TU Seminare Modellbildung und Simulation

Seminarunterlagen
Course Material

EUROSIM'95 Seminare

e Simulation in der Didaktik
13.9.1995

e COMETT Course Fuzzy Systems and
Control, 7.9.-8.9.1995

e COMETT Course OO Discrete Simulation,
28.6.1995

Editors: F. Breitenecker, I. Husinsky, N. Kraus, D.P.F. Moller,
D. Murray-Smith, M. Salzmann

ARGESIM Report AR4/AR5/AR 6
ISBN ebook 978-3-901608-71-1
DOI 10.11128/arep.04-05-06

© 1995 ARGESIM

ARGESIM Report AR 4/ AR5/ AR 6
ISBN ebook 978-3-901608-71-1
DOI 10.11128/arep.04-05-06

ARGE Simulation News (ARGESIM)

c/o Technical University of Vienna
Wiedner Hauptstr. 8-10

A-1040 Vienna, Austria

Tel: +43-1-58801 5386, 5374, 5484

Fax: +43-1-5874211

Email: argesim@simserv.tuwien.ac.at
WWW: <URL:http://eurosim.tuwien.ac.at/>

Seminare iiber Modellbildung und Simulation

Seit dem Friihjahr 1991 veranstaltet das EDV-Zen-trum gemeinsam mit der Abteilung
Regelungsmathe-matik und Simulationstechnik des Instituts fiir Techni-sche Mathematik und der
ARGE Simulation News (ARGESIM) Vortragsveranstaltungen zum Thema Modellbildung und
Simulation (Simulationsseminare). Das Ziel ist, verschiedene Simulationswerkzeuge vorzustellen,
iiber ihre Einsatzmoglichkeiten zu informieren und Erfahrungen auszutauschen. Ferner werden
bekannte Simulationsfachleute eingeladen, Grundsatzvortrdge zum Thema Simulation zu halten.

Im Vorlauf des Kongresses EUROSIM'95, der im September 1995 an der TU Wien stattfand, ergab
sich die Moglichkeit zu drei Semnaren mit internationalen Vortragenden:

e Simulation in der Didaktik, 13.9.1995
e COMETT Course Fuzzy Systems and Control, 7.9.-8.9.1995
e COMETT Course OO Discrete Simulation, 28.6.1995

Die Unterlagen zu diesen Seminaren sind in den ARGESIM Reports AR 4, AR 5 und AR 6
zusammengefasst und als Sammelband mit ISBN veroffentlicht.

ARGESIM Report no. 4

Simulation in der Didaktik

Seminar Modellbildung und Simulation
EUROSIM'95 Seminar

F. Breitenecker, I. Husinsky, M. Salzmann

in ISBN ebook 978-3-901608-04-9 (3-901608-04-4) DOI 10.11128/arep.4-5-6.ar4

© 1995 ARGESIM

in ISBN ebook 978-3-901608-04-9 (3-901608-04-4)
DOI 10.11128/arep.4-5-6.ar4

ARGESIM Report No. 4

ARGE Simulation News (ARGESIM)

c/o Technical University of Vienna

Wiedner Hauptstr. 8-10

A-1040 Vienna, Austria

Tel: +43-1-58801 5386, 5374, 5484

Fax: +43-1-5874211

Email: argesim@simserv.tuwien.ac.at
WWW: <URL:http://eurosim.tuwien.ac.at/>

SIMULATION IN DER DIDAKTIK

VORWORT

SIMULATION ist die Nachbildung eines dynamischen Prozesses in einem Modell,
um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit ibertragbar sind.

Simulation ist ein Verfahren zur Losung eines Problems, das in einem Prozef3 auftaucht bzw. dessen
Auftauchen in einem geplanten Prozel3 erwartet wird.

Mit vorhandenen Daten, die den [st-zustand eines Prozesses oder den Soll-Zustand eines geplanten
Prozesses beschreiben, wird ein (mathematisches) Modell erstellt. Dieses Modell ist dann zunéchst
in der Lage, Vorgénge im realen ProzeB nachzuvollziehen bzw. Vorgaben fiir einen geplanten
Prozef zu erfiillen (MODELLBILDUNG).

In der Folge wird dann das Modell mit neuen Eingangsdaten versorgt. Am Modell kénnen nun
verschiedene Experimente durchgefiihrt werden, die das Verhalten des Modelles (und damit des
Prozesses) unter anderen Bedingungen zeigen (EXPERIMENTE).

Ziel dieses Seminares ist die Vermittlung von Kenntnissen tber Grundlagen in der
Simulationstechnik, wobei eine Orientierung an aktuellen Themen im Vordergrund steht.

Der Stoff wird dabei fiir eine didaktische Darstellung fiir den Unterricht in AHS und BHS und fiir
Einstiegslehrveranstaltungen am Beginn des ersten Studienabschnittes bearbeitet.

Finf international anerkannte Fachleute auf dem Gebiet der Simulationstechnik werden zu
folgenden Themenkreise vortragen:
e Beschreibung diskreter Prozesse mit Petrinetzen (u.a. fiir Signalverarbeitung,
Ablaufplanung)
e Anwendung von Fuzzy Logic (Erweiterung der klassischen bindren Logik durch
»JUnscharfe, neue Sichtweise in der Regelungstechnik)
e Beschreibung paralleler Prozesse mit Hilfe von Petrinetzen
e Human Computer Interfaces (Man-in-the-Loop Simulation, Interfaces mit WWW/_ etc.)
e Diskrete Simulation

About ARGESIM

ARGE Simulation News (ARGESIM) is a non-profit working group providing the infra structure
for the administration of EUROSIM activities and other activities in the area of modelling and
simulation.

ARGESIM organizes and provides the infra structure for
e the production of the journal EUROSIM Simulation News Europe
the comparison of simulation software (EUROSIM Comparisons)
the organisation of seminars and courses on modelling and simulation
COMETT Courses on Simulation
"Seminare iiber Modellbildung und Simulation”
development of simulation software, for instance: mosis - continuous parallel
simulation, D_SIM - discrete simulation with Petri Nets, GOMA - optimization in
ACSL
e running a WWW - server on EUROSIM activities and on activities of member
societies of EUROSIM

¢ running a FTP-Server with software demos, for instance

* demos of continuous simulation software

* demos of discrete simulation software

* demos of engineering software tools

* full versions of tools developed within ARGESIM

At present ARGESIM consists mainly of staff members of the Dept. Simulation Technique and of
the Computing Services of the Technical University Vienna.

In 1995 ARGESIM became also a publisher and started the series ARGESIM Reports. These
reports will publish short monographs on new developments in modelling and simulation, course
material for COMETT courses and other simulation courses, Proceedings for simulation
conferences, summaries of the EUROSIM comparisons, etc.

