parameters and commands for the steady state
analysis

p =0.0 (p=1000.0)
Lf = 1000
trim.ceps = 1.e-5

trim.dmax = 100
trim,
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deliver these results:

Solution after 15 Evaluations

r = L4L6B4LE-03 r = INTEG(r0Q,-drr, krmf) r = -.4684E-04

m = -_7858€-08 m = INTEG(mO,drr,-dmm, kff2, -krmf) m = .4685E-04

f = -.2328E-09 f = INTEG(fO,drr,CO000*dmm, -krmf,CO001*kff2,-Lf*f, p) f = .4T05SE-04
respectively:

Solution after 34 Evaluations

r = .1000E+04 r = INTEG(rO,-drr krmf) r = -.2289E-04

m = . 1000€+02 m = INTEG(mO,drr,-dmm, kff2, -krmf) m= _2289E-04

f = .1000€+02 f = INTEG(fO,drr,C0000*dmm, -krmf,CO001*kff2, -Lf*f, p) f = .0000E+00

for further information, please contact:

Dietmar Solar

Schoenbrunnerstr.65

A - 1050 Vienna, Austria

Tel: A-(0)222 5562864

E-mail: andreas@atvws!.tuwien.ac.at
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Comparison 1 - ESL

The ESL Simulation Software

ESL 1s a continuous systems simulation software en-
vironment, designed originally to meet the requirements
of the European Space Agency for simulating spacecraft
subsystems.

ESL provides two completely different user interfa-
ces: a conventional programming language to specify a
simulation; or a mouse driven graphical input facility
(IMP) which allows a block diagram to be constructed
to define a simulation. Either interface may be used,
without the need to understand the other, to undertake
complete simulation projects. For some applications a
mixture of the two approaches is an ideal answer. Both
routes provide excellent integrity of a simulation, and
ESL IMP provides fully checked automatically genera-
ted code.

ESL is a "natural model definition language”, having
the following characteristics: separate experiment and
model specification sections; a submodel concept; un-
ambiguous model definition code; clear definition of
non-linearities, or discontinuities; full matrix, vector, and
array slice support; optional transfer function notation;
lincarization features, steady-state finders; and, of great
importance, strict variable usage rules rigorously im-
posed by the ESL compiler subsystem.

An Interpreter provides fast turn-round during
program development, and a Translator efficient pro-
duction simulation runs. Following a simulation post-
mortem graphic analysis is performed by the DISP

(display) subsystem.
Model Description

A commented listing of the ESL Benchmark Program
is presented below. Note in particular - separate model
and experiment regions; presentation of differential
cquations in dynamic region and analysis region in which
the steady-state requirements are specified.

STUDY
MODEL REACTION(: = REAL:p,If);

- The model defines the dynamics of the system
REAL:f,m,r,
CONSTANT REAL :kr/1.0/k/0.1/,dr/0.1/,dm/1.0/,
INITIAL
f: =9.975;
m: = 1.674;
r.=84.99;
DYNAMIC

- Differential equations of system
ri=drir+kr'm*f;
m=dr*r-dm*m + kf*f*f-kr*m*f;
f:=dr'r+2.0°dm*m-ke* m*{-2.0°kf* *f-1f*{ + p;
STEP

PLOT ,£,0,TFIN,0,100; - plot while computing

- Initialization of states

PREPARE *lithium",t,r,f,m; -- save data for postmortem plot

ANALYSIS

TRIM {r,m f]: = [r',m",[}; -- define parameters for steady-state
PRINT "Steady state for p =*p:8.1," r,m,f =", r:8.1,m:=8.1,£8.1;

END REACTION,
- EXPERIMENT - the following code defines the experiment to
be carried out
REAL:p/0.0/,if loglf;
CINT: =0.1; - defines maximum integration step length
ALGO: = GEARYI; - defines Gear's integration algorithm

~ Parameter variation of If from 1.0E2 to 1.0E4 in logarithmic steps
FOR loglf: =2.0.4.0 STEP 0.5
Loor
If: = 10.0* *loglf;
REACTION(: = p,If); -- call model with specified values of p
PRINT “if =*f;
END_LOOP;
-- Compute steady states for p = 1.0E4
ALGO: = LINI; - defines "analysis” call of model to find steady-
state
If: = 1.0E3;
p: = 1.0EA4;
REACTION(: = p,lf);
-- Compute steady states forp = 0.0
p:=0.0;
REACTION(: = pif);
END_STUDY

Results

(a) Comparison of integration algorithms. The stiff
system was simulated over a 10s period using each of the
seven integration algorithms available in ESL. Compu-
tation times for a 16MHz 386SX PC with 387 coproces-
sor are presented in the table below.

algorithm max step length computation
time (s)

Sth order v/step (Sarafyan) 0.1 10.00

4th order f/step Runge-Kutta  0.001 12.00

2nd order f/step Runge-Kutta  0.001 8.00

2nd order stiff (Gourlay) 0.1 032

Gear's stiff algorithm 0.1 0.20

Gear with diagonal Jacobian 0.1 02s

Adams Bashforth 0.1 21.00

‘These results demonstrate dramatically the efficiency
of the algorithms designed specifically for solving
systems of stiff equations.

(b) Parameter sweep. The following figure, produced
by the ESL display package, presents a plot of F-centre
concentration (f) against time for a vanation of I¢ from
1.0E2 to 1.0E4.

Lithium-Cluster Dynanics
F-centre concentration ({1 against time

§®\\\\ St
TV
AN
T

(c) Steady state calculation. The ESL stcady state
finder returns the following steady states, which, by in-
spection of the equations, are clearly correct:

P r m f
1.0E4 1000 10 10
0 0 0 0

D. Irving ISIM Simulation, Frederick Road, Salford
M6 6BY, UK
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ESL Simulation Language Implementation of Lithium-Cluster Dynamics Benchmark
The ESL Simulation Software_

ESL is a continuous systems simulation software environment, designed originally to meet the
requirements of the European Space Agency for simulating spacecraft subsystems.

ESL provides two completely different user interfaces: a conventional programming language to
specify a simulation; or a mouse driven graphical input facility (IMP) which allows a block diagram
to be constructed to define a simulation. Either Interface may be used, without the need to
understand the other, to undertake complete simulation projects. For some applications a mixture
of the two approaches is an ideal answer. Both routes provide excellent integrity of a simulation,
and ESL IMP provides fully checked automatically generated code.

ESL is a “natural model definition language®, having the following characteristics: separate
experiment and model specification sections; a submodel concept; unambiguous model definition
code; clear definition of non-linearities, or discontinuities; full matrix, vector, and array slice support;
optional transfer function notation; linearization features, steady-state finders; and, of great
importance, strict variable usage rules rigorously imposed by the ESL compiler subsystem.

An Interpreter provides fast turn-round during program development, and a Translator efficient
production simulation runs. Following a simulation post-mortem graphic analysis is performed by
the DISP (display) subsystem.

Model Description

A commented listing of the ESL Benchmark Program is presented below. Note in particular -
separate model and experiment regions; presentation of differential equations in dynamic region and
analysis region in which the steady-state requirements are specified.

STUDY
MODEL REACTION(:=REAL:p,lf);
-- The model defines the dynamics of the system
REAL:f,m,r;
CONSTANT REAL:kr/1.0/,kf/0.1/,dr/0.1/,dm/1.0/;
INITIAL
£:=9.975; -- Initialization of states
m:=1.674;
r:=84.99;
DYNAMIC
-- Differential equations of system
rii=-drerekrem*f;
m*i=dr*r-da*mekf*fof-kromvf;
fri=dr*r+2.0%dm*m-kr*m*f-2. 0*kf*f*f-{f*fep;

STEP
pLOT t,f,0,TFIN,0,100; -- plot while computing
PREPARE "“lLithium', t,r f ,m; -- save dats for postmortem plot
ANALYSIS
TRIM (r,m, fl:=(r',m*, f'); -- define parameters for steady-state

PRINT "Steady state for p =",p:8.1," r,m,f =%, r:8.1,m:8.1,f:8.1;
END REACTION;
-- EXPERIMENT - the following code defines the experiment to be carried out
REAL:p/0.0/,Lf,loglf;
CINT:=0.1; -~ defines maximum integration step length
ALGO:=GEART; -- defines Gear's integration algorithm
-- Parameter variation of Lf from 1.0E2 to 1.0E4 in logarithmic steps
FOR loglf:=2.0..4.0 STEP 0.5
LooP
Lf:=10.0**loglf;
REACTION(:=p,Lf); -- call model with specified values of p and If
PRINT "(f = {f;
END_LOOP;
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-~ Compute steady states for p = 1.0E4
ALGO:=LIN1; -- defines "analysis* call of model to find steady-state
(f:=1_0€3;
p:=1.0E4;
REACTION(:=p, Lf);
-- Compute steady states for p = 0.0
p:=0.0;
REACTION(:=p,Lf);
END_STUDY

Results
(a) Comparison of integration algorithms

The stiff éysterﬁ was simulated over a 10s period using each of the seven integration algorithms
available in ESL. Computation times for a 16MHz 386SX PC with 387 coprocessor are presented
in the table below. ‘ :

algorithm max step length computation time (s)
5th order v/step (Sarafyan) 0.1 10.00
4th order f/step Runge-Kutta 0.001 12.00
2nd order f/step Runge-Kutta 0.001 8.00
2nd order stiff (Gouriay) 0.1 0.32
Gear's stiff algorithm 0.1 0.20
Gear with diagonal Jacobian 0.1 0.25
Adams Bashforth 0.1 21.00

These results demonstrate dramatically the efficiency of the algorithms designed specifically for
solving systems of stiff equations.

(b) Parameter sweep

The following figure, produced by the ESL display package, presents a plot of F-centre
concentration (f) against time for a variation of |, from 1.0E2 to 1.0E4.

Lithtum-Cluester Oynemice
F-ecentre concentration () ageinat time

ERNNNNN
N

==

e tf = 100

f o« 318.29
r = $,000
rf « 3,162.2
f =« 10,000

-2 -‘_’.—_—/———l‘—\\
k_ - T
- N . ~.

LO0G 10 time
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. {c) Steady state calculation

The ESL steady state finder returns the following steady states, whlch by Inspection of the
equations, are clearly correct:

p r m f
1.0E4 1000 10 10
0 0 0
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Comparison 1 - SIL

SIL is a general purpose simulation
system with a mathematically oriented
user-interface. It is designed to solve
(in general) differential-algebraic
equations eventually with discontinui-
ties. It can handle discrete systems as
well. The results are displayed graphi-
cally during the solution phase.

The SIL language is freeformat and
statement oriented. It is specially
designed for the description of simula-
tion models. Below the "comparison 1"
model is given in the SIL language.
This model also includes auxillary
statements needed for logarithmic
scaling of the axes.

BEGIN
VARIABLE (88,99, ((9,995), s(1.£70)

LOEL0, LGr, LOGT, L06n, LOGEine:
PARMETER Erit] 1.0y, Cr1o0dy, Brio. ), ety ptos;
DERIVATIVE reotlry, adotlal, d1i11}
TIRE 110:10):
RETHOD :x 138; (0 SHiff option for istegrater #)
RBSERRDR 12 G; KELERROR :2 1.0E-5;

(4 The equatioss 1)

rdot :x ~brer ¢ Krimef;
sdot 1x Dear - Kromef - Datn ¢ Litfef;
af 1= Drar - Kromdf ¢ 2efwn - 2K{0000 -L(sE o g

(¢ Qutput stateaeats #)

LOGEO ;= 1/105¢40);

1060 :x LOG(rIsL06l0;

LO6S = LOGI1)1L0B10;

L06w ;2 LOS(-HI.DG]OE

LOGtise := LOG(T+1,06-20)0L0510;
VAITE(1000,L08r, LOGT, LOGs, LOFtinel;

PLOTLI00C,LOG1(LDStine )
END.

Figure 1: SIL model.

The below screendump shows the results
from running this model.

) aist-3:1); OTH ¢t I\ plet of results
3 Mrloomieia .00
1z sin .
> 16:2100: s bn; 1 \
:21000; s in
3 a0d loor{ legt 1
ne)) add( lomiles | on - Lo
tined)
’ \\\_/\
0.00 \
o0 e
-1.00
f1eo re. 51 -3.00 v — . il P
T s 10001 S7.00 (.00 -5.00 -4.00 -1.00 -2.00 -1.00 0.00 {1.0%

Figure 2: Screendump.

It takes less than 5 minutes (including
the screendump) on an 8 MHz IBM PC/XT-
286 with a 6 MHz co-processor to pro-
duce the above results. Specially for
Lf = 10000 it is essential to use
relative error tolerance in order to
avoid f being negative. In the below
table the CPU time (in seconds) is
given for solving the problem (Lf =
1000) with different relative accuraci-
es. IBM is the above XT-286 and NCR is
a 16 MHz 80386 with a 16 MHz 80387.

RELERROR |CPU~geconds #STEPS
IBM NCR | ACCEPT|REJECT
1.0E~-2 6.92] 2.64] 33 3
1.0E-4 13.68| 4.01| so 3
1.0E-6 21.59] 5.60] 57 2
1.0E-8 31.74| 7.58] 61 2
1.0E-10 {50.80(11.43] 86 2
Table 1: CPU-time for different accu-

racy requirements.

In order to compute the steady state
solution the model is changed to a pure
algebraic problem (the derivatives are
set to zero) and the model is run "in
batch mode"; that is, the results are
written to a .LST file. Below this file
is shown for this problem; notice that
the solution time is only 0.72 seconds
on the XT-286.

SIL VERZION 2.4 (920878)
134 S3-08 1050 15:03:00 mazz gy

£ty
VEERRE IS 18,9700 41600
PRI e, keield, Thaott), teson, by, Pi12068H;

[ g

ot Top egmatiney #)

LOEB iy =Zrer o Lrom;
DN A L AT T IR

LEE-8 ov Doar - Kovmet o 2adunn - EekPetef oaf o 5

ey
B H] .

I

(0 Stt statesents 1)
AN RN
N5,

SN O WD LA S Wi

1,92 SEIINOS IN IOMPILRTION
RIMEL CONE 3T
| RN
3 1MPLICHT STETIC vakIARLES

SITLATION §Ta7i8mies:

WUNEER OF & b Nt r 0
TOTAL KUSBER OF FUXCTIOY 2aLes g 1
NLRFER OF RLESPATC ITENATIONS § ¢
SIAULATICN 0PT50v5 UsEM
SE3 1
PETHED ue
FATOPLER 18
[od fudt 1 0.2
INITURL Tiwe + 0.800E¢0000
CINAL TivE $.433800198
BALLIED STI3C3C 4 6 0n0Ev0000
INITIAL STEPSIZE 3 ,0004+9000
£BSERECR + 1 0E-004%
RELERED® 3 1.00CE-COCY
PARANETER v pet
P s 10200840000 F T LL00TRE-000) ¢ LR P g T
K L0000 DN *LNN0CE0000 P L0

STt StaptarTyox PESUL TS
Tise b ] F
£.00000E+208C 1 S0020E-0301  1.00%00€+0%1 1.00500640001
0.72 SEINDT in txrczbise

2105 Khtet Beft e Lesy Meap aemery

Figure 3: Steady state solution.

Reference:

SIL - a Simulation
Guide.

Niels Houbak, Lecture Notes in Computer
Science. Vol 426.

1990 Springer Verlag.

Language, Users

Niels Houbak.
Lab. for Energetics, Build. 403, DTH
DK-~2800 LYNGBY, DENMARK.
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Comparison 1 - 386-MATLAB

MATLAB is aC-based general tool for mathematical and
engineering calculations with limited capabilities for simu-
lation of non-linear equation systems. Versions are available
for PCs, workstations and mainframes.

Model Description: The model may be transformed to
the vector/matrix equation

with ¥ = [rmJ]. ' = [mff p] and

~d, 0 0 k&, 0O
A=l d, ~dw O| Bx|—% k O

dx
p = Ax+Bu

d, 2 -y -k, ~2ks1

and it is implemented in the following m-file:

function xs = ladueb1(x)

p = par(L.7);

A = par(1:3,1:3);

B= Mlﬁ.‘ﬁ):

u = [x(2)*x(3) : x@G)Y*2: p) :
xs= A*x + B*u;

Results: All calculations were done on an IBM PS/S
Model 80 (80386 processor with an 80387 numeric copro-
cessor) using 386-MATLAB. MATLAB contains two vari-
able step integration routines based on the Runge-Kutta
method: ODE23 and ODEA4S.

The routines as supplied result in the message 'SINGU-
LARITY LIKELY" because of a too large initial As (one
bundredth of tfinat—tstars). 'I‘lnslsocmactcdusmgmcap-
proach shown in the following instructions:

% First integrate using the ODE23 routine.
0=0;
d=0;
&t =0.1;
x0 = {9.975 1.674 84.99]";
ts = cock;
tol= 1.0c-4;
tra= 1; % Trace the integration on the screen.
while o <=10.0,
w=d;
d =t0+dt;
if 0> 0.01, tf = 10 + 9*dt; end
if 10> 0.99, f =0 + 10°d1; end

diary off;
(tx1] = 0de23( loduebl’ 10,6 x0 10l zra);

diary on;
axis((-4 1-32]);
loglog(tx1)....

tile( Lithium Cluster Dynamics under Electron Bombardement”)....

xlabel(time, 3°).ylabel("Cluster Coscentrations"),...

patzse(10).hold oa;
x0 = x1(length(x1),:)’;
clear t x1;

end;

el = etime(clock.ts)

From table 1 it is evident, that 386-MATLAB is not a
time efficient simulation tool, even though it does get the
task done with high accuracy.

Simulations were also performed for five logarithmically
spaced values of If from 100 to 10000. The results are shown
in figure 1 as a double logarithmic plot of f versus t This
task was performed overnight and lasted 13,970 seconds
including plotting.

Integrauon

Method File Type Elapsed Time Tolerance
ODE23 MEX-file 739s 104
ODE4S  MEX-file 5635 103
ODE4S  MEX-file 7528 10%
ODEAS  MEX-file 579s 107

Table 1: Comparison of simulation times for task a. The elapsed time in-
cludes display of ¢, At and x on the screen every integration interval, and
for the first and second also plotting of the results on the screen.
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Fig. 1: r. m and f as a function of time for different values of I

The steady states for If = 1000 and two values of p are
shown in table 2. The results were obtained with the follow-
ing MATLAB instructions:

% Now calculate the steady states for two different values of p.
details = zeros(16,1);

details(1.1) = 2; % Collect statistical information oa the solution.
% First solve for p = 0 - the trivial solution satisfies this case.
fpar(1.7)=0:

tsaclock

[x1.termoode] = njfsolve(lodueb2’ [1 1 1} details fpar)
eb=time(clock ts)

% Thea for p = 10000.

fpar(1,7)=10000;

s=clock;

[x2.termeode) = njfsolve(lodueb2’ [1 1 1], details fpar)
¢7=ctime(clock.ts)

" Inspection of the model reveals, that for p = 0 the origin
is a solution to the steady state problem. The iterative solu-
tion of the steady state equations in this case gave better

results and was much faster. \
Pc Tss Mlss fss
0 ~0 0 ~{
10000 1000 10 10

Table 2: Cakulation of steady states for different bombardement rates

Conclusion: Even though the problem could be solved
using MATLAB the simulations took a large amount of ttme
and several tricks were needed 0 work around array size
limitation, especially using PC-MATLAB. However, a
special simulation tool called SIMULAB has been de-
veloped with good interfaces to MATLAB. Both MATLAB
and SIMULAB are developed by The MathWorks, Inc., and
MATLARB has become the defacto standard for many appli-
cations within control engineering and signal processing.

Niels Jensen The PDDC Group, Department of
Chemical Engineering, Technical University of Denmark;
Lyngby, Denmark
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Comparison 1 - 386-MATLAB

Niels Jensen
The PDDC Group, Department of Chemical Engineering, Technical University of Denmark
Lyngby, Denmark

1 Introduction

MATLAB is a C-based general tool for mathematical and engineering calculations with
limited capabilities for simulation of non-linear equation systems. Versions are available for
many personal computers and workstations and for the Cray super computer.

2 Model Description

The model as given in reference [1] may be transformed to the following vector/matrix
equation

dz

Wlth l’t = [r7m’f]’ ut = [mf,f27p] a'nd

~d, 0 0 k. 0 0
A=| d, ~d. 0 B=| -k Kk 0 (2)
d, 2. - —k, =2k 1

and it is implemented in the following m-file:

function xs = lcduebl(x)

p = par(1,7);

A = par(1:3,1:3);

B = par(1:3,4:6);

u = [x(2)*x(3); x(3)°2; pl;

Xs= A*x + Bx*u;

3 Results

All calculations were done on an IBM PS/S Model 80 (80386 processor with an 80387 numeric
coprocessor) using 386-MATLAB version . MATLAB contains two variable step integration
routines based on the Runge-Kutta method: ODE23 and ODE45. The routines as supplied
results in the message 'SINGULARITY LIKELY’ because of a too large initial At (one
hundredth of tsina — tstart). This is corrected using the approach shown in the following
instructions and the results in table 1 were obtained:
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Integration Method File Type Elapsed Time Tolerance

ODE23 MEX-file 739s 10~¢
ODEA45 MEX-file 563s 10-%
ODEA45 MEX-file 752s 10
ODE45 MEX-file 579s 1077

Table 1: Comparison of simulation times for task a. The elapsed time includes display of t,

At and x

on the screen every integration interval, and for the first and second also plotting

of the results .on the screen.

h
t0

tf =

dt
x0
ts
to

First integrate using the ODE23 routine.
O;.
0,
0.1;
[9.975 1.674 84.99]’;
clock;
1.0e-4;

L]

1

tra= 1; % Trace the integration on the screen.
while tf <= 10.0,

en
el

From the
though it

t0 = tf;

tf = t0 + dt;

if t0 > 0.01, tf
if t0 > 0.99, tf
diary off;
[t,x1] = ode23(’lcduebl’,t0,tf,x0,tol,tra);

diary on;

axis([-4 1 -3 2]);

loglog(t,x1),...

title(’Lithium Cluster Dynamics under Electron Bombardement’), . ..
xlabel(’time, s’),ylabel(’Cluster Concentrations’),...

pause(10) ,hold on;

x0 = x1(length(x1),:)’;

clear t x1;

d;

= etime(clock,ts)

t0 + 9%dt; end
t0 + 10*dt; end

tabel it is evident, that 386-MATLAB is not a time efficient simulation tool, even
does get the task done with high accuracy. Simulations were also performed for

five logaritmically space values of 1; from 100 to 10000. The results are shown in figure 1 as
a double logaritmic plot of f versus t. This task was performed overnigth and lasted 13,970
seconds including plotting.

The steady states for I; = 1000 and two values of p are shown in table 2. The results
were obtained with the following MATLAB instructions

%
de

Now calculate the steady states for two different values of p.
tails = zeros(16,1);
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Lithfum Cluster Dynamics under Electron Bombardement
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Figure 1: r,m and f as a function of time for different values of ;.

pe | 1y my, Ay
0] =0 =~0 =0
10000 | 1000 10 10

Table 2: Calculation of steady states for different clectron bombardement rates.
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details(1,1) = 2; % Collect statistical information on the solution.
%

% First solve for p = 0 - the trivial solution satisfies this case.
fpar(1,7)=0;

ts=clock;

[x1,termcode] = njfsolve(’lcdueb2’,[1 1 1]’,details,fpar)
e6=etime(clock,ts)

% Then for p = 10000.

fpar(1,7)=10000;

ts=clock;

[x2,termcode] = njfsolve(’lcdueb2’,[1 1 1]’,details,fpar)
e7=etime(clock,ts)

Inspection of the model reveals, that for p = 0 the origin is a solution to the steady state
problem. The iterative solution of the steady state equations in this case gave better results
and was much faster (< 20 seconds) than simulation until a steady state was reached.

4 Conclusion

Even though the problem could be solved using MATLAB-386 and even PC-MATLAB the
simulations took a large amount off time and several trick were needed to work around array
size limitation, especially using PC-MATLAB. However, a special simulation tool called SIM-
ULAB has been developed with good interfaces to MATLAB. Both MATLAB and SIMULAB
are developed by The MathWorks, Inc., and MATLAB has become the defacto standard for
many application within control engineering and signal processing.

References

(1] ”Comparison of Simulation Software”, EUROSIM - European Simulation News, Number
2, p.20, July 1991.

[2] "MATLAB for MS-DOS Personal Computers - User’'s Guide”, The MathWorks, Inc.,
South Natick, MA 01760, U.S.A., 1989.
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Comparison 1 - SIMULAB

SIMULARB is a general purpose nonlinear dynamic simu-
lation package which has been written as an extension o the
widely used MATLAB software for scientific and engincer-
ing, numerical calculations. It is available to run under
X-Windows on a wide range of Workstations, on Macintosh
and will shortly be released for 386 PCs.

SIMULAB and MATLAB together provide a complete
cavironmeat for both model development and simulation.
Models may be developed in a block diagram window or as
a file containing differential and algebraic equations, or
using a combination of these two approaches. A block
diagram model can be constructed within the menu and
mouse driven environment by selecting and connecting up
blocks from the standard libraries, If the required block is
not in the SIMULARB library then it is usually an easy task
to either customise an existing block or design a completely
new ooe.

The menu driven interface generally provides the most
rapid route. for prototyping and model development but
when traceability is important or for complex simulation
runs, any of the menu or mouse commands may be run
instead from the MATLAB command line or from a com-
mand file.

Flexibility and extendability are key features of the
package, by using MATLAB function files, the user can
automate simulation nuns or even write new integration or
analysis functions. All models are stored as text files allow-
ing them to be easily transferred between different machine
architectures and apart from available virtual memory, there
is no limit to model size or complexity.

Model Description

The following figure shows a block diagram descrip-
tion of the Lithium-cluster model as implemeated in SIMU-
LAB. The parameter values are stored in the MATLAB
workspace allowing successive simulation runs with va-
rying parameter values to be performed with case.

LRl ~claster dynamics
mder eiectron bombardment

Results

All calculations were performed on a Sun 4 Workstation
running under X-Windows.

Comparison of computer time (task a)

Simulation runs with the various integration algorithms
were all performed with variable step length algorithms, a
relative error tolerance of le-3 and the minimum and maxi-
mum allowed step lengths set o 0.0001 and 1 seconds
respectively. The table gives the simulation time for each
method as well as the number of integration steps required
10 achieve the specified tolerance. The Linsim method is one
which extracts the linear dynamics of a system leaving only
the noalinear dynamics 10 be simulated. This method is
extremely efficient when the systcm to be simulated is linear
or pearly linear.

sumberof  computation time in
l.nwgndon method *integration steps secoads
RK fifth order m2 10.40
Gear 47 0.37
Linsim 87 0.19
Adams 7363 45.80
Parameter variation of I¢ (task b)

The system was simulated over 10 seconds with values
of lr equal to 100, 316, 1000, 3162 and 10000. The following
shows a plot with a logarithmic scale on both axes of the
variation of the concentration of F-centres against time.

F.cenire concentration with varying If

10! g

w0t

101

103

103 -
104

103

10+t 10!
time in seconds

Calculation of steady state (task c)

SIMULAB provides a trim function which allows rapid
and straightforward calculation of the steady state. The
following command returns the equilibrium value of the
state vector x (as well as values of inputs, outputs and state
derivatives)

[x uy dx] = trim( lithium_model’)

The values for the individual states are:
P r m f
led 1000 10 10
0 0 0 0

David Maclay, IAS Cambridge Control, Jeffereys Build-
ing, Cowley Road, Cambridge CB4 4WS, England. Tel: +44
(0)223 420722.
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File: esm_report.txt Printed Tue Oct 15 17:49:24 1991 Login: DAVID Page: 1

1 Simulation of Lithium-Cluster Example using SIMULAB

2

3

4 SIMULAB is a general purpose nonlinear dynamic simulation package which has

5 been written as an extension to the widely used MATLAB software for scientific
6 and engineering, numerical calculations. It is available to run under

T X-Windows on a wide range of Workstations, on Macintosh and will shortly be

8 released for 386 PCs.

9

10 SIMULAB and MATLAB together provide a complete environment for both model

11 development and simulation. Models may be developed in a block diagram window
12 or as a file containing differential and algebraic equations, or using a

13 combination of these two approaches. A block diagram model can be constructed
14 within the manu and mouse driven environment by selecting

15 and connecting up blocks from the standard libraries. If the required

16 block is not in the SIMULAB library then it is usually an easy task to either
17 customise an existing block or design a completely new one. )

18

19 The menu driven interface generally provides the most rapid route for

20 ‘prototyping and model development but when traceability is important or for
21 complex simulation runs, any of the menu or mouse commands may be run instead
22 from the MATLAB command line or from a command fila.

23

24 Flexibility and extendability are key features of the package, by using MATLAB
25 function files, the user can automate simulation runs or even write new

26 integration or analysis functions. All models are stored as text files allowing
27 them to be easily transferred between different machine architectures and apart
28 from available virtual memory, there is no limit to model size or complexity.
29

30 Model Description

31

32 Figure 1 shows a block diagram description of the Lithium-cluster model as

33 implemented in SIMULAB. The parameter values are stored in the MATLAB Workspace
34 allowing succesive simulation runs with varying parameter values to be

35 performed with ease.

36

37 Results

3s

39 All calculations were performed on a Sun 4 Workstation running under X-Windows.
40

41 Comparison of computer time (task a)

42

43 Simulation runs with the various integration algorithms were all performed with
44 variable step length algorithms, a relative error tolerance of le-3 and the

45 minimum and maximum allowed step lengths set to 0.0001 and 1 seconds .
46 respectively. The table gives the simulation time for each mathod as well as
47 the number of integration steps required to achieve the specified tolerance.
48 The linsim method is one which extracts the linear dynamics of a system

49 leaving only the nonlinear dynamics to be simulated. This mathod is extremely
50 efficient when the system to be simulated is linear or nearly linear.

51

52

53 Integration Method Number of integration steps Computation time in seconds
54 RK fifth order 2732 10.4

55 Gear 47 0.37

56 Linsim 87 0.19

57 Adams 7363 45.8

58

59

60 Parameter variation of 1 _f (task b)

61

62 The system was simulated over 10 seconds with values of

63 1 f equal to 100, 316, 1000, 3162 and 10000. Plot 1 shows

64 a plot with a logarithmic acale on both axes of the variation

65 of the the concentration of F-centres against time.

66

67 Calculation of steady state (task c¢)

68

69 SIMULAB provides a trim function which allows rapid and

70 straightforward calculation of the steady state. The following command returns
71 the equilibrium value of the state vector x (as well as values of inputs,

72 outputs and state derivatives)

13

74 [x u y dx] = trim(‘lithium model’)

15

76 The values for the individual states are:

17

18 P r m £ '

79 le4 1000 10 10

80 0 0 (] 1]
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David Maclay, IAS Cambridge Control, Jeffereys Building, Cowley Road,
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Comparison 1 - DYNAST

About DYNAST

DYNAST is a package for solving sets of nonlinear
implicit-form algebro-differential equations as well as for
analysis of block and/or port diagrams, which can be submit-
ted also in a graphical form.

The advantage of the port diagrams stems from the fact
that their structure corresponds directly to the structure of
the modeled real dynamic systems. Models of fairly comp-
lex systems can be set up from submodels of real compo-
nents stored in DYNAST submodel libraries in a kit-like
way.

No compilation of problem specification is required and
any algebraic loops in the diagrams make no problems. For
linear or automatically linearized diagrams, DYNAST pro-
vides also frequency analysis and yields both the time- and
frequency-domain results in a semi-symbolic form.