Up to now the following reports have been published:

No. Title Authors / Edltors ISBN

#1 Congress EUROSIMSS - Late Paper Volume F. Breitenecker, |. Husinsky 3-901608-01-X

#2 Congress EUROSIM'95 - Session Software F. Breitenecker, |. Husinsky 3-901608-01-X
Products and Tools

#3 EUROSIM'S5 - Poster Book F. Breitenecker, I. Husinsky 3-901608-01-X

#4 Seminar Modelibildung und Simulation - F. Breitenecker, . Husinsky, 3-901608-04-4
Simulation in der Didaktik M. Salzmamn

#5 Seminar Modellbildung und Sirulation - D. Murray-Smith, D.P.F. Méller, 3-501608-04-4
COMETT - Course "Fuzzy Systems and Control* F. Breitenecker

#6 Seminar Modellbildung und Simutation -COMETT - N. Kraus, F. Breitenecker 3-801608-04-4
Course "Object-Oriented Discrete Simulation®

#7 EUROSIM Comparison 1 - Solutions and Results F. Breitenecker, i. Husinsky 3-901608-07-9

#8 EURQOSIM Comparison 2 - Solutions and Results F. Breitenacker, |. Husinsky 3-801608-07-9

For information contact: ARGESIM, c¢/o Dept. Simulation Techniques,
attn. F. Breitenecker, Technical University Vienna
Wiedner Hauptstrafle 8-10, A - 1040 Vienna
Tel. +43-1-58801-5374, -5386, -5484, Fax: +43-1-5874211
Email: argesim @simserv.tuwien.ac.at

iii

COMETT - CouRrsE "Fuzzy SYSTEMS AND CONTROL"

Seminare iiber Modellbildung
und Simulation

Seit dem Friihjahr 1991 veranstaltet das EDV-Zen-
trum gemeinsam mit der Abteilung Regelungsmathe-
matik und Simulationstechnik des Instituts fiir Techni-
sche Mathematik und der ARGE Simulation News
(ARGESIM) Vortragsveranstaltungen zum Thema Mo-
dellbildung und Simulation (Simulationsseminare). Or-
ganisatoren sind I. Husinsky und F. Breitenecker. Das
Ziel ist, verschiedene Simulationswerkzeuge vorzustel-
len, iiber ihre Einsatzmdglichkeiten zu informieren und
Erfahrungen auszutauschen. Ferner werden bekannte
Simulationsfachleute eingeladen, Grundsatzvortrige
zum Thema Simulation zu halten. Im allgemeinen wer-
den die Seminare teilweise von Firmen gesponsert oder
tiber Simulationsprojekte mitfinanziert. Sie dauern ei-
nen halben oder einen Tag, es gibt schriftliche Unterla-
gen zu den Vortridgen und Softwareprodukten. Ein Buf-
fet fordert die Kommunikation zwischen den Seminar-
teilnehmern in den Pausen.

Bis jetzt haben folgende Seminare stattgefunden:

S1 23.4.1991 ACSL

S2 4.6.1991 CTRL C XANALOG

S3 22.10.1991 SIMUL R

S4 5.5.1992 ACSL

S5 6.5.1992 MicroSaint

S6 17. 6. 1992 Objektorientierte
Modelibeschreibung und

qualitative Simulation
|(F. Cellier University of Arizona)

S7 1.7.1992 Diskrete Simulation und Analyse
(D. Kelton, University of
Minnesota)

S8 23.10. 1992 GPSS/H (T. Schriber, University
of Michigan)

S9 10.12.1992 SIMPLE

S10 2.2.1993
Si1 25.3.1993

MATLAB und SIMULINK
Modellbildung mit Bondgraphen
(D. Kamopp, University of

California)
S12 24.5.1993 MicroSaint
S13 22.6.1993 ACSL

S14 21.10.1993
S15 22.10.1993

XANALOG SIMNON
GPSS/H (T. Schriber, University

of Michigan)
S16 11.11.1993 IDAS
S17 7.12.1993 SIMPLE++

S18 14.12.1993 Petrinetze, D_SIM

|(R. Hohmann Magdeburg)
Modellbildung und Simulation in
der Lehre

GPSS/H und Proof (T. Schriber,
Universitv of Michiean)

ACSL

SIMUL_R, Partielle
Differentialeleichungen

S19 4.2.1994

S20 14.3.1994

S21 13.4.1994
S22 10.5.1994

S23 22.11.1994 MATLAB/SIMULINK

S24 14.12.1994 SIMPLE++

S25 31.1.1995 Parallele Simulation mosis

S26 28.3.1995 ACSL

S27 29.3.1995 MicroSaint

S28 13.6.1995 COMETT II, Part one, Discrete
Simulation

S29 28.6.1995 COMETT II, Part two, Simulation

and Automatisation

Teilneh Mer(angemeldet)

120 109

BiOET NI B4 MBS BT B4 B EIOE

TU Wien
43.8%

andere Unis
1.2%

Die Teilnehmer, etwa 30 bis 110 je Seminar, kommen
zum GroBteil von der TU, aber auch von anderen Uni-
versitdten und aus der Industrie. Bei den bisherigen Se-
minaren waren etwa 20% der Teilnehmer aus der Indu-
strie.

Das Programm eines Seminars setzt sich im allgemei-
nen aus einem oder zwei Grundlagenvortridgen, mehreren
Anwendervortrigen, Produktprisentationen, Vorfithrun-
gen am Rechner und Diskussionen zusammen.

Die Teilnehmer werden um eine Anmeldung gebe-
ten, daher konnen die Unterlagen (Seminarberichte),
die zu Beginn des Seminars verteilt werden, schon eine
Teilnehmerliste enthalten. Ab Herbst 1995 erscheinen
die Unterlagen als ARGESIM Report. Alle, die bereits
an einem Seminar teilgenommen haben, werden auto-
matisch zu den weiteren Seminaren eingeladen.

Information:

L. Husinsky, EDV-Zentrum, Technische Universitét
Wien, Wiedner Hauptstr. 8-10, A-1040 Wien,

Tel: (0222) 58801 5484, Fax: (0222) 587 42 11,
E-Mail: husinsky @edvz.tuwien.ac.at

Prof.Dr. F. Breitenecker, Abt. Regelungsmathematik u.
Simulationstechnik, Inst. 114, Technische Universitit
Wien, Wiedner Hauptstr. 8-10, A-1040 Wien,

Tel: (0222) 58801 5374, Fax: (0222) 587 42 11,
E-Mail: fbreiten@esmail.tuwien.ac.at

TABLE OF CONTENTS / INHALTSVERZEICHNIS

Vorwort 111
About ARGESIM iv
Seminare "Modellbildung und Simulation” v
Modellbildung und Simulation mit Petrinetzen 1
Problem Organization for Control System Simulation 27

Simple Examples of Control System Simulation Using Common Simulation Tools 47

Was ist Fuzzy Logic 63
Systembeschreibung und - Simulation mit Petri - Netzen 71
Uber Unméglichkeiten, parallele Prozesse korrekt zu simulieren 79

Maximale Parallelverarbeitung und asynchrone Abléufe -

oder: War der Golftkneg unvermeidlich ? 85
Human Computer Interface 91
Diskrete Simulation 126

ARGESIM Report no. 5

Fuzzy Systems and Control

COMETT - Course
Seminar Modellbildung und Simulation
EUROSIM'95 Seminar

D. Murray-Smith, D.P.F. Méller, F. Breitenecker

in ISBN ebook 978-3-901608-04-9 (3-901608-04-4)
DOI 10.11128/arep.4-5-6.ar5

© 1995 ARGESIM

in ISBN ebook 978-3-901608-04-9 (3-901608-04-4)
DOI 10.11128/arep.4-5-6.ar5

ARGESIM Report No. 5

ARGE Simulation News (ARGESIM)

c/o Technical University of Vienna

Wiedner Hauptstr. 8-10

A-1040 Vienna, Austria

Tel: +43-1-58801 5386, 5374, 5484

Fax: +43-1-5874211

Email: argesim @simserv.tuwien.ac.at
WWW: <URL:http://eurosim.tuwien.ac.at/>

COMETT - Coursk "FuzzY SYSTEMS AND CONTROL"

FOREWORD

Simulasion may be defined as the process of developing a computer-based model of a system and of
experimenting with this computer model. The purpose of simulation may be to gain a better
understanding of the behavior of the system, or to locate specific problems, or to evaluate different
strategies, or as an aid in designing a new process or system.. Automatic control systems provide one
important area of application for simulation techniques.

This course is in two parts. The first deals with methods of process simulation for control systems
applications, including the internal verification and external validation of plant models. The second
part provides an introduction to the principles of fuzzy control and to fuzzy logic in system
automation.

The introductory part of the course is general and addresses issues of plant modelling which are
important in many different fields of application. Examples are presented, which illustrate the
importance of accurate modelling and simulation in control system investigations for both
conventional and fuzzy controller configurations. Two case studies are included, which provide
further illustrations of the role of simulation techniques in control system applications, including
issues of internal verification and external validation.

In the second half of the course the emphasis is on the application of fuzzy logic principles to
automatic control problems. The first session provides an introduction to fuzzy logic concepts, while
in the second the emphasis is on the application of fuzzy principles to control system design.

It is hoped that after the course a participant should be able to make decisions about the use of
modelling and simulation methods for automatic control system applications, and to have an
appreciason of the potential of fuzzy logic methods in control engineering and system automation. In
particular, the course should serve to emphasize the importance of simulation techniques in the
investigation of real conwrol systems involving nonlinear plant characteristics or, as in the case of
fuzzy systems, nonlinearities within the controller also. Analytical methods provide little real insight
in these situations and simulation techniques are therefore of special importance in dealing with the

complexities of practical control systems, whatever the specific area of application.

il

About ARGESIM

ARGE Simulation News (ARGESIM) is a non-profit working group providing the infra structure
for the administration of EUROSIM activities and other activities in the area of modelling and
simulation.

ARGESIM organizes and provides the infra structure for
o the production of the journal EUROSIM Simulation News Europe
the comparison of simulation software (EUROSIM Comparisons)
the organisation of seminars and courses on modelling and simulation
COMETT Courses on Simulation
"Seminare iiber Modellbildung und Simulation”
development of simulation software, for instance: mosis - continuous parallel
simulation, D_SIM - discrete simulation with Petri Nets, GOMA - optimization in
ACSL
e running a WWW - server on EUROSIM activities and on activities of member
societies of EUROSIM

¢ running a FTP-Server with software demos, for instance

* demos of continuous simulation software

* demos of discrete simulation software

* demos of engineering software tools

* full versions of tools developed within ARGESIM

At present ARGESIM consists mainly of staff members of the Dept. Simulation Technique and of
the Computing Services of the Technical University Vienna.

In 1995 ARGESIM became also a publisher and started the series ARGESIM Reports. These
reports will publish short monographs on new developments in modelling and simulation, course
material for COMETT courses and other simulation courses, Proceedings for simulation
conferences, summaries of the EUROSIM comparisons, etc.

Up to now the following reports have been published:

No. Title Authors / Edltors ISBN

#1 Congress EUROSIM'GS - Late Paper Volume F. Breitenecker, |. Husinsky 3-901808-01-X

#2 Congress EUROSIM'95 - Session Software F. Breitenecker, |. Husinsky 3-901608-01-X
Products and Tools

#3 EUROSIM'95 - Poster Book F. Breitenacker, 1. Husinsky 3-901608-C1-X

#4 Seminar Modellbildung und Simulation - F. Breitenecker, |. Husinsky, 3-901608-04-4
Simulation in der Didaktik M. Salzmann

#5 Seminar Modellbildung und Simuiation - D. Murray-Smith, D.P.F. Méller, 3-501608-04-4
COMETT - Course "Fuzzy Systems and Control® F. Breitenecker

#6 Seminar Modellbildung und Simutation -COMETT - N. Kraus, F. Breitenacker 3-801608-04-4
Course "Object-Oriented Discrate Simulation®

#7 EUROSIM Comparison 1 - Solutions and Results F. Breitenecker, I. Husinsky 3-901608-07-9

#8 EUROSIM Comparison 2 - Solutions and Results F. Breitenacker, I. Husinsky 3-801608-07-9

For information contact: ARGESIM, c/o Dept. Simulation Techniques,
attn. F. Breitenecker, Technical University Vienna
Wiedner HauptstraBie 8-10, A - 1040 Vienna
Tel. +43-1-58801-5374, -5386, -5484, Fax: +43-1-5874211
Email: argesim @simserv.tuwien.ac.at

v

COMETT - CouRsE "Fuzzy SYSTEMS AND CONTROL"

Seminare iiber Modellbildung
und Simulation

Seit dem Friihjahr 1991 veranstaltet das EDV-Zen-
trum gemeinsam mit der Abteilung Regelungsmathe-
matik und Simulationstechnik des Instituts fiir Techni-
sche Mathematik und der ARGE Simulation News
(ARGESIM) Vortragsveranstaltungen zum Thema Mo-
dellbildung und Simulation (Simulationsseminare). Or-
ganisatoren sind I. Husinsky und F. Breitenecker. Das
Ziel ist, verschiedene Simulationswerkzeuge vorzustel-
len, iiber ihre Einsatzmdglichkeiten zu informieren und
Erfahrungen auszutauschen. Ferner werden bekannte
Simulationsfachleute eingeladen, Grundsatzvortrige
zum Thema Simulation zu halten. Im allgemeinen wer-
den die Seminare teilweise von Firmen gesponsert oder
iber Simulationsprojekte mitfinanziert. Sie dauern ei-
nen halben oder einen Tag, es gibt schriftliche Unterla-
gen zu den Vortrigen und Softwareprodukten. Ein Buf-
fet fordert die Kommunikation zwischen den Seminar-
teilnehmern in den Pausen.