The IBM PC version is supported by a graphical user
interface and documentation eavironment based on OrCAD,
AutoCAD and TeX systems. There are DYNAST versions
for eight-bit CP/M computers, minicomputers and main-
frames.

DYNAST has been around for about six years and it is
used already by numerous academic as well as industrial
institutions for applications ranging from design problems
in various engineering disciplines up to medicine diagnos-
tics and economic predictions.

DYNAST is distributed by DYN, Nad lesikem 27, CS-
160 00 Prague 6, CSFR, Tel: +42-2-311 79 04.

Resuits

All the tasks of the comparison 1 problem can be solved
in one DYNAST run when specifying them by the following
input data:

*SYSTEM; *: EUROSIM Comparison |
kr=1;:k=.1;f=1000;dr=.1;dm=1;p=0;

SYSVAR®, m.f;

0=- VD.ur -dr*r + kr*m*f;

O=- VD.m + dr*r - dm*m + K***2 - kr*m*f;

0=- VDS + d*r + 2°dm®*m - kr*m*f - 2¢kf*f**2 - f*f + p;
*TR; TR 012; stransient apalysis for O<t < 12
INIT £ =9.975, m = 1.674, r = 84.99;

PRINT r. m, f; RUN eps = 1E-6;

MODIFY If = 1E2;

INIT f = 9.975, m = 1.674, r = 84.99; RUN eps = 1E-6;
MODIFY If = 1E4;

INIT £ =9.975, m = 1.674, r = 84.99; RUN eps = 1E-6;
RESET;

DC; PRINTr, m. f;
MODIFY If = 1E3; RUN;
MODIFY p = 1E4; RUN; *END;

:steady-siate analysis

The following plot displays results obtained for the tasks
a) and b).

The problem was solved on an IBM AT/386-387 of
Norton computing index 30.1 using DYNAST version run-
ning both with and without numeric coprocessor.

10t

1072

1072

1074

1074

Comparison 1 - DYNAST
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The transient as well as the steady-state solutions were
computed using the same algorithm, which is based on the
combination of Gear’s and Newton-Raphson's methods
modified by Rubner-Petersen.

“The task a) was solved in the time interval 0 <t < 12s for
two different values of the permissible relative truncation
error: 1BE-3 (default value) and 1E-6 (see the input data). In
the former case the solution took 60 integration steps (0 of
them rejected) and 66 iterations. The computation required
2.25s of CPU time. The last solution vector (at t = 12s) was:

r= 2.60340E+01 m = 2.85984E+00  f = 8.30013E-04

The latter, enhanced accuracy solution took 120 integra-
tion steps (3 were rejected) and 141 iterations. After CPU
time of 4.45s the last solution vector was:

r = 2.60517E+01 m=286178E+00 = 8.30576E-03

All the computations were done with the default initial
steplength equal to 1E-5 times the specified interval of time.”
Any decrease of this value did not have any effect on the
final solution vector. The solution of task ¢) took just one
iteration and required 0.16s of CPU time for p =0. It resulted
in the vector

r = 0.00000E+00 m = 0.00000E+00  f = 0.00000E+00

For p = 1E4 it took 3 iterations and 0.06s of CPU time
only (no resetting of input data was necessary in this case).
The result was:

r = 1.00000E+03

To verify the steady-state analysis results, the differenti-
al equations were solved with the permissible error 1E-6 in
the interval 0 < t < 2000s for p = 0 as well as for p = 1E4.

m = 1.00000E+01  f= 1.00000E+01

The last solution vectors were

r = 3.05780E-14 m=3.39755E-15  £=9.85388E-18
and

1 = 1.00000E+03 m = 1.00000E+01  f = 1.00000E+01

respectively. The former case statistics was 123 steps,
140 iterations and 8.24s. The latter case asked for 81 steps,
83 iterations and 5.87s.

Herman Mann, Dept. of Mech. Eng. and Robotics , Free
University of Brussels, CP 165, Ave Roosevelt 50, B-1050
Brussels, Belgium
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Comparison 1 - DYNAST

About DYNAST

DYNAST 1is a package for solving sets of nonlinear
implicit-form algebro-differential equations as well as for
analysis of block and/or port diagrams, which can be submit-
ted also in a graphical form.

The advantage of the port diagrams stems from the fact
that their structure corresponds directly to the structure
of the modeled real dynamic systems. Models of fairly komp-
lex systems can be set up from submodels of real components
stored in DYNAST submodel libraries in a kit-like way.

No compilation of problem specification is required and
any algebraic loops in the diagrams make no problems. For
linear or automatically linearized diagrams, DYNAST provides
also frequency analysis and yields both the time- and
frequency-domain results in a semisymbolic form.

The 1IBM PC version is supported by a graphical user
interphace and documentation environment based on orcap,
AutoCAD and TeX systems. There are DYNAST versions for
eight-bit cp/M computers, minicomputers and mainframes.

DYNAST has been around for about six years and it is
used already by numerous academic as well as industrial ins-
titutions for applications ranging from design problems in
various engineering disciplines up to medicine diagnostics
and economic predictions.

DYNAST is distributed by DYN, Nad lesikenm 27, CS-160 00
Prague 6, CSFR, phone: 0042-2-311 79 o04.

Comparison 1 results

All the tasks of Comparison 1 problem can be solved in
one DYNAST run when specifying them by the following input
data:

*SYSTEM; *: EUROSIM Comparison 1
kr = 1; kf = .1; 1f = 1000; dr = .1; dm = 1; P = 0;
SYSVAR r, m, f;

0 = - VD.r - dr*r + Kr+m*f;
0 = - VD.m + dr*r - dm*m + Kfxfkka - Krxm*f
0 = - VD.f + dr*r + 2%dm*nm - Kr*m*f - 2%kfxfxxp - 1f*f + p;

*TR; TR 0 12; ‘transient analysis for 0 < t < 12
INIT £ = 9.975, m 1.674, r = 84.99;

PRINT r, m, f; RUN eps = 1E-6;

MODIFY 1f = 1E2;

INIT £ = 9.975, m = 1.674, r = 84.99; RUN eps = 1E-6;
MODIFY 1f = 1E4;

INIT £ = 9.975, m = 1.674, r = 84.99; RUN eps = 1E-~6;
RESET;

DC; PRINT r, m, f; :steady-state analysis
MODIFY 1f = 1E3; RUN;

MODIFY p = 1E4; RUN; *END;

The following plot displays results obtained for the
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tasks a) and b):
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The problem was solved on IBM AT/386-387 of Norton com-
puting index 30.1 using DYNAST version running both with and
without numeric coprocessor.

The transient as well as the steady-state solutions were
computed using the same algorithm, which is based on the
combination of Gear's and Newton-Raphson's methods modified
by Rubner-Petersen.

The task a) was solved in the time interval 0 < t < 12s
for two different values of the permisible relative trunca-
tion error: 1E-3 (default value) and 1E-6 (see the input
data). In the former case the solution took 60 integration
steps (0 of them rejected) and 66 iterations. The computati-
on recquired 2.25s of CPU time. The last solution vector (at
t = 12s) was:

r = 2.60340E+01 m = 2.85984E+00 f = 8.30013E-04

The latter, enhanced accuracy solution took 120 integration
steps (3 were rejected) and 141 iterations. After CPU time
of 4.45s the last solution vector was:

r = 2.60517E+01 m = 2.86178E+00 f = 8.30576E-03

All the computations were done with the default initial
steplength equal to 1E-5 times the specified interval of
time. Any decrease of this value did not have any effect on
the final solution vector. The solution of task c) took just
one iteration and recquired 0.16s of CPU time for p = 0. It
resulted in vector

0.00000E+00 m = 0.00000E+00 f = 0.00000E+00

"

r

For p = 1E4 it took 3 iterations and 0.06s of CPU time only
(no resetting of input data was necessary in this case). The
result was:

r = 1.00000E+03 m = 1.00000E+01 f = 1.00000E+01
To verify the steady-state analysis results, the differenti-
al equations were solved with the permissible error 1E-6 in
the interval 0 <t < 2000s for p= 0 as well as for p =
1E4. The last solution vectors were

r = 3.05780E-14 m = 3,39755E-15 f = 9.85388E-18

and
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r = 1.00000E+03 m = 1.00000E+01 f = 1.00000E+01,

respectively. The former case statistics was 123 steps, 140
iterations and 8.24s. The latter case asked for 81 steps,
83 iterations and 5.87s.

Herman Mann,
Dept. of Mech. Eng. and Robotics
Free University of Brussels, CP 165,
Ave Roosevelt 50, B-1050 Brussels, Belgium
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Comparison 1 — DYNAST
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Comparison 1 - PROSIGN

PROSIGN (Process Design) isasoft\gmpacl_cagcdwi.gned
for the simulation of continuous and discrete time noalinear
systems with a free number of inputs and outputs.

Modelling may be carried out in three different ways:

- graphically- . -block oricated
(based on the Standard-Library)
« graphically- - component oriented

(based on libraries like Mechanic, Electric, ...)

o textual - equation oriented
(based on PSL, the PROSIGN Simulation Language)

Since all methods can be combined, the use needn’t
choose one method. Using PROSIGN, modelling is always
done in that way which is most time saving and most obvious
with respect to the simulation problem to be solved.

PROSIGN works with fixed or variable step size, alterna-
tively. In the variable case the calculations are performed
with a userdefinable degree of accuracy.

A special feature of PROSIGN is the code generator pro-
ducing Modula-2, Fortran or C codes.
Model description

The Lithium-Cluster model is built with elements taken
from the PROSIGN standard library. The resulting block di-
agram is shown in the following figure:

Deley 1

T

Results
a) Computing Time:

Computing time depends on the integration method and
the step size coatrol. PROSIGN offers 8 methods of different
orders which may be used with fixed or variable step size.

Here the variable case is chosen. The computing time for
a 10 seconds simulation time is shown for 2 integration
methods in the table below:

Algocithm max. step size
’ time (sec)
20d order (Sikmpson) 0.001 470
4th order (Adams-
Bashforth) 0.0025 204

The generated Fortran program reduces the simulation
time to0 40 sec using the fixed step size 0.0005 sec in

- conjunction with the Simpson integration method.

b) Variation of Parameter If:

The following figure presents the results of the F-centre
concentration against time.

Y

100
316.2
1000
k) [.7
10000

MAUN—-?
(]

48 -0 0 10

B0 LOGTA)

¢) Steady stam

The steady state values directly result from a PROSIGN
steady state model. They are summarized in the following
table:

P T m f
(1] 0 0 0
10000 1000 .10 10

Helmuuh Stahl, R&O Software-Technik GmbH, Planeg-
ger Strafie 16-18, D-8034 Germering, Tel.: +49-(0)89 -
840080, Fax: +49-(0)89 - 8400813
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Comparison 1 - DESIRE

DESIRE/387, DESIRE/387 for AT clones and the newer
DESIRE/X are direct-executing dynamic-system simulation
sackages which compile readable, screen-edited programs
lirectly into memory in a small fraction of a second, so that
here are no annoying translation delays. Programs admit up
o 1500 state variables and can be in matrix form.
DESIRE/NEUNET and DESIRE/X also solve peural-net-
vork programs.

For smooth integration with a logarithmic time scale, we
eplaced each given differential equation

dx/dtime = expression with dx/dt = expression*t
where
t = In(10)* 10+
is the time, and the new independent variable
t = log(time) + Lo

produces a logarithmic time scale shifted by any desired
anount to.

[n our graphs, to =3, so that

the abscissa marker O corresponds to time = 0.001
the abscissa marker 2 corresponds to time = 0.1
the abscissa marker 4 corresponds to time = 10

The program listings and graphs below are direct EGA
screen peints obtained with a personal computer; VGA out-
sut is also available. If you need more claborate graphs, you
=an make programmed or command-mode calls to commer-
sally available graph-plotting programs without leaving
DESIRE.

The time taken to produce the first curve on CRT was

14 sec on a cache-less 16 MHz 80386/7 (Toshiba 5100)

30 sec on a 12-MHz 80286/7 AT clone

2.2 sec on a 40 MHz SUN 4c¢ workstation (XWindow
graphics)

With display tumned off, these computation times de-
xeased o 10 sec, 22 sec and 1.7 sec, respectively. 14
different integration rules can be selected. Gear integration
produced results more quickly than fixed- or variable-step
Runge-Kutta methods in spite of the fact that the latter are
written in assembly language individually optimized for the
80386/7 and 80286/7, while the Gear routine is in PASCAL.
The entire SUN program is written in C.

- EUROSIM COMPARISON PROBLEM 1

1n10=1n(10) | loge=1/1n10

kr=l | kf=0.1 | dr=0.1 | da=t | -- coefficients
fu9.975 | m=1 674 ) v=B4.99 | -~ initfal values
p=0 '

irule 15 | ERRMAX=0.00001 | -- GEAR lntoqrauo;

tO=3 | - shift log time scale
THAX=14t0 | NN=6000 | OT=0.000001 | scale=2

1f=80 | drunr | display 2 | -- run and reset
1ful00 | drunr | 1f=200 | drunr | 1f=500 ! drunr
1f=1000 | drunr | 1f®S5000 | drunr | 1f=10000 ! drun
OYNAMIC

Askrsmsf-drsyr | -- we precompute these for speed!

Bukfefaf-dmsa

tt=ln10=(107(t-t0)) | -~ logarithmic time scale

d/dt r=Axtt | d/dt m=(B-A)xtt
d/s7dt fa(p~1fxf-A-228)=tt

lofplusi=logexln{ f)+1 | dispt lofplusi

program listing

0.00c+08
scale = 2.08¢+00

wanses lgfplusl ws. t

results (direct EGA screen prints)

G.A. and TM. Korn Industrial Consultares, Rt 1, Box
96C, Chelan, WA 98816, USA.
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DESIRE Soclution of the EUROSIM Comparison I Problem

DESIRE/387, DESIRE/387 for AT clones [l1] and the newer
DESIRE/X are direct-executing dynamic-system simulation packages
which compile readable, screen-edited programs directly into memory
in a small fraction of a second, so that there are no annoying
translation delays. Programs admit up to 1500 state variables and
can be in matrix form. DESIRE/NEUNET and DESIRE/X also solve
neural -network programs.

For smooth integration with a logarithmic time scale, we
replaced each given differential eguation '

dx/dtime = expression with dx/dt = expression*tt

where
tt = I1n(10)*10°(t+t0)
is the time, and the new independent variable
t = log(time) + tO
produces a logarithmic time scale shifted by any desired amount tO.

In our graphs, t0 = 3, so that

the abscissa marker 0 corresponds to time = 0.001
the abscissa marker 2 corresponds to time = 0.1
the abscissa marker 4 corresponds to time = 10

The program listing and graphs below are direct EGA screen
prints obtained with a personal computer; VGA output is also
available. If you need more elaborate graphs, you can make pro-
grammed or command-mode calls to commercially available graph-
plotting programs without leaving DESIRE.

The time taken to produce the first curve on the CRT was

14 sec on a cache-less 16 MHz 80386/7 (Toshiba 5100)
30 sec on a 12-MHz 80286/7 AT clone
2.2 sec on a 40-MHz SUN 4c workstation (XWindow graphics)

With displays turned off, these computation times decreased to 10
sec, 22 sec, and 1.7 sec, respectively. 14 different integration
rules can be selected. Gear integration produced results more
quickly that fixed- or variable-step Runge-Kutta methods in spite
of the fact that the latter are written in assembly language
individually optimized for the 80386/7 and 80286/7, while the Gear
routine is is in PASCAL. The entire SUN program is written in C.

G.A. and T.M.Korn Industrial Consultants
Rt 1, Box 96C, Chelan, WA 98816
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-~

...................................................................