Bis jetzt haben folgende Seminare stattgefunden:

Sl 23.4.1991 ACSL

S2 14.6.1991 CTRL_C, XANALOG

S3 22.10.1991 |SIMUL R
S4 S5.5.1992 ACSL

S5 6.5. 1992 MicroSaint
S6 17. 6. 1992 Objektorientierte
Modellbeschreibung und

qualitative Simulation
(F. Cellier, University of Arizona)

S7 1.7.1992 Diskrete Simulation und Analyse
(D. Kelton, University of
Minnesota)

S8 23.10. 1992 |GPSS/H (T. Schriber, University
of Michigan)

S9 10.12. 1992 |SIMPLE

S10 _[2.2. 1993
Si1]25.3.1993

MATLAB und SIMULINK
Modellbildung mit Bondgraphen
(D. Kamopp, University of
California)

S12]24.5.1993 MicroSaint

S13 [22.6.1993 ACSL

S14 [21.10.1993 XANALOG, SIMNON

S15 |22.10.1993 GPSS/H (T. Schriber, University
of Michigan)

S16 |11.11.1993 IDAS

S17 17.12.1993 SIMPLE++

S18 [14.12.1993 Petrinetze, D_SIM

(R. Hohmann, Magdeburg)
Modellbildung und Simulation in
der Lehre

GPSS/H und Proof (T. Schriber,
University of Michigan)

S21 113.4.1994 ACSL

S22 |10.5.1994 SIMUL_R, Partielle
Differentialgleichungen

MATLAB/SIMULINK

S19 14.2.1994

S20 [14.3.1994

S23 [22.11.1994
S24 [14.12.1994 SIMPLE++

S25 |31.1.1995 Parallele Simulation, mosis
S26 |28.3.1995 ACSL

S27 129.3.1995 MicroSaint
S28 |13.6.1995 COMETT II, Part one, Discrete
Simulation

S29 }28.6.1995 COMETT II, Part two, Simulation

and Automatisation

Te“nehmef(angemeldet)

178304 M BT WS

andere Unis
1.2%

Die Teilnehmer, etwa 30 bis 110 je Seminar, kommen
zum GroBteil von der TU, aber auch von anderen Uni-
versitdten und aus der Industrie. Bei den bisherigen Se-
minaren waren etwa 20% der Teilnehmer aus der Indu-
strie.

Das Programm eines Seminars setzt sich im allgemei-
nen aus einem oder zwei Grundlagenvortrigen, mehreren
Anwendervortrdgen, Produktprisentationen, Vorfithrun-
gen am Rechner und Diskussionen zusammen.

Die Teilnehmer werden um eine Anmeldung gebe-
ten, daher konnen die Unterlagen (Seminarberichte),
die zu Beginn des Seminars verteilt werden, schon eine
Teilnehmerliste enthalten. Ab Herbst 1995 erscheinen
die Unterlagen als ARGESIM Report. Alle, die bereits
an einem Seminar teilgenommen haben, werden auto-
matisch zu den weiteren Seminaren eingeladen.

Information:

I. Husinsky, EDV-Zentrum, Technische Universitt
Wien, Wiedner Hauptstr. 8-10, A-1040 Wien,

Tel: (0222) 58801 5484, Fax: (0222) 587 42 11,
E-Mail: husinsky @edvz.tuwien.ac.at

Prof.Dr. F. Breitenecker, Abt. Regelungsmathematik u.
Simulationstechnik, Inst. 114, Technische Universitit
Wien, Wiedner Hauptstr. 8-10, A-1040 Wien,

Tel: (0222) 58801 5374, Fax: (0222) 587 42 11,
E-Mail: fbreiten@esmail.tuwien.ac.at

COMETT - CoURSE "Fuzzy SYSTEMS AND CONTROL"

TABLE OF CONTENTS

Foreword

About ARGESIM

Seminare "Modellbildung und Simulation"

Problem Organisation for Control System Simulation

Simple Examples of Control System Simulation Using Common Simulation Tools

Internal Verification and External Validation of Simulation Models for
Control Systems Analysis and Design

SLIM - A Simple Continuous System Simulation Language
Was ist Fuzzy Logic

Fuzzy Logic in USA, Japan, Deutschland

Strukturelle Gliedrung der Fuzzy Applikationen

Fuzzy Control

vii

il

iv

21

49
83
111
119
133
155

Fuzzy Control for Automatisation

Freitag, 8. September 1995,

Technische Universitit Wien
Seminarraum des EDV-Zentrums

Programm

9% BegriiBung, Vorstellung des COMETT-Kurses
F. Breitenecker

95 Problem Organisation For Control System Simulation
Simple Examples of Control System Simulation Using Common Simulation Tools
Internal Verification and External Validation of Simulation Models for Control
Systems Analysis and Design
Prof. Dr. D. Murray-Smith, University of Glasgow

45

10 Kaffeepause

11 Case Study I - Plant Modelling for a Two-Tank Liquid Level Control System
Case Study II - An Aircraft Automatic Landing System
Prof. Dr. D. Murray-Smith, University of Glasgow

12% Mittagspause

13% Fuzzy Systems
Prof. Dr. D.P.F. Méller, TU Clausthal-Zellerfeld

15" Kaffeepause

15% Fuzzy Control
Prof. Dr. D.P.F. Méller, TU Clausthal-Zellerfeld

17 % AbschlieBende Diskussion

Dipl.Ing.
Prof. Dr.

Dipl.Ing.

Dipl.-Ing.

Dipl.Ing.

Dr.

Dipl.Ing.

Dr.

Dr.

Prof.Dr.

Dipl.Ing.

Dr.

Astner
Breitenecker
Cizl
Forsthuber
Gannadi-Khosh
Geilller

Hick

Klug
Koroknai
Krosl
Lammerhofer
Mittermayr
Popp
Redlein
Salzmann
Schéfer
Troch
Valentin
Weinmeier
Weisz

Widerin

Klaus
Felix
Claudia
Edwin
Habib

Robert

Markus
Stefan
Peter
Michael
Christian
Peter Hanns
Alexander
Manfred
Erich

Inge
Christoph
Peter
Willy

Ute

Seminar iiber Modellbildung und Simulation, TU Wien, 8. 9. 1995, Teilnehmerliste

Technische Universitat Wien

(TU Wien, Abt. Simulationstechnik)
(TU Wien, Abt. Simulationstechnik)
TU Wien

TU Wien

Osterr. Forschungszentrum Seibersd
(TU Wien, Abt. Simulationstechnik)
(TU Wien, Abt. Simulationstechnik)
Ludwig Boltzmann Institut fur

(TU Wien, Abt. Simulationstechnik)
TU Wien

(TU Wien, Abt. Simulationstechnik)
TU Wien

(TU Wien, Abt. Simulationstechnik)
Universitét fir Bodenkultur

TU Wien

(TU Wien, Abt. Simulationstechnik)
TU Wien

TU Wien

(TU Wien, Abt. Simulationstechnik)

Abt. Simulationstechnik

Inst. f. Tragwerkslehre

Inst.f. Computertechnik

Experimentelle Traumatologie

Inst. f. Analytische Chemie

Inst. f. Automation

IWGF, Abt. Siedlungswasserbau

Abt. Simulationstechnik

Inst. f. El. Maschinen

EDV-Zentrum

Jochen-Rindt-Str. 22/4/2
Wiedner Hauptstr. 8-10
Sibeliusstr. 9/3/4
Ortsstr. 9

Karlsplatz 13/254

GuBhausstr. 25-29

Frauengasse 19/3
Obermiilnerstr. 17/31
Donaueschingenstr. 13
Mariahilferstr. 143/6
Getriedemarkt 9
Weilburgstr. 10/5/1
Treitlstr. 3

Lorenz Miillerg. 1/138
NuBdorfer Lande 11
Wiedner Hauptstr. 8-10
Weinbergg. 93/18/1
GuBhausstr. 27-29
Wiedner Hauptstr. 8-10

Hofmiihlg. 7A

A

A

- 1230 Wien
astner@iiasa.ac.at

- 1040 Wien
fbreiten@email.tuwien.ac.at

- 1100 Wien

- 2362 Biedrmannsdorf
€9026231@fbma.tuwien.ac.at
- 1040 Wien

- 1040 Wien
robert@ict.tuwien.ac.at
- 2444 Seibersdorf

- 1170 Wien
mklug@ws1.atv.tuwien.ac.at
- 1020 Wien

koroknai@ws1.atv.tuwien.ac.at

- 1200 Wien

- 1150 Wien

- 1060 Wien

- 2500 Baden

- 1040 Wien

- 1200 Wien
msalz@ws1.atv.tuwien.ac.at
- 1190 Wien

schaefer@iwgf-sig.boku.ac.at
- 1040 Wien

- 1190 Wien

- 1040 Wien

- 1040 Wien

weisz@edvz.tuwien.ac.at
- 1060 Wien

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

Problem Organisation For Control System Simulation

1. Introduction

Many methods exist for describing a mathematical model. Sets of ordinary differential
equations and algebraic equations are clearly of central importance in lumped parameter
dynamic models. In the case of linear models used for control system design there are other
forms of description which may be more natural, including transfer functions, block
diagrams, signal flow graphs and bond graphs. All of these can be useed to show, in
diagrammatic form, the mathematical operations to be performed and the order in which
information must be processed.

2 Descriptions for continuous-variable models: reduced and state variable forms

Two of the most widely used forms of mathematical description for dynamic systems
are the so-called reduced form and the state variable form. An example of a simple model
expressed in reduced form is the equation

My +Ry +Ky = £ (t) (1)

which is the differential equation commonly used to represent the mechanical system of
Figure 1 involving the displacement, y(t), of a mass M which is subjected to an external
force f(t) while suspended by means of a linear spring of stiffness K and damping element
having viscous resistance R.

The corresponding description in state variable form involves two first order equations
in place of the single second order equation. It takes the form

X, =X, (2)

X, = —£x1—§x2+ £(€)

Mt M M (3)

where the new variable x, is the displacement, y(t), and the new variable x, is the velocity,
dy/dt. These are known as the state variables of the system. An nth order description in
reduced form is equivalent to a set of n first order ordinary differential equations in state
variable form. There is no unique set of state variables for a given model in reduced form.

Physical reasoning is often used in selecting quantities to be defined as state variables.
In the system of Figure 1 it is clear that displacement and velocity have advantages over other
possible sets of state variables. Displacement is a variable of particular interest in the model
and is also likely to be a measured quantity in the real system. Velocity is also likely to be
a measurable quantity.

The two-dimensional vector having components X, and X, is known as the state vector.
The importance of the state vector is that if the initial state is defined and the system inputs

ARGESIM REPORT NO.5

are known all future states are defined. The two equations defining the state-space model
above can be rewritten as a single vector matrix equation

; 0 1 0
X X
[.1}:_K LRy] L] E(R) (4)
*2 M M M
or, more concisely, as
%X =Ax +bu (5)

where x is the state vector, A is a 2 X2 square matrix and b is a two-element column vector.
This equation relates the rate of change of the state to the present state and the input. It is a
form which is particularly convenient for simulation purposes since the numerical solution
can then be obtained for each equation within the state-space model simply by a process of
integration. A second order system, with two state variables, thus requires two integration
operations in the corresponding simulation program; a sixth order model, with six state
variables, would require six integrations.

In the case of a nonlinear model the state space model would have the form
x=£(t,x(t),ult)) (6)

where f now denotes the vector of derivative functions and u(t) is the input.

3 Conversion from reduced form to state-variable form

If the model is given in the form

dny B N dy dn-ly
- 1 I T ! 7
Sl gt S u(t)] (7)

where u(t) represents an input forcing function and f is a given linear or nonlinear function,
it is always possible to convert the model to state space form by selecting the following as
the state variables

X, =Y
. o_a
%2 gt

COMETT - CouRrsE "Fuzzy SYSTEMS AND CONTROL"

1n-1
xn=-d1 y

dgat

in-1
P - e (8)
n dgr-t

In the case of a mechanical system, this could involve selecting position, velocity,
acceleration etc. as the set of state variables. The resulting state space description has the
form

X =%,

Xy =X,

Xn-1 T Xy

X, =flt, %, %, x,u(t)] (9)

Since the choice of state variables is never unique the state variables may be numbered in any
order.

4 Transfer function descriptions

Linear lumped parameter models can also be written very conveniently as transfer
functions, defined as the ratio of the Laplace transform of the model output variable to the
Laplace transform of the input when all initial conditions are zero. Most introductory texts
dealing with control systems engineering (e.g. [1], [2]) provide a detailed account of transfer
function models and their derivation.

The assumption that all initial conditions are zero when using a transfer function type
of model allows a given differential equation to be transformed into the Laplace domain
simply by replacing d/dt by s, d°/dt’ by s’ and so on for higher derivatives. Subsequent
analysis is all carried out in terms of algebraic relationships which both simplifies the
mathematical operations which have to be performed and can also provide additional physical
insight. For example, the mass-spring-damper system defined in Equation (1) transforms to

2 (10)
Ms?Y (s) +RsY (s) +KY (s8) =F(s)

where Y(s) is the Laplace transform of y(t), F(s) is the Laplace transform of f(t) and all

ARGESIM REPORT NO.5

initial conditions on y(t) and its derivatives are zero. The quantity Y(s) can then be
manipulated algebraically to give

(Ms2+Rs+K) Y(s) =F(s) (11)
and thus
Y(s) 1
= 12
F(s) Ms?+Rs+K (12)
In general a transfer function G(s) may be written in the form
Y(s) _gg) = 2LS) (13)

U(s) B(s)

where Y(s) is the Laplace transform of the output variable, U(s) is the Laplace transform of
the input and where A(s) and B(s) are polynomials in s.