},BB8e+8 Z.BBe+B8H

ile = 2.BBe+BB (113 T332 lgfplust vs. ¢
- EUROSIM COMPARISON PROBLEM 1
1n10=1n(10) | loge=1/1nl0
kr=1 ! kf=0.1 | dr=0.1 ! dm=1 | -- coefficients
f=9.975 ! m=1.674 ; r=84.99 . initial values
p:
irule 15 | ERRMAX=0.00001 D GEAR integration
t0o=3 | - shift log time scale
TMAX=1+t0 | NN=6000 ! DT=0.000001 scale=2
1f=50 ! drunr | display 2 L run and reset
1§=100 ! drunr | 1f=200 ; drunr | 1f=500 ; drunr
1f=1000 ! drunr | 1f=5000 ¢ drunr | 1f=10000 !'  drun
DYNAMIC
A=krxmxf-drxy | - we precompute these for speed!
B=kfxfxf-dmxm
tt=1n10x(107(t-t0)) -~ logarithmic time scale

dsdt r=axtt | ds/dt m=(B-A)*tt
d/dt f=(p-1fxf-A-2xB)xtt

....—_--—-—-——————-—-——-——--..-_..-——---—-——_-‘_—_——————_——-———_._

lgfplusi=logexln(f)+1 | dispt lgfplusi

7

4 BBo+BR
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DESIRE Solution of the EUROSIM Comparison I Problem

DESIRE/387, DESIRE/387 for AT clones and the newer DESIRE/X are
direct-executing dynamic-system simulation packages which compile
readable, screen-edited programs directly into memory in a small
fraction of a second, so that there are no annoying translation
delays. Programs admit up to 1500 state variables and can be in
matrix form. DESIRE/NEUNET and DESIRE/X also solve neural-network
programs.

For smooth integration with a logarithmic time scale, we replaced
each given differential equation '

dx/dtime = expression with dx/dt = expression*tt

where

tt = 1n(10)*10”" (t+t0)

is the time, and the new independent variable

t = log(time) + tO

produces a logarithmic time scale shifted by any desired amount
to.

In our graphs, t0 = 3, so that

the abscissa marker 0 corresponds to time = 0.001
the abscissa marker 2 corresponds to time = 0.1
the abscissa marker 4 corresponds to time = 10

The program listings and graphs below are direct EGA screen prints
obtained with a personal computer; VGA output is also available.
If you need more elaborate graphs, you can make programmed or
command-mode calls to commercially available graph-plotting
programs without leaving DESIRE.

The time taken to produce the first curve on CRT was

14 sec on a cache-less 16 MHz 80386/7 (Toshiba 5100)

30 sec on a 12-MHz 80286/7 AT clone

2.2 sec on a 40 MHz SUN 4c workstation (XWindow graphics)

With display turned off, these computation times decreased to 10
sec, 22 sec and 1.7 sec, respectively. 14 different integration
rules can be selected. Gear integration produced results more
quickly than fixed- or variable-step Runge-Kutta methods in spite
of the fact that the latter are written in assembly language
individually optimized for the 80386/7 and 80286/7, while the Gear
routine is in PASCAL. The entire SUN program is written in C.

G.A. and T.M. Korn Industrial Consultants
Rt1l, Box 96C, Chelan, WA 98816
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- EUROSIM COMPARISON PROBLEM 1

1n10=1n(10) | loge=1/1n10

kr=1 | kf=0.1 | dr=0.1 | dm=1 | -- coefficients
£=9.975 | m=1.674 | 1r=84.99 | -- initial values
p=0

irule 15 | ERRMAX=0.00001 | -- GEAR integration
to=3 | -- shift log time scale
TMAX=1+t0 | NN=6000 | DT=0.000001 | scale=2

1£=50 | drunr | display 2 | -- run and reset
1£=100 | drunr | 1£=200 | drunr | 1£=500 | drunr
1£=1000 | drunr | 1£=5000 | drunr | 1f=10000 | drun
DYNAMIC

A=kr*m*f-dr*r | -- we precompute these for speed!
B=kf*f*f-dm*m

tt=1nl0* (10" (t-t0)) | -- logarithmic time scale

d/dt r=A*tt | d/dt m=(B-A)*tt
d/dt f=(p-1f*f-A-2%B)*tt

lgfplusil=loge*1ln(f)+1 | dispt lgfplusil

program listing

results (direct EGA screen prints)

fx, 15.2.
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Comparison 1 - EXTEND

Description of EXTEND

EXTEND is a general purpose simulation system suppor-
ting both continyous and next event modeling. It is Library-
based and uses a block diagram approach o modeling. You
can use libranes of pre-built blocks to set up models with no
programming or you can use MODL (a built-in modeling
language) to modify existing blocks or create new ones. One
of the EXTEND's built-in libraries is the Generic library,
which contains general purpose continuous modeling
blocks. The blocks can be grouped by their funcuon: basic
math, accumulators, decisions, data input/output, data con-
version and model debugging.

In version 1.1 EXTEND doesn’t support hierarchical
modeling. EXTEND runs on Macintosh computers.

EXTEND™ is a product of Imagine That Inc., 151
Bemal Road, Suite 5, San Jose, CA 95119, USA.
Model descripton

Tbe model is described by blocks of EXTEND's Generic
library.

Figure 1

Results
All calculations were done using a Macintosh [Ifx.

a) comparison of integration algorithms: The built-in
Integrate block of the Generic library supports only two
integration methods.

parameter lf= 1000

mlegration number comp. numencal
alg. of steps ume

ume (0,10)  (min)
Euler (improved)  10.000 0.5 unstable
Euler (improved)  12.000 1.0 stable
Trapezoidal 20.000 1.45 unstable
Trapezoidal 30.000 2.30 stable

b) variation of parameter If

{_Value

10

3.98107
1.58489
0.630957
0.251189
0.1
0.0398107
0.0158489
0.00630957
0.00251189

0.001
16-006 5.6234¢-005 0.00316228

Time

0.177828

variation of parameter If {100,1000.2000)

Figure 2

The top curve represents the response for parameter
1f=100, with the lower curves showing corresponding results
for 1f=1000 and 2000 (numerically unstable).

c) calculation of steady states (1f=1000, improved Euler
method, number of steps=10000): Figure 3 shows the results
of the steady state investigation during constant bombard-
ment (lower curve p{t)=1.0E4) and without bombardment
(p()=0, numerically unstable).

f'_Value
9999.75
847.503
71.8279
6.08758
0.515837
0.0437269
0.00370596
0.000314089

P : ”"".““"."""."'*,‘**TM-»—-Q....

1

2.6620-005
2.2561e-006
1.91216-007

4] 5 10 15
Time

steady stats investigation f(time {p=0.p=10000})

Figure 3

Thorsten Pawletta, Universitdt Rostock, FB Informatik,
Albert-Einstein-Str. 21, D-0-2500 Rostock, Germany; Tel.:
+49-(0)381 44424 169;
e-mail: pawel@informatik.uni-rostock.de
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Comparison 1 - EXTEND

Description of EXTEND

EXTEND is a general purpose simulation system supporting both continous and next event mo-
deling. It is library-based and uses a block diagram approach to modeling. You can use libraries
of pre-built blocks to set up models with no programming or you can use MODL (a built-in
modeling language) to modify existing blocks or create new ones. One of the EXTEND s built-
in libraries is the Generic library, which contains general purpose continous modeling blocks.
The blocks can be grouped by their function: basic math, accumulators, decisions, data input
/output, data conversion and model debugging.

In version 1.1 EXTEND doesn’t support hierarchical modeling.

EXTEND runs on Macintosh computer.

EXTEND™ is a product of Imagine That Inc., 151 Bernal Road, Suite 5, San Jose, CA 95119
USA. 4

Model descripton
The model is described by blocks of EXTEND s Generic library.

data output

Figure 1
Results
All calculations were done using a Macintosh [Ifx.

a) comparison of integration algorithm
The built-in Integrate block of the Generic library supports only two integration methods.
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parameter If= 1000
integration alg. number of steps comp.time numerical

time (0,10) (min)
Euler (improved)  10.000 0.5 unstable
Euler (improved)  12.000 1.0 stable
Trapezoidal 20.000 1.45 unstable
Trapezoidal 30.000 2.30 stable
b) variation of parameter If
f_Value
10 v e agpr,
3.98107
1.58489
0.630957
0.251189
0.1
0.0398107
0.0158489
0.00630957
0.00251189
0.001 v : . .
16-006 5.6234e-005 0.00316228  0.177828 10

Time

variation of parameter It {100,1000,2000)

Figure 2

The top curve represents the response for parameter If=100, with the lower curves showing cor-
rcspondmg results for 1f=1000 and 2000 (numcncally unstable).

Flgurc 3 shows the rcsults of the steady state mvcsnganon dunng constantbombardcmcnt (lo-
wer curve p(t)=1.0E4) and without bombardement (p(t)=0, numerically unstable).

f'_Value
9999.75
847.503
71.8279
6.08758
0.515937
0.0437269
0_00370596 L. . « . . . . . . . . . . - . . . . .
0.000314089 ra DR Ot v s S W
2.6626-005
2.25616-006

1.91216-007 . : . ,
0 5 10 15 20

Time

steady state investigation {’(time {p=0,p=10000})
Figure 3

Thorsten Pawletta, Universitit Rostock, FB Informatik, Albert-Einstein-Str.21,
D-0-2500 Rostock, Germany;
Tel.: 49- 0 381~44424 169; e-mail: pawel@informatik.uni-rostock.de
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Comparisoh 1- "I Think"

tescription of "I Think"'

"I Think" is a special simulation system supporting sys-
:m dynamic modeling. You use only a lot of pre-built
ntities, such as

converter (constant, built-in item, algebraic equation,

graphical function)

stock (various accumulators - reservoir, queue, conveyor,

oven)

flow (empties into or drains)

connector (links entities together)

» set up continuous or discrete models. The modeling is
ipported by 55 built-in items. For defining the experimental
rocess there are four graph types and identical table types.

Taph types: .
time senes (graph with multiple vanables and time on "x"
axis)
scatter (a "variable 1" versus "variable 2" plot)
sensitivity (single vanable, multiple runs; input parame-
ters "attached”)
comparative (multiple runs on the same axis)

The graphical model layout can be used for "ther-
ometer” animations. "I Think" allows a fast model con-
ruction. The flexibility is limited, because it has not any
ot to a modeling or programming language. "I Think" runs
1 Macintosh computers and is a trademark of High Perfor-
ance Systems Inc.

lodel description

The model is described by items of "I Think" (figure 1)
1d their parametrization (figure 2).

’ Figure |

) = f(t - dt) + (dfdt) * dt
INITf=9.975
INFLOWS :
dfdt = drer+2*dm* m-kr*m*f-2¢kf*f*f-If* f+p

1) = m(t - dt) + (dmdt) * dt
INITm =1.674
INFLOWS:
dmdt = dr*r-dm*m+kf*f*f-kr*m*{

=1t - dt) + (drdt) * &t
INITr=84.99
INFLOWS:
drdt = dr*r+kr*m*f

=1

=0.1

: 0.1

=1

: 1000

b Figure 2

Results

All calculations were done using a Macintosh [Ifx (4 MB
RAM, without numeric coprocessor).

a) comparison of integration algorithms: "I Think"

supports three integration methods.

parameter If= 1000, p=0

integration step width comp.time oumerical
alg. (min)

Euler 1.0E-3 3 unstable
Euler 1.0E-4 7 stable
Runge/Kuta 2 1.0E-3 3.20 ‘unstable
Runge/Kutta 2 1.0E-4 9 stable
Runge/Kutta 4 1.0E-3 4 unstable
Ruage/Kutta 4 1.0E-4 12 stable

There are no possibilities to switch off a minimum am-
mation component. That is the reason for the high values of
computing time.

b) variation of parameter If: Runge/Kutta 4; siep
width=1.0E4; time interval (0,3)

13 0910 wme v kagio t

JE,

0 61

leg10 ¢

222

T Y
-6 00 -2 %0 100
rage 2 010 Bere 16 42 33101982

Figure 3

The wp curve represents the response for parameter
1f=100, with the lower curves showing corresponding results
for 1f=1000 and 1f=2000.

c) calculation of steady states: (1f=1000, Runge/Kuua 4;
step width=1.0E-3)

Figure 4 shows the results of the steady state investigation
during constant bombardment (curve 2, p(t)=1.0E4) and
without bombardment (curve 1, p(t)=0, numerically unstable).

parYr— T o0 s
4 Q0 =y
J
1 06

al
\ /, g —
T 2 2

€1 1 T 1 1

1.00e-04 2 %0 % CO 7 %0 10 00

Page 2 Tome 1512 11992

Figure 4

Thorsten Pawletta, Antje Méller, Universitdt Rostock,
FB Informatik, Alberi-Einstein-Str. 21, D - O - 2500
Rostock, Germany; Tel.: +49-(0)381-44424 169; e-mail:
pawel@informatik.uni-rostock.de
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Comparison 1 - "I Think"
Description of "I Think"

"I Think" is a special simulation system supporting system dynamic modeling. You use only a
lot of pre-built entities, such as
- converter (constant, builtin item, algebraic equation, graphical function)
- stock (various accumulators - reservoir, queue, conveyor, oven)
- flow (empties into or drains)
- connector (links entities together)
to set up continous or discrete models. The modeling is supported by 55 builtin items.
For defining the experimental process there are four graph types and identical table types.
graph types:
- time series (graph with multiple variables and time on
- scatter (a "variable 1" versus "variable 2" plot)
- sensitivity (single variable, multiple runs; input parameters "attached")-
- comparative (multiple runs on the same axis)
The graphical model layout can be used for "thermometer” animations.
"I Think" allows a fast model construction. The flexibility is limited, because it has not any slot
to a modeling or programming language.
"I Think" runs on Macintosh computer and is a trademark of High Performance Systems Inc.

", 1

x" axis)

Model descripton
The model is described by items of "I Think" (figure 1) and their parametrization (figure 2).

f(t) = f(t - dt) + (dfdt) * dt
INIT f=9.975
INFLOWS:
dfdt = dr*r+2*dm*m-kr*m*f-2
*kf*Pf-10%f+p

m(t) = m(t - dt) + (dmdt) * dt
INITm = 1.674
INFLOWS:
dmdt = dr*r-dm*m+kf*f*f-kr*m*f

r(t) = r(t - dt) + (drdt) * dt

INIT r = 84.99
INFLOWS:
drdt = -dr*r+kr*m*f

dm =1

dr=0.1

kf=0.1

kr=1

If = 1000

p=0

Figure ] Figure 2

Results
All calculations were done using a Macintosh IIfx (4 MB RAM, without numeric coprocessor).

mparison of in ion algorithms
"I Think" supports three integration methods.
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parameter If= 1000, p=0

integration alg. step width comp.time numerical
(min)

Euler 1.0E-3 3 unstable
Euler 1.0E-4 7 stable
Runge/ Kutta 2 1.0E-3 3.20  unstable
Runge/ Kutta 2 1.0E-4 9 stable
Runge/ Kutta 4 1.0E-3 4 unstable
Runge/ Kutta 4 1.0E-4 12 stable

There are no possibility to switch off a minimum animation component. That is the reason for
the high values of computing time.

Figure 3

The top curve represents the response for parameter 1f=100, with the lower curves showing cor-
responding results for If=1000 and 1f=2000.

alculation of steady states (1f=1000. Runge/ Kutta ep width=1],0E-
Figure 4 shows the results of the steady state investigation during constant bombardement (cur-
ve 2, p(t)=1.0E4) and without bombardement (curvel, p(t)=0, numerically unstable).

Figure 4

Thorsten Pawletta, Antje Moller, Universitidt Rostock, FB Informatik, Albert-Einstein-Str.21,
D-0-2500 Rostock, Germany;
Tel.: 49-0381-44424 169; D-ost 0081-44424 169; e-mail: pawel@informatik.uni-rostock.de
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drdt

dm

dmadt

didt
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ked f(t) = f(t - dt) + (dfdt) * dt

INIT f = 9.975
INFLOWS:
< dfdt = drrr+2*dm*m-kr*m*f-2*kf*f*f-1f*f+p
B m(t) = m(t - dt) + (dmdt) * dt
INIT m = 1.674
INFLOWS:

& dmdt = drir-dm*m+kf*f*f-kr'm*f
[(t) = r(t - dt) + (drdt) * dt
INIT r = 84.99
INFLOWS:

% drdt = -drir+kr'm*f
dm =1
dr = 0.1
kf = 0.1
kr = 1
If = 1000
p=0

]

0]0]0]0]0]0,
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1-3: log10 time v. log10 f
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- '(,,{;f‘f Y
1: log10 absdf 2: log10 absdf
4 .00
-1.06e
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-6.12 T T I 1
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Comparison 1 - ACSL

ACSL is a general purpose continuous simulation
language. It models systems described by time dependent,
nonlinear differential equations and/or transfer functions.
Linear analysis capabilities (Bode, Nichols, root locus,
eigenvalues, for cxample) are available at runtime.