Many properties of a transfer function depend upon the denominator B(s). The roots
of the characteristic equation B(s)=0 largely determine the form of the output when the
transfer function is subjected to a given input. These roots are the poles of the transfer
function. The number of poles is, of course, equal to the order of the system as discussed
above in the context of state variable descriptions.

5. Block diagram and signal flow graph representations

Linear systems can be described using block diagrams or signal flow graphs. Block
diagrams and signal flow graphs are important for simulation since these both provide a
simple means of expressing the structure of a complex model. Many simulation packages are
block diagram orientated and a thorough understanding of these diagrams is essential.

In the block diagram approach to the description of a system each element is described
by a single block. The arrow entering the block represents the input variable and the arrow
leaving the block represents the output variable. The block contains an expression, usually
in transfer function form, which relates the output to the input. Signal flow diagrams
incorporate exactly the same information as the block diagram. In this case input and output
variables are represented by nodes and the line connecting two nodes is the equivalent of the
block in the block diagram approach. A given system can be represented at many different
levels using a block diagram or signal flow graph. For example Figure 2 shows valid block
diagram and signal flow graph representations for the mass-spring-damper system of Equation
(1). In these diagrams the only variables which appear are the input variable F(s) and the
output Y(s). The diagrams describe only the relationship between the chosen input variable
and the chosen output variable. Figure 3 shows another level of representation. Here the
diagrams involve a number of blocks or signal flow graph elements in combination and the
structure provides additional information about the system. It should, of course, be noted that
the diagrams of Figures 2 and 3 are exactly equivalent and Figure 2 may be derived from
Figure 3 using standard rules for block diagram or signal flow graph manipulation and
reduction.

COMETT - CouRsE "Fuzzy SYSTEMS AND CONTROL"

6. Block diagram and signal flow graph methods for transfer function simulation

Several methods exist for deriving a set of equations in state variable form from a
given transfer function. The methods given here are based on block-diagrams or signal-flow
graphs. more than one approach is presented because some methods, which can be entirely
satisfactory with low order models, present problems of numerical robustness when applied
to higher order problems.

6.1 The direct construction approach

Most transfer functions of practical importance can be manipulated into a general form
involving a ratio of two polynomials in s and a gain factor. Consider the transfer function

m m-1 2
Y(s) _ K(s™a, s +........ +a,s%+a,;s+a,)

(14)
U(s) sf+b . s™l+.., +b,s?+b,s+b,

where n>m and K is a simple gain factor. This is in the required form and the restriction
that the order of the denominator should be greater than that of the numerator is connected
with conditions for physical realisability.

The only transfer functions which are of general practical importance for control
systems applications but which cannot be manipulated into the form shown in Equation (14)
involve pure delay elements involving factors exp(-sT) or distributed delay elements involving
factors exp(-vsT). However, such cases can be handled without difficulty if the delay
elements are simple multiplicative factors which can be treated as a separate block in cascade
with a block described by a transfer function involving a ratio of polynomials in s.

Dividing all terms in the numerator and denominator of the right hand side by s" gives

y(s) _ K(s™™+a _,s™1 ™+, ..., +a,8?M+a, 81 +a,8 ™)

U(s) 1+b s+,, +b,82m+p gl msp g (15)

It is now possible to rewrite the relationship between the transfer function output Y(s) and
the input U(s) to involve an intermediate variable E(s). This new variable need not have any
obvious physical significance and is defined from the following equation

Y(s) _ Y(s) E(s)
U(s) E(s) U(s) (16)

The transfer function of Equation (15) may now be split into two parts as follows

ARGESIM REPORT NO.5

Y (s)

7 (s) =K(s™M+a, s+, +a,s?M+a, st Mrais™) (17)
and
E(s 1
UES? B b -1y +h.g2M+ph. gl M+h. g™ (18)
L+b, 87+, ..., 58 .8 oS

Equation (18) may be re-arranged to give

E(s) =U(S) ~ (b, ;s +....+b,;82™+b,s* ™ +b ;s ™ E(s)

which corresponds to a signal flow graph of the form shown in Figure 4. Here the new
variable E(s) is the input to a sequence of integrator elements, the output of each of which
is fed back to the input through coefficient elements. The outputs of each of the integrators,
taken in order from the left, are thus s'E(s), s’E(s), s’E(s),....,s"E(s). However from

Equation (17) the output Y(s) is seen to be a weighted sum of m+1 quantities such as these
and this gives a signal flow graph such as that shown in Figure 5.

Variables from each of the integrator blocks in Figure 5 may be assigned as state
variables equations in state variable form may be written down from the signal flow graph
or block diagram by inspection. If the output of the final integrator is x,, with the other state
variables taken as the outputs of each of the remaining integrator elements. The set of state
equations is then as follows

Xy T X,
X, = X,
Kn-1 = Xp
X, = -bgx,-b,;x,-....-b, _,x,+u(t) (19)

This set of equations is similar to Equations (9). A single algebraic equation relating the
output y to the state variables must now be added. It is clear from the block diagram, that
this equation is

COMETT - CoursE "FuzzyY SYSTEMS AND CONTROL"

V = K(@K;+a,Ko* o o v o a3 Xt Xy) (20)

Equations (19) and (20) together provide a simple way for implementing the given transfer
function within a simulation. The only disadvantage of this direct construction approach is
that the properties of the resulting state space model can be highly sensitive to small
numerical inaccuracies in coefficient values, especially in the case of high-order models.

6.2 The parallel construction approach

The parallel programming approach is appropriate when the given transfer function has
a denominator in factored form as shown below

y(s) _ K(sMa, s™+........ +a,s%+a s +a,) (21)
U(s) (s+B,) (s+B,) (s+B,)

Using partial fractions it is then possible to express the right hand side of this equation as a
sum of terms each of which involves a single pole. The resulting equation is

Y(s) _ %, % o, (22)
I et SLSTERIRS

Each term on the right hand side of the equation has the same form and the corresponding
signal flow graph involves a parallel structure as shown in Figure 6. The state variables are
taken to be the outputs of each integrator. The state equations describing the signal flow
graph are then of the form

%X, = -p,x, +u(t)

%, = =Box, +u(t)

(23)

}'{n = —ann+u(t)

An additional algebraic equation relates the output y to the n state variables. This has the
form

V=0 X, FO0,Xt s o X (24)

A model with a parallel structure having first-order (or second-order) blocks is
generally more robust in terms of numerical sensitivity to coefficient inaccuracies than the
equivalent model in direct construction form. The higher the order of the original transfer
function description the greater are the benefits of the parallel approach.

ARGESIM REPORT NO.5

6.3 The iterative construction approach

If a transfer function has only real poles and zeros the numerator and denominator may
both be factorised into products of first-order factors to give a description of the following
form:

K(s+u,) (s+a,) ... (s+ay)
(s+B,) (s+B,) ... (s+B})

(25)

where K, o, and B, are all real constants. Grouping the factors into products of terms of the
form

(s+0£i)

(s+B;) (26)

it is possible to construct a sub-model block diagram or signal flow graph which represents
a single factor of the complete transfer function. This sub-model diagram has the form shown
in Figure 7. Since the order of the denominator is always equal to or greater than the
order of the numerator of the transfer function for physically realisable systems. Hence, when
the process of grouping these factors in pairs has been completed, there may be some
additional terms involving denominators of the form (s + 8.) which cannot be combined with
any numerator factors. In such cases the additional factors are dealt with by means of the sub-
model signal flow graph element in Figure 8. The form of the diagram for the complete
transfer function for the special case where the numerator is of the same order as the
denominator is shown in Figure 9. The state variables are the output variables of the
integrator blocks and the resulting state equations are as follows:

x,=-Px,*u (27)
Kp1 = _Bn-lxn—l taXy X, = —ﬂn-lxn—l + (o, ﬁII) Xyt u (28)
}'{n-j = —Bn-an—j*‘ (“n-j+1_ﬁn—j+1)xn—j+1+' cres +(an—ﬁn) X,tu (29)
Xlz"ﬁ1X1+<a2_pz)X2+ +(an—ﬁn)Xn+u (30)

As with the parallel construction approach the iterative method is often superior to the
direct construction method in terms of coefficient sensitivity. A cascaded arrangement of first
or second order transfer functions tends to be more robust to coefficient errors than the

COMETT - CouRrsE "Fuzzy SYSTEMS AND CONTROL"

equivalent structure involving multiple feedback loops.

6.4 An example of block diagram construction from a transfer function

Consider the following transfer function:

2
Y(s) ___s%+9s+20 (31)

G(s) =
U(s) s3+652+11s+6

Direct construction method

First of all the numerator and denominator polynomials on the right hand side of the
equation should be divided by the highest power of s to give

Y(s) . s87*+9572+20s’ (32)

G(s) =
U(s) 1+6s1+11s52+687°

Introducing a dummy variable E(s) gives

Y(s) _ .1 -2 -3
(5 s 1+9577+20s (33)
and
E(s) _ 1 (34)
U(s) 1+6s'+11s72+6s872
That is
E(s) =U(s) -(6s1E(s) +1152E(s) +65E(5s)) (35)
and
Y(s) =8 1E(s) +9s 2E(s) +205 E(5) (36)

Equations (35) and (36) may be expressed in block diagram form by a model involving three
integrators connected in cascade as shown in Figure 10. Taking the outputs of

integrator blocks as state variables allows the following set of simultaneous first order
differential equations to be established:

ARGESIM REPORT NO.5

X=X
Ky =X,

X,=-6X,-11X,-6X,

or, in matrix notation,

#pofo 1 o)y o
%l={0 0o 1|x|+|0ju (37)
% |6 -11 -6l|x] 11

The output equation is

y=20x, +9X, *+ X,

or

y=[20 9 1]|% (38)

Parallel construction method

In this case the first step involves factorising the denominator of the given transfer
function to give:

Y(s) _ s52+95+20 N s52+95+20 (39)

G(s) = =
U(s) g3 +682+11s5+6 (s+1)(s+2) (s+3)

Expressing the right hand side of this equation in partial fraction form gives:

Y(s) _ 6 6 . 1 (40)
U(s) s+1 s+2 S+3

and this may be represented as a block diagram with the parallel structure shown in Figure

10

COMETT - COURSE "Fuzzy SYSTEMS AND CONTROL"

9. Again the outputs of the integrator blocks are taken as the state variables to give the
following set of first-order differential equations

X, =X, YU X, =C2X,vUl X, =-3xtU

and an algebraic equation relating the output, y(t), to the three state variables x,(t), X.(t) and
X5(t) which has the form

y=-6Xx, ~6X, - X,

In matrix form the state and output equations are thus

Xl /-1 0 0}%| [1
X|={0 -2 0 |X]|+|1liu (41)

%l 1o o -3lx] 12

and

y=6 -6 1% (42)

Iterative construction method

There are two zeros and three poles in the given transfer function. Hence the two zeros
can be associated with two of the poles in the standard way for the iterative approach and one
pole must be treated separately, as shown in the transfer function below

Y(s) _ 52+95+20 z(s+5)(s+4)(1) (43)

U(s) s3+6s52+11s+6 \S+1/\s+2/\5+3

The resulting block diagram thus has two stages involving elements of the type shown in
Figure 7 and one stage of the type shown in Figure 8. Figure 12 shows the complete block
diagram. Taking outputs of integrator blocks as state variables gives a set of first order
differential equations

X, = -3x, +4X, t X,
= -3x, +2Xx, t4X, + U (44)

X, = -2X,+5X, + X,

11

ARGESIM REPORT NO.5

=-2X, ~4x, tU (45)
X, = -X, +t U (46)

and an algebraic output equation
y=X (47)

7. Modelling of distributed parameter elements

7.1 Introduction

Distributed parameter models arise in the study of systems in which quantities are
transmitted from one point to another, as in the case of electrical signals in a transmission
line, flow of fluid in a pipe, phenomena associated with the conduction of heat etc.. The
"signals" in such systems are distributed in space as well as time and the mathematical models
are described by partial differential equations.

In situations in which the system reduces essentially to a single input variable and a
single output variable of interest at one point in space, as often applies in control systems
applications, it is possible to derive a transfer function type of description which involves a
distributed parameter. Such distributed parameter transfer function models may then be used
in the same way as conventional transfer functions for lumped parameter models. The two
types of distributed parameter element considered in this section are the pure time delay and
the distributed time delay.

7.2 Pure Time Delay

A pure time delay (known also as a transportation lag, or "dead time") arises in systems
in which quantities are transmitted at finite velocity from one point to another. In the case
of a pure delay this transmission does not involve any frequency dependent change of signal
amplitude.

A system involving a pure time delay (due perhaps to physical phenomena such as heat
flow but where losses can be neglected), may be described approximately by a partial
differential equation of the form

oz o0z
Yo 22 48
5t " ax (48)

where z(x,1) is the state of a point at position X and time t. The parameter v is the velocity
of transmission.

Applying the Laplace transformation to this equation gives, assuming zero initial
conditions, a new equation as follows

12

COMETT - COURSE "FuzZY SYSTEMS AND CONTROL"

sZ(x,s)=vM (49)
ox
where
Z(x, 5) =fexp<—sz:) z(x, t) dt (50)
6]
The solution of this equation is
Z(x, s) =Aexp(—s~‘:§) (51)

where A is an arbitrary constant.