ACSL runs on personal computers, workstations,
mainframe computers, and supercomputers. Programs
created on one platform can be transferred (0 and run on any
other platform.

Program: ACSL provides a wide choice of integration
algorithms, both fixed and variable. The Gear's stiff
algorithm is chosen as the model default in the
ALGORITHM statement. The allowable error in the
integration calculation is set in the XFRROR statement. The
model parameters are defined in CONSTANT statements
with values as given in the example definition. The rate
equaﬁonsamimcgmtedwithmcm'l‘EGopmurmobtam
r,m,andf. Runs are terminated when the logical argument
(inmiscaseatimccmdition)wmcopaamr'rﬂlm
becomes true.

We would like the sample points to be exponentially
spread in time; i.e., more points to be clustered at smaller
umeswproduocequalsepamﬁononalogarimnﬂcscale.
Thus, the sample points should be given by:

lo, (1 +K), (1 +K ), .. (1 +K)"

The communication interval (cinf) is obtained by
calculating a Ar of:

Atn = to(1+K)™ — 1,(1+K) = 0K
In order to get ten samples per decade, we make:

a+K)° =1 o kK=10"7-1

Since T starts off at zero, we limit the communication to
some minimum (and some maximum) value as shown in
the last equation in the program.

PROGRAM simulation comparison 1

R b select Gear’s stiff integrater by default
ialg = 2
DYMAMIC ; DERIVATIVE

jommmm————— ~define initial conditions

COMSTANT fzx = 3.975 ., mzow 1.67¢
CONSTAMT e = 84.99

| R et ~datine rate cosfficients
COMS TANY xkr = 1.8 . kf =01
COMS TANT 1f = 1000 , dr = 9.1
COMSTANY dm = 1.0 , pc= 0.0

|mmmmm—e o integrate
4 « INTEG (~dr*r + krem¢f, rz}
L] e INTEG{drer -~ derm + KE*Lef - ke*mtf, mt)
4 « INTEG(drer + 2%°detm - kr*'m*f - 2oktrgef &
- 1fef + pa, fx)
fomm o —define very small absolute error; first
| mantioned state extablishes the default.
XERROR £ = 1.0e-8
jemm—een——w~define stopping condition
COMSTANT tatp = 10.0
FEAMT(t .GE. tstp, 'Stopped on time limit’}
EZMD | of DERIVATIVE
COMSTANRT cintme = 0.0001, ciatmx = 0.2
fm— e -—-1l0g-log plots with equal pointa/decads
COMSTANT pointsperdecade = 10
cscale = 10.0%% (1. 0/potntsperdacade) - 1.9
cint = BOUMD (ciatan, cintax, t*cacals}
EMD | of DYWAMIC
IND ! of PROGRAN

Results: A summary of the integration action during th
run for all variable step algorithms shows the number (
times each state controlled the step size, the number ¢
Jacobian evaluations, and the number of L
decompositions during the run. The cpu time required for
10 second run with Ir of 1000 is determined by setting
algorithm and running the model interactively at runtime

ALGORITHM MicroVAX  Sun 4
Adams-Moulton (vaniable order) 388.85 20.63
Gear's stiff (variable order) 1.9 0.15
Euler (1nt order) 8.43 047
Runge-Kutia 2nd order 11.48 0.63
Runge-Kuita 4th order 16.70 0.85
Runge-Kutta-Fehlberg 20d order 13.37 0.84
Runge-Kutta-Fehiberg Sth order 11.01 0.76

Parameter sweep: Next, the integration algorithm is §
back to the model default (Gear's stiff) and a parame
sweep of I from 100 to 10000 is executed. The results g
plotted on a log-log plot with the command:

ACSL> PLOT/XLOG/XLO=0.0001/XHI=tstp &
£/10G/TAG=! F~center’

Simulation Comparison |
Lithium Cluster Drnemics
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Steady state: Steady state conditions (when
derivatives are zero) are evaluated in ACSL with
runtime command:

ACSL> ANALYZE /TRIM

For this model, the steady state at pc of zero
bombardment) and 10000 (constant bombardment)
evaluated and the values of r, m, and fare extracted wit!
DISPLAY command.

Pe r m f
0 -1.7E-7 -1.1D-10 2.5E-12
10000 0.9995 0.1 1.0

Edward EL. Mitchell and Marilyn B. Kloss, Mitchel
Gawthier Associates, 200 Baker Avenue, Concord MA 0174]
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Comparison 1 - ACSL

ACSL is a general purpose continuous simulation language. It models
systems described by time dependent, nonlinear differential equations
and/or transfer functions. Linear analysis capabilities (Bode, Nichols,
root locus, eigenvalues, for example) are available at runtime.

ACSL runs on personal computers, workstations, mainframe computers,
and supercomputers. Programs created on one platform can be transferred
to and run on any other platform.

Program: ACSL provides a wide choice of integration algorithms, _
both fixed and variable. The Gear’s stiff algorithm is chosen as the
model default in the ALGORITHM statement. The allowable error in the
integration calculation is set in the XERROR statement.The model paramet
are defined in CONSTANT statements with values as given in the example
definition. The rate equations are integrated with the INTEG operator
to obtain r, m, and f. Runs are terminated when

the logical argument (in this case a time condition) to the operator
TERMT becomes true.

¥~ would like the sample points to be exponentially spread in time;
..e., more points to be clustered at smaller times to produce

equal separation on a logarithmic scale. Thus, the sample points should
be given by:

<$Et sub o, ~~ t sub o * (1~+~K"), ~~ t sub o " (1~+~K")
sup 2 , ~~...~~ t sub o "~ (1~+~K") sup n>

The communication interval (cint) is obtained by calculating
a <S$EDELTA t> of:

<SEDELTA t sub n> = <$Et sub o ~(1~+~K") sup { n+l}
~~~~~ t sub o *(1~+~K") sup n> = <$Et sub n *~ K>

In order to get ten samples per decade, we make:

<SE( 1 ~~+~~K") sup 10 ~~~=~~~ 10> or <$EK> =
<$E10 sup { 1 ~/* 10 } =~~==~~ 1>

¢'mce T starts off at zero, we limit the communication to some minimum
tand some maximum) value as shown in the last equation in the program.

PROGRAM simulation comparison 1
R tntlete bty select Gear’s stiff integrator by default
ALGORITHM ialg = 2

DYNAMIC ; DERIVATIVE
L e it define initial conditions

CONSTANT fz = 9.975 , mz = 1.674

CONSTANT rz = 84,99

e e define rate coefficients

CONSTANT kr = 1.0 , kf = 0.1

CONSTANT 1f = 1000 , dr = 0.1

CONSTANT dm = 1.0 , pc = 0.0

| mmm e e e integrate

r = INTEG(-dr*r + kr*m*f, rz)

m = INTEG(dr*r - dm*m + kf*f*f - kr*m*f, mz)
f = INTEG(dr*r + 2*dm*m - kr*m*f - 2*kf*f*f ¢

- 1f*f + pc, fz)
e define very small absolute error; first
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! mentioned state extablishes the default.
XERROR r = 1.0e-8
e define stopping condition
CONSTANT tstp = 10.0
TERMT (t .GE. tstp, ’'Stopped on time limit’)
END ! of DERIVATIVE
N

CONSTANT cintmn = 0.0001, cintmx = 0.2

L it log-log plots with equal points/decade
CONSTANT pointsperdecade = 10

cscale = 10.0**(1.0/pointsperdecade) - 1.0

cint = BOUND (cintmn, cintmx, t*cscale)

END ! of DYNAMIC
END ! of PROGRAM

Results: A summary of the integration action during the run

for all variable step algorithms shows the number of times each state
controlled the step size, the number of Jacobian evaluations, and

the number of LU decompositions during the run. The cpu time required
for a 10 second run with 1f of 1000 is determined by setting

the algorithm and running the model interactively at runtime.

ALGORITHM MicroVax Sun 4

Adams-Moulton (variable order) 388.85 20.63
Gear'’s stiff (variable order) 1.99 0.15
Euler (lst order) 8.43 0.47
Runge-Kutta 2nd order 11.48 0.63
Runge-Kutta 4th order 16.70 0.85
Runge-Kutta-Fehlberg 2nd order 13.37 0.84
Runge-Kutta-Fehlberg 5th order 11.01 0.76

Parameter sweep: Next, the integration algorithm is set back to the
model default (Gear’s stiff) and a parameter sweep of 1f

from 100 to 10000 is executed. The results are plotted on a log-log
plot with the command:

ACSL> PLOT/XLOG/XLO=0.0001/XHI=tstp &
f/LOG/TAG='F~center’

Steady state: Steady state conditions (when the derivatives are zero)
are evaluated in ACSL with the runtime command:

ACSL> ANALYZE /TRIM

For this model, the steady state at pc of zero (no bombardment)
and 10000 (constant bombardment) are evaluated and the values of r,
m, and f are extracted with the DISPLAY command.

pc r m f
0 -1.7E-7 -1.1D-10 2.5E-12
10000 0.9995 0.1 1.0

Edward E.L. Mitchell and Marilyn B. Kloss, Mitchell and
Gauthier Associates, 200 Baker Avenue, Concord MA 01742 USA
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ACSL-Model:

PROGRAM EUROSIM EXAMPLE No. 1

' Language ACSL Level 9, Mitchell & Gauthier Ass., U.S.A.'

' prepared by Dr. Ingrid Bausch-Gall, January 2nd, 1991 '

CONSTANT kr=1., kf=0.1, 1£=1000., dr=0.1, dm=1., p=0.

CONSTANT fnull=9.975, mnull=1.674, rnull-84.99 § 'initial conditions'

ALGORITHM IALG=2 $ 'take Gears stiff for integration !
CINTERVAL CINT=0.05 ¢ ‘'store results at multiples of CINT'

CONSTANT TEND=10. $ ‘'simulation time’
B ttutate model equations -------- !

r = integ(-dr*r + kr*m*f,rnull)

m = integ(dr*r - dm*m + KEXEXf —kr*m*f,mnull)

f = integ(dr*r + 2.*dm*m—kr*m*f—z.*kf*f*f-lf*f+p,fnull)

TERMT(T.gt.TEND) $§ 'stop at simulation time'
END

ACSL-Runtime-Commands:

s p=1.ed, wesitg=.f., nstp=1
a) Comparision of computer time
prepar t,r,m,f ‘store results of these variables'

L4

s ialg=1 $ 'calculate with ADAMS-Moulton method'
spare $ start § spare $ 'give computer time'

s ialg=2 $ 'choose now Gear's stiff’

spare $ start $ spare

s ialg=9 $ 'one step Runge-Kutta order 4/5"

spare $ start $ spare
' b) Parameterstudies '
s ialg=2 $ 'choose Gears Stiff for parameterstudies’
s 1f=1.e2
start -
s nrwitg=.t. ¢ 'write all results on one file'
s 1f=1.e3
start
s 1f=1.ed
start
s title='Example EUROSIM 1, Parameterstudies
s title(11)='1f = t.e2 (1), 1.e3 (2), 1.e4 (3)'
s ftsplt:.t.,symcpl:.t.,npccpl=40
plot £,'xhi'=10., 'char'="1' $ plot results
c) Calculate steady state result
s p=1.ed
analyz 'list'=.t., 'trim’
s p=0.
analyz 'trim'
stop

Results:

All calculations have been done on a Commodore PC-40 (AT) with 12 MHz and a
80286 numeric coprocessor.

a) Comparision of computer time

Adams-Moulton-Predictor-Corrector Method, IALG=t 155.055 sec.
Gear's Stiff, IALG=2 3.460 sec.
Runge-Kutta order 4/5 with stepsize control, IALG=9 55.035 sec.

94




EUROSIM COMPARISON 1 - SOLUTIONS AND RESULTS

b) Plot of Parameterstudies

o EXAMPLE EUROSIM 1, PARAMETERSTUDIES
& LF = 1.E2 (1), 1.E3 (20, 1.E4 (3)
0 ; : : i
o
(0}
M
~ B <
2o s
L &
N
w o
~ >
e o
~
o
d 2 Z z ra 4
8 ] o) ) o | 4
o = = = = P -
0.00 2.50 _F,.DD 7.50 10.0
c) Calculate steady state result for 1£=1000.

p = 1.E4

gives as last iteration:

Newton step 0.24366500 Steep desc step 0.11443300 mu 0

State vector - iteration number
F 10.0000000 M
Derivative vector - residual is
Scaled residual is

209996 5.1546E-05 209997

p = 0.

11

10.0000000 R 1000.00000
5.3226E-05 previous 0.02483470
9.9485E-05 previous 0.04599450

5.4854E-05 209998-5.3751E-05

gives as last iteration:

Newton step 0.12913000 Steep desc step 0.06764160 mu 0

State vector - iteration number
F-1.5045E-12
Derivative vector - residual is
Scaled residual is

209996 1.1720E-08 209997

M-

8

1.5373E-09 R 1.3290E-07
1.3339E-08 previous 0.01348860
2.5906E-08 previous 0.02502220

1.4827E-08 209998-1.3290E-08
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Comparison 1 - STEM

Short description of STEM

STEM, Simulation Tool for Easy Modelling, is a general
purpose simulation package for MS-DOS machines. Models
have to be specified in a Model Specification File,
containing the model equations. This Model Specification
file is translated by STEM to a Turbo Pascal program and
compiled with Borland’s Turbo Pascal compiler. The
resulting executable file is a menu-driven interactive
program with facilities for simulation, calibration, printing,
graphical and numerical presentation of results. It is
possible to run a model under batch-file control. External
data (ASCII or Lotus 1-2-3) can be used in the simulation.
For calibration of mode] parameters a target function must
be specified, for instance the difference between simulated
data and external data. A large set of standard functions is
avaliable, if this should not be enough one can add self-
programmed Turbo Pascal functions.

Model description

In a STEM model variables are divided in groups, each
with their own properties. In this model you can find
constants cf ], states s[] with derivatives d[ ] and
auxiliaries a[ ]. Running a model, each group is presented
in a window on the screen. Comments can be displayed
running the model. Graphical windows can be defined also.

Environment
BegValue =0 (* initial value of independent varisble *)
EndValue =10 (* end value of independent variable *)

Declaration
Measurement  (* no extemnal data *)
Constants (* constants used in program *)

c[RO] = 84.99 ! starting value for s[R]

c[MO] = 1.674 | starting value for s[M]

c[F0] = 9.975 ! starting value for s[F]

¢[Dr] =.1 | rate for decay of R~center into M—center and F—center
¢(Dm}] =1 1 rate for decay of M-center into two Fcenters
c¢[Lf] = 1000 ! loss of F-centers at surface

¢[Kr] = 1! formation rate of R-center out of M-center and F-center
c[Kff =.1 | rate for formation of M-center out of two F-centers
<[P =0 ! electron bombardment

Zerostate  (* initial conditions *)
s[Time] = BegValuc ! independent variable
s{R} = c[RO] ! concentration of aggragates with three F-centers
s{M] = ¢[MO] ! concentration of aggragates with two F-centers
s[F] = ¢[F0] ! concentration of F-centers

Modcl (* the model-cquations *)
a[dRAT] = c[Kr}*s[M]*s[F] - c{Dr]*s[R] ! net formation of R
a[dMdT] = c[Kf]*sqr(s[F]) - ¢[Dm]*s[M] ! net formation of M from F
d{R] = a[dRdT]
d{M]} = o[dMdT] - a[dRdAT]
d[F) = c[P] - a[dRdT] - 2*a[dMdT] - c[Lf]*s[F]

Output (* output-variables *)
a[LogTime] = Conditional(s[Time>0,log 10(s[Time]),-MaxFloat)
a[LogR] = Conditional(s{R}>0,log10(s[R]),-MaxFloat)
a[LogM] = Conditional(s{M]>0,log I0(s{M]),-MaxFloat)
a[LogF] = Conditional(s{F}>0,log10(s[F]),-MaxFloat)

Minimization (* no calibration-criteria *)
UserDefined (* no userdefined functions *)

Results

a) Comparison of integration algorithms. The systen
was simulated over a period of 10 seconds using nin
different integration algorithms available in STEM
Computation times for a 20 MHz 80386 system with 38
coprocessor are presented in the table below. Simulation i
carried out with an absolute error of 0.001 and a relativ
error of 1E-6. All integration methods use variable stef
size, Gear and Adams also varable order. Writing o
results to screen and disk is minimized. Times are
calculated using a Pascal function in the Userdefined block
(not presented above).

algorithm computation time (seconds
Gear's stiff, variable order 0.5(
Adams-Bashforth-Moulton, variable order 41.03
Runge-Kutta-Fehlberg, oider 1(2) 18.84
Runge-Kutta-Fehlberg, order 2(3) 11.54
Runge-Kutta-Fehlberg, order 3(4) 10.27
Runge-Kutta-Fehlberg, order 4(5) 10.83
Domand-Prince, order 5(4) 13.41
Runge-Kutta-Fehlberg, order 5(6) 13.3(
Runge-Kutta-Fehlberg, order 7(8) 20.9%

b) Parameter sweep. This task, changing constant c[Lf]
may be performed manually running the model, or in :
STEM-batch file. STEM produces the following figurs
varying Lf from 100 to 10000. The (logarithmic) values o
F, M and R-centres are displayed against (log) Time.

/

Ha100
1 a3,
Het
g’ He3162
40000 LogTime 1.0000
— Lof - Lo - LR

¢) Steady state calculation. STEM can solve the states
for all derivatives equal to zero. With If = 1000, the result:
are:

p R MF
10000 1000 10 10
0 0 0 0

More information about STEM and a demonstration disk
with this model is available with:

Diederik Waardenburg, ReMeDy Systems Modelling
P.OBox 11019, 7502 LA Enschede, The Netherlands
E-Mail: REMEDY@UTWENTE.NL.
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Comparision 1 - TUTSIM

Description of TUTSIM

TUTSIM is a blockoriented simulation system with
some equation oriented aspects. It supports a wide range of
analog and discrete blocks for system modelling and
control. In addition there are blocks for Bondgraph models
in this simulation system. Some Studies in the frequency
domain may be made by the TUTFFT task. TUTSIM was
developed at the Twente University of Technology in The
Netherlands and is now supported and distributed by:

Meerman Automation, Postbus 15, 7160 AC Neede,

The Netherlands, Tel. (0031)5450-93901
and for North America and Canada:

TUTSIM Products, 200 California Avenue # 212,

Palo Alto, CA 94306, USA

TUTSIM runs on IBM-PC/XT/AT and PS/2 compa-
tibles. The mathematic coprocessor 80x87 is supported,
but not necessary. Suppoted graphic bords are Hercules,
IBM CGA, IBM EGA, IBM VGA and SVGA.

Model description

The model was set up by TUTSIM's own interactive
editor TUTEDIT, which automatically starts at each
simulation session, except you have a predefined model on
disk. All defined symbols (left hand side of the equations
below) may be accessed by TUTCALC, the simulation
part of TUTSIM, which follows after TUTEDIT.

F=PLOT (]
PLOT number : 1.00000
Minimum : 0.000000
Max imum : 2.50000€-2
dmrdt=1[(1.00000€-1*f*f)-m] ;dm/dt + dr/dt
drdt=1[{m*f)-(1.00000E-1*r)] ;dr/dt
f=INT {-drdt- (2.00000*dmrdt)- 3149
(1.00000E+3*f))
initial value : 9.97500
m=INT {[dmrdt-drdt] sm(t)
Initial value : 1.67400
r=INT {drdt) sr(t)
Initial value : 8.49900€+1
t=TIME[]
Time step DELTA : 5.00000E-4
End time : 1.00000E+1
Results

All simulation runs were made on an 16 MHz 386-SX-
AT with a Cyrix-Coprocessor, which is compatible to the
Intel 80387-SX.

a) Computing time depending on the two different
integration algorithms available on TUTSIM
TUTSIM has two different integration algoritms with
fixed stepsize:
- Adams-Bashfort second order (INT)
- Euler (EUL)
The algoritmus is selected within TUTEDIT by
selecting the block for the integration (INT or EUL).
The simulation time was measured with linear spacing of
t-axis und f(t)-axis. During simulation run a VGA-plot

was drawed with 500 simulation points at the screen.

algorithmus maximum-step-size simulation time

INT SE-4 49 sec.
EUL SE’L [AA sec.,
b) Paramater variation of lf

For the parameter variation |, was defined as a function
table (100, 200, 500, 1000, 2000, 5000, 10000] with a
variable as input. TUTCALC can vary the parameter value
via this input during an automatic multirun.

To get a logarithmic spaced plot, two LOG-blocks
were added.

PLOTL: log f Par: 7.00000 Lithiun-Cluster Bymanics
~-3.00000 v - T v v y -
2. 00000

-4.00000

1.06000

¢) Steady states
For calculation of steady states, the derivations of the

differential equations have to be set to zero. The result are
3 algebraic equations whith the state variables at the left
hand side:

r = krmf/dr

m = (drr+kff3-krmf) /dm

f = (drr+2dmm—krmf-2kff2+p) lf

To avoid algebraic loops, m and f are defined by ADL
(Algebraic delay) blocks. The table below shows the
results for p=0 during 5 iteration steps:

n m r f
0.000000 1.67400 1.66982E+2 9.97500
1.00000 9.95006 -1.64695 -1.65521E-2
2.00000 2.73973E-5 S.45208E-6 1.99001E-2
3.00000 3.96013E-5 -9.66588E-12 -2.44080E-8
4.00000 5.95750E-17  4.71849E-23  7.92026E-8
5.00000 6.27305E-16 -7.12279€-33 -1.13546E-18

and for p=10000:

n m r f
0.000000 1.67400 1.66982E+2 9.97500
1.00000 9.95006 9.93359€+2 9.98345
2.00000 9.96692 9.96689E+2 9.99997
3.00000 9.99993 9.99987E+2 9.99993
4.00000 9.99987 9.99987E+2 1.00000E+1
5.00000 1.00000E+1 1.00000E+3 1.00000E+1

Bernd Lange, Fachhochschule Ulm, Fachbereich Auto-

matisierungstechnik, Parkstrafle 4, D-W-7340 Geislingen,

Tel. +49-(0)7331 22526, Fax +49-(0)7331 40898
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Comparison 1 - MATRIXx

MATRIXx is a comprehensive linear system analy-
sis tool. It is an interactive matrix manipulation envi-
ronment which combines powerful numerical tools of
LINPACK and EISPACK with an easy to use interface,
comprehensive graphics facility and an expandable
function library. In MATRIXx nonlinear sytems have
to be described by block diagrams, Fig. {. Leaving the
graphical model editor (System Build) by the command
analyze, the simulation is carried out in the MATRIXx
core. To compare the complete capabilities of the different
integration algorithms, the simulations have been carmed
out for two time 'vectors’: with 77 non equidistant points
and with 10 000 equidistantly spaced points of 1 msec.

| =Y " 7]
t 3

Corrns Tnparbme
S

For the non equidistant time vector the command se-

quence is
sim{’ialg‘); 6
v f1.2,1.5,2,3,4,5,6,7,8.9,10);
t [le-6 le-S le-4 le-3 le-2 0.1 1]:
T t*v
clock({‘cpu’):
For equidistantly spaced points row number 3.4 and 5
are replaced by ¢ = (0.001:0.001:10}";

Results: PC 486, 33 Mz

[ER L)

yss=simit); time =clock('cpu’);

Integration algorithm 10 000 77 not equidistant
equidistant time | time points
points

Implicit Stff System Sol- {117.0 sec 3.02 sec

ver

Varnable Kutta-Merson 261.0 sec 71.0 sec

Fixed Kutta-Merson 255.7 sec

4th order Runge Kutta 217.7 sec

RK2 (Modified Euler) 132.6 sec

Euler 90.3 sec

Results: Workstation Sun 4, 40 MHz

Quicksim Solver 8.2 sec failed

Variable Adams-Moulton {11.62 sec 1.78 sec

Stiff System Solver 15.21 sec 0.43 sec

Vaniable Kutta-Merson 24 83 sec 6.65 sec

Fixed Kutta-Merson 23.31 sec

4th order Runge Kutta 19.02 sec

RK2 (Modified Euler) 11.81 sec

Euler 8.19 sec

For the Parameter simulation the 'Suff System Sol-
ver’ was used and the command sequence is: (compiled
in a so called Execute File):
kr = 1, kf=0.1.1f = 1000: dr = 0 1,
v = [1.2,1.5.2,3,4,5.6,7,8,9,10];
tl = (le-6,1e-5 le-4,le-3,1e-2,0 1.1},
o= (tl.*.v) "

Lfp = (100,200,500,800,1000,2000,5000,8000, led};
y3 = 0*t;

clock{‘cpu’):

for 1i=1:9:...

LE = 1fptid;:. ..

y = simi{t}; .

yI3={yd, yt:. 3], ..

end;

plot{t.y3(:,2:20). logx,logy '}, ..

time=clock{ 'cpu’)

PC-Simulation: 29.0 sec
To compare the results of the different integration

algorithms the Variable Kutta-Merson algorithm is

considered as a reference (deviations see figure).

dem = 1: p = O:

Workstation Simulation: 3.56 sec

Ll LL bils

g A _Euler
c ' ! - Runge-Kutts 2ad Order
H o E Ruage-Kutta 4th Order
. 3 001
(¥ r _SHIT Syaem Solver
z g 000" Fized Kutta-Menon
:":S: 0000" E
i: =
3 DOOOO Y !
S 000001 & g
£ 'n
3 = - - )
o SN
> = !
Qo€ -ce !
'ooc-‘oi \
- (

Time n seconds

For the calculation of the steady state the trim com-
mand causes a linearization of the system under consi-
deration with all the known problems. An iteration of
the procedure can improve the result. Two iteration
steps have been carried out. The command for the
calculation of the steady state is
{xt,ut,yt] = trim(0,1,(0,0,0],(0.0,0],x0)

The trimmed variables are: state vector xt, the input
ut, and the output yt. The first parameter of the trim
command is the input value u and the second indicates
that this value should be frozen. The next two vectors
concern the nominal output vector where the second
means that the output is not frozen. x0 indicates the
initial condition. In the second iteration step x0O is
replaced by xt from the foregoing step. The result is
shown in the following table:

P r m f
0] -3de-7] -1.1e-9f -3.0e-11
10000 1002.6 10 10

Rudolf H. Kern, Fachbereich Feinwerktechnik Fachhoch-
schule Heilbronn, Max-Planck-Str. 39, D-74081 Heilbronn
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MATRIXXx is a comprehensive linear system analysis tool. It is an interactive matrix manipula-
tion environment which combines powerful numerical tools of LINPACK and EISPACK with
an easy to use interface, comprehensive graphics facility and an expandable function library.
MATRIXx includes comprehensive tools for system analysis and control design (system ideni-
tifcation, opitmization, signal processing, robust control) as well as nonlinear simulation, block
diagram system modeling, and in the workstation version also automatic real-time code gene-
ration and implementation.

In MATRIXx nonlinear sytems have to be described by block diagrams, Fig. 1. Leaving the
graphical model editor (System Build) by the command analyze, the simulation is carried out
in the MATRXx core. To compare the complete capabilties of the different integration algo-
rithms, the simulations have been carried out for two time 'vectors': the first with 77 non equi-
distnat points and the second with 10 000 equidistant spaced points of 1 msec.

Continuous SuperBlock Ext.In Ext.Out
lithium 0 k)

]
v
+

10

20

For the non equidistant time vector the command sequence is

sim('1alg") // menu for selecting integration allgorithm
6 // number of integration aligorithm
v=[12,15,2,3,4,5,6,78,9,10]; // points within a decade

t=[le-6 le-S le-4 le-3 1e-2 0.1 1]; // decades for time vector

t=t*v // generating the time vector t

clock('cpu’), yss=sim(t), time =clock(‘cpu’); // start clock, simulate, stop clock and read out
For equidistant spaced points row number 3, 4and 5 is replaced by

t =[0.001:0.001:10F; // generating the time vector
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Results: PC 486, 33 Mz

Integration algorithm 10 000 equidistant time points |77 not equidistant time points
Implicit StUff System Solver |117.0 sec 3.02 sec

Variable Kutta-Merson 261.0 sec 71.0 sec

Fixed Kutta-Merson 255.7 sec

4th Order Runge Kutta 217.7 sec

RK2 (Modified Euler) 132-6 sec

lEuler 90.3 sec

Results: Workstation Sun 4, 40 MHz

Intgration algorithm 10000 equidistant time points |77 not equidistant time points
‘Quicksim Solver 8.2 sec failed

Variable Adams-Moulton 11.62 sec 1.78 sec

Stiff System Solver 15.21 sec 0.43 sec

Variable Kutta-Merson 24 .83 sec 6.65 sec

Fixed Kutta-Merson 23.31 sec

4th Order Runge-Kutta 19.02 sec

RK2 (Modified Euler) 11.81 sec

Euler 18.19 sec

For the Parameter simulation the 'Stiff System Solver’ was used and the command sequence is:

(compiled in a so called Execute File):

kr=1; kf=0.1;If = 1000, dr=0.1;dem=1;p =0,
v=[12,15,,34,56728,9,10];
t1 = [le-6,1e-5,1e-4,1e-3,1e-2,0.1,1};

t=(tl.*.v),

ifp = [100,200,500,800,1000,2000,5000,8000,1e4];

y3 = 0%,
clock('cpu');
fori=1:9;...

If = ifp(i);...

y = sim(t);...
y3=[y3,y(:.3)};...
end;

plot(t,y3(:,2:20),logx,logy");...

time=clock('cpu’)

PC-Simulation: 29.0 sec

Workstatio

The result is shown in the follwoing Fig.

// system parameter

/ftimepoints within a decade
//decades

//timepoints

// simulation parameter

"

/1 clock start

/1 loop start

// current parameter

// simulation for current parameter
// storing of the results in a matrix
// loop end

// display the results

// stop clock, read simulation time

n Simulation: 3.56 sec
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To compare the results of the different integration algorithms the Variable Kutta-Merson algo-
rithm is considered as a reference. The deviations hereof are plotted in the next Fig.

Euler
Runge-Kutta 2nd Order

N\
\/ Runge-Kutta 4th Order
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oooootlg AN T T
.0000001
.00000001

1.00E-09

Absolute values of the differences
to the Variable Kutta-Merson Algorithm
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1.00E-11 [g

Lt oL iy {1 b1t 41
.001 .01 A 1

Time in seconds
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For the calculation of the steady state the tim command causes a linearization of the system
under consideration with all the known problems. An iteration of the procedure can improve
the result. Two iteration steps have been carried out. The command for the calculation of the
steady state is

[xt,ut,yt] = trim(0,1,{0,0,01,[0,0,0],x0)

The trimmed variables are: state vector xt, the input ut, and the output yt. The first parameter
of the trim command is the input value u and the second indicates that this value should be fro-
zen. The next two vectors concern the nominal output vector where the second means that the
output is not frozsen. x0 indicates the initial condition. In the second iteration step x0 is repla-
ced by xt from the foregoing step. The result is shown in the following table:

p r m f]
0 -3 4e-7 -1.1e-9| -3.0e-11
10 000 1002.6 10 10

Rudolf H. Kern

Fachbereich Feinwerktechnik
Fachhochschule Heilbronn
Max-Planck-Str. 39

D-74081 Heilbronn
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S o

et

00001 .0001 .00 .01 21 1 10
t
Stiff Solver t—total=3.02 sec

Bild 2; Simulationsergebnis mit 'Stiff Solver' (PC-Version)

11

=

.00001 .0001 001 .01 A 1 10
t
Variable Step Kutte—Marmmon t—totai=70.69 sec
Bild 3: Simulationsergebnis mit Kutta-Merson Verfahren variabler
Schrittweite

0013

!
>
L LIS B B 2 2 I
p—
—_—

00001  .0001  .001 .01 A 1 10
t
Difference (Stiff Soiver) — (Variabie Kutta Mereon)

Bild 4:: Differenz der Simulationsergebnisse
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Comparison 1 - SABER

Description of SABER

SABER is a well known Simulator for analog elec-
tronic systems, but is also useful for simulating analog
or analog/digital systems of non-electrical or mixed
type. .
SABER is a product of Analogy Inc. and was pub-
lished first in February 1987. The last release 3.2 was
introduced in September 1993. The MAST modeling
language is a de-facto standard for Analog HDL.

Model Description with MAST:

# EUROSIM Comparison 1
# Lithium-Cluster Dynamics under
# Electron Bombardment
B e e m e m— i ————————— — — m
# Language MAST (R), MAST is a registered
¢ Tra rk of Analogy Inc.
gy S g Vg g g U VGO S
# prepared by Rainer Mayer,
# Robert Bosch GmbH, Stuttgart, 25.4.94
i gV U g S
#*
number kr = 1.0,

kf = 0.1,

1f = 1000,

dr = 0.1,

dm = 1.0,

p =20
var nu r, m, f

equations {
r: d_by_dt(r)
m: d_by_dt (m)
f: d_by_dc(f)

}

-dr*r + kr*m*f

dr*r - dm*m + kf*f*f -
kr*m*f{

= dr*r + 2*dm*m - kr*m*f -
2*kf*f*f -1f*f « p

H oy

Task a) Comparison of integration algorithms:

All calculations have been done on a Sun SPARC-
station 10 Model 402. SABER can be used in Graphical
or in Command Mode. First an operating point (t=0)
has to be defined, followed by a transient analysis
(example with GEAR-algorithm):
dc (hold f 9.975 m 1.674 r 84.99

tr (te 10, ts 1m, terr 0.0001, terrn §,
steps VAR, meth gear, ord 2

The CPU-times for different integration algorithms
are:

Algorithm tstep CPU
Gear 2nd Order var 0.33 sec
Gear 1st Order var 0.75 sec
Trapez var 0.75 sec
Gear 2nd Order 0.0005 47.30 sec
Gear 2nd Order 0.0010 21.20 sec

Task b) Variation of If:

SABER offers a loop command for parameter varia-
tion, loganithmic scales are generated by postproces-
sing:
vary 1f from 100 to 10000 log 7

tr (tend 10, ts 1m, terr 0.0001
end
extract / (pfile xlog, dfile tr, xs

from 0.0001 to 10 log 300

Se— E UROBIM Comporisen | - Vartation If

LOOC )
2

Task c) Calculation of steady states:

Steady state was calculated by a second DC-Analy-
sis with the operating point as a start value.
dc (dcip dc, dcep ep
display ep
alter p=10000
tr {dcip dc, dcep ep
d:isplay ep

The results are:

p=0: =0,
p=10000: f=10,

r=0
r=1000

m=0,
m=10,

Dipl.-Ing. Rainer Mayer, Robert Bosch GmbH,
D-70442 Stutigart
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EUROSIM Comparison 1 26.4.19¢
SABER-Implementation

Description of SABER

SABER is a well known Simulator for analog electronic systems, but is also useful for simi
lating analog or analog/digital systems of non-electrical or mixed type.

SABER is a product of Analogy Inc. and was publicated first in February 1987. The last re
lease 3.2 was introduced in September 1993. The MAST modeling language is a de fact
standard for Analog HDL.

Model Discription:

# EUROSIM Comparison 1
# Lithium-Cluster Dynamics under Electron Bombardment

# Language MAST (R)
# MAST is a registered Trademark of Analogy Inc.

# prepared by Rainer Mayer, Robert Bosch GmbH, Stuttgart
# 25.4.94

gy g g
#
number kr = 1.0,

kf = 0.1,

1f = 1000,

dr = 0.1,

dm = 1.0,

p =0

var nu r, m, f
equations {

r: d_by_dt(r)
m: d_by_dt (m)
f: d_by_dt(f)

-dr*r + kr*m*f
dr*r - dm*m + kf*f*f - kr*m*f
dr*r + 2*dm*m - kr*m*f - 2*kf*f*f -1f*f + p
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EUROSIM Comparison 1 26.4.1994
SABER-Implementation

SABER Runtime Commands:
SABER can be used in Graphical or in Command Mode.

Qperating Point (1=0)

dc (hold £9.975 m 1.674 r 84.99

Transient Analysis (Example)

tr (te 10, ts 1m, terr 0.0001, terrn 6, steps VAR,<méth gear, ord 2

Postprocessing to generate l0g. x-Axis

extract / (pfile xlog, dfile tr, xs from 0.0001 to 10 log 300

Variation of If

vary 1f from 100 to 10000 log 7
tr (tend 10, ts 1lm, terr 0.0001
end

Steady state for if=1000

SABER offers no steady state analysis. Results are recieved by transient analysis with tend
= 2000.

tr (te 2000, ts 1m
di tr

alter p=10000

tr (te 2000, ts 1m
di tr

Results:
All calculations have been done on a Sun SPARCstation 10 Model 402.

mpari f CPU-Tim

Algorithm tstep CcPU

Gear 2nd Order var 0.33 sec
Gear 1st Order var 0.75 sec
Trapez var 0.75 sec

Gear 2nd Order 0.0005 47.30 sec
Gear 2nd Order 0.0010 21.20 sec
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EUROSIM Comparison 1 26.4.19
SABER-Implementation

Variation of If

EUROSIM Compnriso.n I - Variation 1If Ems—e—-———

T L) T T
Oou 100u i1mn 10m 100m 1 10 t(s)

p=0 : {=0, m=0, r=0
p=10000: t=10,  m=10,  r=1000
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Comparison 1 - SIMNON

SIMNON is a simulation software for both continu-
ous and discrete systems, which transiates programs,
very quickly, directly into memory (available for
UNIX,VMS and PC [DOS and Windows 3.1]). Addi-
tionally, SIMNON provides “connecting systems" to es-
tablish interconnections between various subsystems,
which makes it quite easy, when dealing with larger
systems, to decompose them into subsystems. There
exists a real-time version where subsystems may be
hardware-in-the-loop modules.

The concept of SIMNON also includes the possibility
to handle mode! parameters and terminal values of model
vanables within a relatively powerful experiment langua-
ge with built-in macro functions.

In order to overcome problems with the stiff system
and to obtain a logarithmic scale, a transformation like
in [1] has been made.

Model description:

SIMNON uses an equatio oriented model descrip-
tion, where state variables and derivative variables have
to be defined explicitely:

CONTINUOUS SYSTEM MOL

* Lithium Cluster Dynamics - EUROSIM Comparison 1
* States, derivates and time:

STATE R M F

DER derR derM derF

TIME tawu

" Equations:

"Test for stationarity:

test = ({abs{derR}<eps) AND (abs{derM)<eps))
st = IF sttest THEN CTERM( (abs{derF)<eps! AND test } ELSE 0
1n10 = 1n{(10)

const = 1lnl0/10"taul

derR = (-dr*R + Kr*M*F)*ct

derM = (dr*R - Adm*M + kf*F*F - kr*M*rFjc°tt
derF = (dr*R + 2¢dm*M - kr*M*F -2*kf*F*F - 1f*F + p)*tt
tt = IF sttest THEN 1 ELSE const*10°tau

1grR = (In(R)/1nl0)

lgM = (In(M)/1nl0)

1gF = (1n{F)/1lnl0)

* Parameter values:

xr: 1

kf: 0.1

1f: 1000

dr: 0.1

dam: 1

taul: 3

strest: O

eps: le-3

“Initial values:

F: 9.975

M: 1.674

R: B4.99

END

Task a) Comparison of integration algorithms:

SIMNON has only four integration algorithms, there
exists in particular no implicit algorithm, which is of
course a disadvantage in the case of a stiff system like
the one discussed here. For time measurements the
program above, which contains the logarithmic trans-
formation, was used. The following table shows the
results.

algorithm ‘286 ‘38677 ‘486
{time(min:sec)} (16 Mhz) (40 MhZ) (66 MZz)
RKF45 4:46,9 0:8,2 0:2,7
RKF23 6:26,3 0:12,1 0:4,2
DOPRI4SR 6:39,2 0:12,0 0:3,9
EULER 0:31,0 0:9.8

RKF23/RKF45: Runge-Kutta-Fehlberg algorithm of orders /3 and 4/5
DOPRI45R; Runge-Kutta aigorithm due to Dormand and Prince
(all with automatic stepsize adjustment)

EULER: Euler-algorithm with fixed stepsize

Task b) Variation of If:

SIMNON offers parameter variation and program-
ming with experiment variables at runtime level. The
following commands load the model (SYST), change
accuracy parameters, draw titles and axes and perform
the parameter variation in aloop (FOR 1flog ... NEXT
1f1og) where SIMU starts a simulation run:

SYST mol
ERROR le-7
PLOT 1gf
AXES H O 4 V
FOR ig%og:2. STEP 0.5
LET : 10~1flog .
WRITE 1f2 S
PAR 1f: 1f2
STMU 0 4
MARK :1f2
NEXT 1flog

-3 1
TO 4.
o

R

el

3

. 1 3 ) 4

Task c) Calculation of steady states:

Although there is no built-in steady state finder in
SIMNON, it is nevertheless possible to “"simulate” a
steady-state finder using a combination of infinite si-
mulation (SIMU INF) and conditional termination
(CTERM), which produces acceptable results:

P r m f
10000 998.93 9.9903 10.
0 9.9973E-3 1.1108E-3 3.2105E-6
The commands (for P=10000) are:
PAR 1f: 1000
PAR p: 10000
PAR sttest: 1
SIMU 0 INF “Infinite simulation

DISP F M R tau

Reference: {1] G.A. and T.M. Ko, Comparison | - DESIRE,
EUROSIM SNE, No 4 March 1992, P. 30

M.Bracke, S.Schnitter, A.Schreiber, Insitut fiir In-
formatik, TU Clausthal, Erzstr.1, D-38678 Clausthal-
Zellerfeld
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Comparison 1 - SIMNON

SIMNON is a simulation software for both, continuous and discrete systems,
which translates programs, very gquickly, directly into memory (available

for UNIX ,VMS and PC [DOS and Windows 3.1]).

Additionally, SIMNON provides "connecting systems® to establish inter-

connect ions between various subsystems, what makes it quite easy, when dealing
with larger systems, to decompose them into subsystems.

The concept of SIMNON also includes the possibility to handle model-
parameters and terminal values of model variables within a relatively powerful
experiment language with built-in macro functions.

infinte simulation and the conditional termination of a simulation.

In order to overcome problems with the stiff system and
to obtain a logarithmic scale, a transformation

like in [1] has been made.

Model description:

CONTINUOUS SYSTEM MOL

* Abstract: Comparison 1
* Description: Lithium-Cluster Dynamics
v under Electron Bombardment
Author: M.Bracke, S.Schnitter, A.Schreiber

* gtates, derivates and time:

STATE R M F

DER derR derM derF

TIME tau

* Equations:

“Test for stationarity:

test = ((abs(derR)<eps) AND (abs (derM)<eps))

st = IF sttest THEN CTERM( (abs (derF)<eps) AND test ) ELSE O

1nl0 = 1n(10)
const = 1nl0/10~taul

derR = (-dr*R + Kr*M*F)*tt
derM = (dr*R - dm*M + KE£*F*F - Kr*M*F)*tt
derF = (dr*R + 2*dm*M - Kr*M*F -2*Kf{*F*F - 1f*F + p)*tt
tt = IF sttest THEN 1 ELSE const*10”tau
1gR = {1n(R)/1nl0)
1gM = (1n(M)/1nl0)
1gF = (1n{F)/1nl0)
* pParameter values:
v 1
am: 1
kf: 0.1
dr: 0.1
1f: 1000
taul: 3
F: 9.975
M: 1.674
R: 84.99
p: O
sttest: O
eps: le-3

END
Task a) Comparison of integration algorithms:

SIMNON has only four integration algorithms, there exists in particular

no implicit algorithm, which is of course a disadvantage in the case of a
stiff system like the one discussed here. For time measurements the program
above, which contains the logarithmic transformation, was used:
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algorithm {time(min:sec)) | "286 (16 Mhz) "386/7 (40 Mhz) “486 (66 Mhz)
RKF45 | 4:46,9 0:8,2 0:2,7
RKF23 | 6:26,3 0:12,1 0:4,2
DOPRI4SR | 6:39,2 0:12,0 0:3,9
EULER ! -- 0:31,0 0:9,8

RKF23/RKF45 : Runge-Kutta-Fehlberg algorithm of orders 2/3 and 4/5
"  DOPRI4SR : Runge-Kutta algorithm due to Dormand and Prince
(all with automatic stepsize adjustment)

" b) Variation of 1lf:

SIMNON offers paramater variation and programming with experiment variables

at runtime level. The following commands load the model (SYST), change accuracy
parameters, draw titles and axes and perform the parameter variation in a loop
(FOR 1flog ..... NEXT lflog). Results are shown in fig.1l.

SYST mol
ERROR le-7
NEWPLOT
PLOT 1gf
AXES H O 4V -3 1
TEXT ‘'Comparison 1'
FOR 1flog=2. TO 4. STEP 0.5
LET 1£f2 = 10"1flog
WRITE 1f2
PAR 1f: 1f2
U 0 4
GIN
MARK A Xs. V¥s.
MARK :1f2
NEXT 1lflog
PLOT
MSGBOX ‘Ready to find steady state...'
PAR 1f: 1000
PAR P: O
PAR sttest: 1
SIMU 0 INF *Infinite simulation
DISP F
DISP M
DISP R
DISP tau

END
plot.eps

c) Calculation of steady states:

Although there is no built-in steady state finder in SIMNON, it is never-
"“eless possible to "simulate® a steady-state finder using a combination
«. infinite simulation (SIMU INF) and conditional termination (CTERM)
(see program / macro), which produces acceptable results:

P | r m f
10000 | 998.93 9.9503 10.
0 ] 9.9973E-3 1.1108E-3 3.2105E-6

The commands (for P=1000) are:

PAR 1f: 1000

PAR P: O

PAR sttest: 1

SIMU 0 INF “Infinite simulation
DISP F

DIsp M

DISP R

DISP tau
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Comparison 1 - mesis

mosis (modular simuiation system) is an experimen-
tal CSSL simulation language (equation-oniented) de-
signed for modular simulation development with
features for paralielization on MIMD-systems with di-
stributed memory (see Parallel CompansoninSNE 1 1).
mosis (developed at the Dept. of Simulation Technique,
TU Vienna) is a general purpose compiling simuiation
language of CSSL-type on a C basis. not only for
parallel programming techniques.

The simulation kernel provides several integration
algorithms. a state event finder and a time event queue
(all calculations in double precision number format).
The runtime system also contains a powertul interpreter
language where even complex algorithms can be pro-
grammed, furthermore graphical output and some rou-
tines for frequency domain analysis.

At runtime several instances of models can be con-
nected and simulated as one big model. These instances
can be created on the same processor ("senal simulati-
on") or at different processors ("parallel simulation™),
where communication is performed automatically .

mosis can be freely copied and used for non-com-
mercial purposes (the complete and unlimited version
can be obtained from the simulation server simserv.
tuwien.ac.at at the TU Vienna by "anonymous ftp";
commercial use on request). It has been implemented
on PCs, UNIX-workstations under PYM and X Win-
dow and the Cogent XTM transputer system.

Model description: The model 1lithiux is defined
in the file “lithium.m", translated, compiled and linked
to the runtime-system; state variables and parameters
must be defined explicitly:

model lithium() {
state r,m, f;
param kr=1.0,x£=0.1,1£=1000.,dr=0.1.dm=1.;
param £0=9.975, m0=1.674, r0=84.99, 2=0.0;
preinitial (lalg 3; tend—lO ;dt=cinc=.001;}
derivative {
r'=-drrr+kr*m*f .rO:
m‘-dr r-dm*m+kf*f£*f-kr*m*£
fr=zdr*r+2*dm*m-kr*m*f-2*kf*f*f- lf"+D fO }i

The following runtime commands instance the mo-
del 1ithium once (on an arbitrary processor. indicated
by “-1), identifving the instance with the handle 1it.
choose the integration algorithm, and simulate the mo-
del (run) with storing the state f (watch):
int lit; lit=inscance("lithium*,0);
1.ialg=8; // stiff integration algorithm
watch(l.f); run(l);

Task a) Integration algorithms: mosis otfers va-
rious integration aigorithms. The simulation results for
these algorithms are summarized in the following table

(* ... no stepsize control. ** semi-implicit extrapolation
method by Bader and Deutlhard): results computed on
a 486/33 processor, 8MB. 32-Bit verston.

! Algorithm Stepsize  max.abs. error: Time
- Euler 1.0E-3 . * 2.3 sec
— RK2 1.0E-3 - * 4.5 sec
- RK4 1.0E-3 : . 4.1 sec
RK4 1.0E-4 * 41.3 sec
—{ Adams-M. 10E4 | OE-8 2.58 sec
RKF 1.0E4 1.OE-8 2 52 sec
— 1 Suff Alg.** | OE-4 1.0E-8 0.089 sec
L Stiff Alg.°* 10E-4 - 10E6 0.058 sec

Task b) Parameter study: A parameter study 1s
pertormed by a C-like loop command. where an array
stores the different values for the parameter 1£. Seven
runs are stored and then plotted:

Litmiom Jlosier Junas.is

NN

7

D+ 1500 g \ \ \\ .
H - . \\ AN e
z } 0e-00) = \ \\ LN e e T T T
¥ | ' : e T T
H \ \ . e T
De-001 ¥ \ \ . T T
= \ =
IR B S~
Ze-O0e .Oe-003 le-2CY ~e-COn BLEP MY Je=2C"
double x{7)= { 100, 200, 500, 1lIZ., 2300,
5000, 13000 }:
watch(liz. f).Sscalex Sscaley=1: log.scales
for(i=0:;1<7;i++) { lit.1lf=x{i]}: -un(iit);}

drawcurve ( 1it. £);

This parameter loop could be done in parallel. if a
muitiprocessor system is available (with nearly linear
speed up). The model lithium has to be instanced
seven times on different processors (no. 0 - 6) and run
in parallei:

int lita{7}; double x{7)= { 100, 220, 500,
1000, 2000, 5002, .

for{i=0;1i<7;i++) (litafij=
instance("lithium",i); watchi
for(i=0;i<7;i++) {lita(i}.lf=x:
runf(litafi,
i<7;i++) drawcurve({litalz,.I;:

for(i=0;

Task ¢) Steady state calculation: mosis offers a
tnm command (with various parameters for accuracy.
etc.) The commands 1it.p=0; ctrimiliz); lic.go=
10000; =rim(lit); give resuits summarized in the
tollowing table.

f ﬁ m r
p=0 2.720E-17 | 1.533E-1i -1.734E-10
p = 10000 10 i 10 1000

G. Schuster, F. Breitenecker. ARGE Simulation
News, c/o Dept. Simulation Techniques. TU Vienna.
Wiedner Hauptstr. 8-10, A-1040 Vienna. Ausiria,
Email: argesim@simserv.tuwien.ac.ar.
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Comparison 1 - SIMNON

SIMNON is an easy to handle simulation tool. Mo-
dels are described as continuous or discrete systems in
the Editor-Window. There is no matter about sorting
statements; this is done by SIMNON when the system
is activated, that means translated into machine-code.
If there are errors in the program, SIMNON will stop
the translation and shows the line where the error occurs
for the first time. Models can also be built up by
connecting discrete and/or continuous subsystems, that
means a very easy to survey structure. SIMNON is also
capable of real-time-simulation, e.g. to control a physi-
cal process. The simulation is started either by mouse
control or with a command in the command-dialog
window. There you can also change parameters, select
integration algorithms and also give the commands for
plotting graphics in a plot window. For this Comparison
we used SIMNON/PCW, Version I.1 for MS Windows
3.1

Model description: The following model was built
up by using the predefined program mask. [t would also
be possible to write all the equations, parameter- and
initial-values without sorting.

CONTINUQUS SYSTEM LICLU
* States and derivates:
STATE r m ¢
DER rdot ndot fdot
" Initializations:
r:64.99
m:1.674
£:9.97%
* Eguations:
rdot=-drerekrm-f
mek Erfrf-krem*f
fdotsdrer+2.0dm m-kr*mf-2 . 0*kf*fvf-1E*f+p
1£=10°1fp
* Parameter vaiues:
kr:l.
xf:G.1
dr:0.1
i
p:b
ENC

a) Comparison of integration algorithms: SIM-
NON offers four integration algorithms: two of Runge-
Kutta type (RKF23 and RKF45) a Dormand-
Prince-algorithm (DOPRI45R) and the Euler algonthm
(EULER). All of them are working with automatic step
size, only Euler works with fixed step size. The suff
system was simulated with a 386DX-25MHz-PC with
387 coprocessor with all of the four algorithms. The
results for a period of 10s with constants 1f=1000, p=0
and error tolerance le-3 are presented in the table

below:

algorithm max length of a step ume
Euler 0.001 23s
RKF23 auto 21s
RKF45 auto fpe
RKF45 0.01 15s

DOPRI45R auto fpe
DOPRI45R 0.01 26

fpe=floaung point error }
Since there is no special algorithm for suff systems

il was necessary to make experiments by varying the
error tolerance and stepsize.

b) Parameter variation: This can be done interact-
vely in the command-dialog window by formulating an
assignment loop:

In order to plot the F-centre concentration (f) scaled
logarithmic as a function of time (also scaled logarith-
mically) we had to supply the following lines to the
program: .

TIME t

lgr=logit)

igf=log(f)

After simulating with the Runge-Kutte-23 algorithm
with automatic stepsize from 0.001 to 10 seconds and
error tolerance 0.001 and the parameters fp=2, 2.5, 3,
3.5, and 4 we could plot the following diagram.

Ifp computation time
2 4s
2.5 10s
3 30s
3.5 93s
4 291s

F-center-concentration as a function of time.

c) Steady state calculation: SIMNON has no
special algorithm for steady-state finding. So we
had to simulate the system over a long period and
to terminate for instance with CTERM (Conditio-
nal Termination). We defined the condition with
abs(fdot*2+rdot*2+mdot*2) < 0.001 and started the
experiment with the same integration parameters as in
b) and 1f=1000. For p=0 the program stopped at
1=56.2481 with

rdot mdot fdot
-0.031428 -0.00349104 -0.0000101248
r m f
0.314315 0.034919 0.000101276

For p=10000 we stopped the program after a com-
putation time of about 8 hours at =1269 with.

rdot mdot fdot
-1.58117 1.28698 161.542
T m {
997.708 9.97798 9.84063

Conclusion: Although SIMNON is a valuable si-
mulation tool, in this example the lack of a Gear algo-
rithm and of logarithmic plots is evident.

J. Plank, Strudlhofg. 5, 1090 Vienna.
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Comparison 1 - POWERSIM

POWERSIM is a Windows based simulation pro-
gram for modelling and simulation of dynamic systems.
A mouse and menu driven input facility allows to
construct block diagram models, to control the experi-
ments, and to process output data.

POWERSIMs modelling philosophy is based on the
System Dynamics Approach. Main element in desi-
gning models is the "Level"-element, whose value is
incrementally changed during a simuiation. A Level is
an “"accumulator” (integrator), recetving flows of input
or delivering flows for output (rates) from timestep to
timestep. The causal connections between levels and
rates are realized by links which show the direction of
flow of data. The results of simulation can be presented
by charts and tables, also within the modelling layout.

Model Description: The following “worksheet”
shows the model definition and results of the problem
under investigation. In the modelling layout rectangles
define the levels (the state variables f, m and r), circles
define auxiliary variables (internally defined by a user-
defined formula and acting as rate, if fixed to a flow
arrow; in this case the nonlinear terms of the equations),
and squares define parameters; intial values for the
levels (the state variables) are defined constants fixed
to the levels by dashed lines. Results may be displayed
as graphs or as tables:

In addition to the models graphical definition the
corresponding (automatically generated) equations can
be viewed:

o1

01

FuFp3aSa ¥

1
%
GO0 OO OO0

(]
2
8

Results: Task a) The table shows the computing times
using a 486 DX2/66 PC; POWERSIM doesn’t support
special integration algorithms for stff systems (fixed step-
size 0.001):

Integration Algorithm Comp.Time
Euler 32s
Runge Kutta 2nd order 345
Runge Kutta 3rd order 36s
Runge Kutta 4th order (fixed stepsize) 38s
Runge Kutta 4th order (variable stepsize) 40's

Task b) One feature of POWERSIM is the use of
co-models, which can be synchronized with a main
model. Automatic parameter variations may be defined
in such co-models as a loop over the model under
investigation, making it easy to collect data of multiple
runs and display them together (the parameter If was
varied by values 100, 200, 500, 1000, 5000, 10000):

Radsson £ Detst

Task ¢) The calculation of steady states can only be
done using long-term simulations. The following table
shows the results at time t;=500 and time t2=1000, given
in terms of the order of the error O(10P) for the solution
f=r=m=0 in case of p1=0 and given as absolute values for
the solution f=m=10 and r=1000 in case ofpz=104.

State  pLu pi. t2 pnt p2. t2
f o10%  0310"Y 99997 10,0
m o10®y 000" 99046 9,9989

r o10% 0010 990,28 999,88

K. Scheidenberger, K. Schleiss, F. Breitenecker,
Dept. Simulation Techniques, TU Vienna, Wiedner
Hauptstrafie 8-10, A-1040 Vienna, Austria.
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Comparison 1 - IDAS / SIMPLORER

Description of IDAS

IDAS 3.01 for WINDOWS is a powerful software
package mainly designed for the simulation of electro-
nic circuits and control problems with a physical back-
ground.

Modelling may be carried out in three different
ways:

+ by dialog in WINDOWS-technique (easy and com-
fortable) :

« textually in IDL (Idas Description Language)

» graphically with an additional program (e.g.
ORCAD, PROTEL,..)

IDAS also provides a data analysis program called
DAY, where the results can be evaluated mathemati-
cally and plotted in different ways.

Recently IDAS was extended and given the name SIM-
PLORER. SIMPLORER consists of

* acircuit simulator

= asignal flow graph simulator

* astate graph simulator

Some new features have been added, e.g.

» FUZZY - Control Module

» C-Programming interface

+ Optimizer for automatic parameter-variation accor-
ding to a predefined system behaviour

» Frequency response module etc.

The simulation was still carried out by IDAS on a
Pentium 60mHz under Windows 3.11 for Workgroups.

Model description

For the simulation in IDAS a block diagram (signal
flow, graph) of the given equations must be worked out.
IDAS itself does not provide any possibility to show the
block diagram graphically. The model was implemen-
ted by dialog in windows-technique.

Resuits
a)Comparison of integration algorithms:

IDAS provides two different algorithms: Euler and
Trapezoidal. With a minimum step size of 0.002 and a
maximum step size of 0.01 the results were nearly the
same: The simulation run (including compilation and
graphic output) needed approx. 8 seconds with both
algorithms. Changing the step size did not show a
significant influence on the output.

b)Variation of parameter If:

The system was simulated over 10 seconds with
values of Ir equal to 100, 1000 and 5000 and plotted
with the data analysis program DAY, with logarithmic
scales as required. Unfortunately the results for Ir
=10000 proved to be numerically unstable.

The last solution vectors (at =10} were:

£ m f
=100 84327 2.1962 0.12481
1=1000 84.167 2.3069 1.2989E-2
1=5000 84.15 2.3184 1.3048E-3

c)Calculation of steady states:

As IDAS does not provide any instrument to calcu-
late steady states the differential equations were solved
in the interval 0 < t < 10000 for p=0 and 0 <t < 30000
for p=1E4. The last solution vectors were:

r m f
p=0 49281E-3 5.4756E-4 1.5895E-5
p=1E4 937.51 9.4326 9.9983

Gerhard Stefan, TU Vienna, Dept. Simulation
Techniques
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EUROSIM Comparisons

Publication of Solutions

July 1995

C1

C3

C4

CS

Coé

Cc7

Ccp

SNE 0

Def

SNE 1

Def

SNE 2

Def

SNE 3

Def

SNE 4

(V] VST IR =N

SNE §

L el R R A

— Nl

SNE 6

1

Def

SNE 7

BRI ] W2

Def

SNE 8

—l BRI

SNE 9

SNE 10

pfro| = —

DWW

Def/ 1

SNE 11

NS IR ] ]

SNE 12

e 1 I e

et Bt B

SNE 13

SNE 14

[NSJRVELE ) By

Total

26

21

13

117







LL-10 B4 B6/6BO Xed *6-10 b4 6B/68Y 1ol ‘L Bemiies)|d .ag_:_w*_&__s bhpag-

uayaugy ef|eissijpyose

£8 Bbb/Lbzd xed ‘Lb 092/Lbzd *lo) ‘LYl eyelisziel] ‘Uaiovy pygzs-d

AR
SASNLIG ¢ o : S0 oo
[EAaR | voneznungdg) aegaasua ||osnang)

DINTIHOWIES pun
AV VI N2 bunzaebin ) Ny LA L

Tunronmg ‘funyrogaean- “Gunssepauajepgop

OINT WIS s Gunzuel ]
SOVIALL 1A somasAg 1ongns

{1 none
WasAG g1 s

uonEynuapiuesAg puiopmpashiungating

(1] Bssaao g jeulisg Gompagaeaaenfig

upuonyungaesn/
tapaszodsyaey mabugegshunsmp e Y s
PURAY TV toa bunzughay mz (g1) NIX0H 1001

1t} UaBunzups)
mw.h_.ww_.mﬁﬁmmmu::rmu%:@

e at) apo’) i

Spusng Wi

._.*_:“_:d:ﬁ&:::_:_..,_.___:__,____:_.E_._:._,n-
P03 T HY TIVIA U8y .
DO
rrsipe b uaeg p anpre g ap ez

I PR e ...____.._:: |

SRR PUN DL Uy o
_ |

018181

alllagsAg aiasiitieliAp sieaul|
Ui A} WigjsAsstiolie|htlilg
sajdali8aiul yv1Lviv Uj

N alnL _

SUTTTIWT 3 94/14tkatas
% HuhYnz
jil 81emijog

ualic g alipuamgne japas ey uap

TEFTTTREYEY:
Uisai-+(felld IH) alemijog 3ig

-



For general questions regarding mosis, contact: For questions regarding the commercial use of mosis,
please contact:

DI Dr. Gunter Schuster

ARGESIM, c/o Dept. Simulation Techniques,

attn. F.Breitenecker, Technical University Vienna

Wiedner HauptstraBe 8-10, A-1040 Wien, AUSTRIA

Tel.: +43-1-58801-5374,..-5386,..-5484, Fax: +43-1-5874211

E-Mail: argesim@simserv.tuwien.ac.at
guenter@osiris.tuwien.ac.at

ARGESIM

Advanced Technical Software GmbH
Flurschitzstralke 16/10

1120 Wien - AUSTRIA

Tel.: +43-1-8156675

Fax: +43-1-8156676
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See the Demonstration at the EUROSIM
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