If U(s) is the Laplace transform of the input of the system at point x, and Y(s) is the
transform of the output of the element at point x, then it follows that

U(s) = Z{x,,s) =Aexp(—s—}%) (52)
and
X3
Y(s) = Z(x,,5) =Aexp(-s—) (53)

Thus the transfer function relating the output transform Y(s) to the input transform U(s) is

Y{s) _ L% X (54)
&) g -5 27
That is

Y(8) - awni(-

s =exp(-sT) (55)

where T is the transmission time from point x, to point x,. The parameter T is thus the
duration of the pure time delay.

7.3 Distributed time delay

A distributed time delay arises where quantities are transmitted from one point to
another with a finite velocity but with an attenuation which varies with frequency. examples
include the conduction of heat and the transmission of electrical signals in a medium which
is not loss free. The partial differential equation describing this situation has the form

13

ARGESIM REPORT NO.5

0z 0z (56)

where z(x,t) represents the value of the quantity concerned at point x and time t. The
parameter a is a constant and could represent, for example, thermal conductivity. Applying
the unilateral Laplace transform for zero initial conditions gives

gZ(X,s):aiz_Z__(_}_(_L‘_s_)_ (57)
dx?
where
Z(x, s) =fexp<—st>z(x, £) dt (58)

0

The solution of this equation has the form

Z{x,s) =Aexp(-—Ex) + Bexp(.\j—g‘] (59)

It is now assumed that at infinite distance the value of the variable z(x,t) is always zero.
This allows one of the terms in the above equation to be eliminated, giving

_\E) (60)
a
for x=0.

If U(s) is the Laplace transform of the input to the system being modelled (at point x;)
and Y(s) is the Laplace transform of the output of the system (at point x,) then it follows that

U(s) =Z(x,,5) =Aexp(—@x1) (61)
Yis) = Z(x,,s) =Aexp[—.\J——_§:x2) (62)

Hence the transfer function relating Y(s) to U(s) has the form

Y(s) _ _|s _ (63)
7o) exp('J:(Xz Xl)]

Y(S) =exp(_ sﬁ%ﬁ):g;{p(—/.@_ﬂ (64)

Z(x,s) = Aexp

Similarly

Thus

14

COMETT - CoURSE "FuzzY SYSTEMS AND CONTROL"

where the parameter T is an equivalent time.

It should be noted that elimination of the term involving the positive exponent in this
derivation has physical significance. It is equivalent to rejecting the possibility of reflected
waves in the system under consideration. The use of the transfer function resulting from this
analysis is therefore restricted to cases in which reflected waves are not expected.

7.4 Simulation models involving pure and distributed delay elements

Most simulation languages incorporate facilities for the representation of pure delays.
Pure delays also present few difficulties in a simulation which is developed using a general
purpose high level language, provided the delay does not itself vary with time. Cases
involving variable delays present additional problems [3]. An alternative approach, and more
approximate representation for a pure delay, is based upon the properties of Padé
approximations. These approximations, based upon truncated series for the exponential
function, were widely used for the representation of pure delays in analog simulations and
it is equally possible to use this approach in a digital simulation.

More complex problems involving distributed parameter elements can be approached
in a very general way using finite differences or finite element methods or other numerical
techniques for the solution of partial differential equations. Detailed treatments of these
specialised topics can be found in appropriate textbooks and a review of some of the problems
of simulation of such systemsmay be found in the book by Spriet and Vansteenkiste [4].
Simulations involving distributed parameter elements can be numerically intensive and for
time-critical applications distributed parameter problems are often reduced to quite simple
lumped-parameter approximations. One example of this type can be found in the work of
Bryce et al. [5] which is concerned with the real-time simulation of a water pipeline as part
of an investigation of water-turbine governing systems.

References

[1] Palm, W.J., "Control Systems Engineering", John Wiley & Sons, New York, U.S.A.,
1986.

[2] Golten, J. and Verwer, A., "Control System Design and Simulation”, McGraw-Hill,
London, U.K., 1991,

[3] Doebelin, E.O. "System Modelling and Response”, pp. 193-201, J. Wiley & Sons,
New York, U.S.A., 1980.

[4] Spriet, J.A. and Vansteenkiste, G.C. "Computer-aided Modelling and Simulation”,
Academic Press, London, U.K., 1982.

[5] Bryce, G.W., Foord, T.R., Murray-Smith, D.J. and Agnew, P.W. ’Hybrid simulation
of water-turbine governors’, Simulation Councils Proceedings, Vol. 6, Part 1, pp. 35-
44, 1976.

15

ARGESIM REPORT NO.5

M F(s) , 1 lls’
! Ms2+Rs +K
y
K R
Fisl > Yl
1

AL CFTRs 7K

Figure 2: Transfer function based block

Figure 1: Mechanical system involving mass, . .
spring and viscous damping elements. diagram and signal flow graph for system
of Figure 1.
1 Yis)
s
K ot
1 1 1
P 1 B8 NS S X

Figure 3: Detailed block diagram and signal flow graph for system of Figure 1.

16

COMETT - CoursE "Fuzzy SYSTEMS AND CONTROL"

1 1 1 1 1
Us) 1 Eis) § ¥ ¥ k] 8
\\\ b,y
AN
\

-be

Figure 4: Direct construction signal flow graph for denominator terms.

Figure 5: Complete signal flow graph for direct construction representation.

Figure 6: Signarﬂ'ow-grwh—ﬂhsﬁﬁting parallel construction method.

ARGESIM REPORT NO.5

W 1 T a0 INTE a
7 7 Q » O

L2
] +
. s b + v8)
s + ‘1, 3 _1_ l Js‘ 20
6
M e
LT

Figure 10: Block diagram for example system by direct construction method.

18

COMETT - CoursE "Fuzzy SYSTEMS AND CONTROL"

X

@ s
Y
[o)]

ubs) +

X3 1

(73

Figure 11: Block diagram for example system by parallel constructioin method.

+
+
X X
g+ R L I e LR
E) s s
1 2 3

Figure 12: Block diagram for example system by iterative construction method.

19

COMETT - CoursE "FuzzY SYSTEMS AND CONTROL"

Simple Examples of Control System Simulation Using Common Simulation Tools

1. Introduction

This section of the course provides examples of a number of different types of
simulation problem involving control system applications. The models upon which the
simulations are based are relatively simple and have been chosen to illustrate features of some
typical simulation tools which are currently available. Further details of the SLIM simulation
language may be found in the Users’ Manual and in an associated textbook [1] which also
provides some additional linear and nonlinear simulation examples. The underlying principles
which can be applied both in simulation studies of systems developed using classical methods
of control system design and systems designed using fuzzy control principles. ‘Particular
simulation techniques have been selected but this choice is not intended to suggest that other
tools could not have provided an equally appropriate solution but strengths and weaknesses
of some methods of approach are discussed. In each case suggestions are made of further
investigations which could be made with these simple models.

2. A control system simulation: speed control of a water turbine

Control systems investigations form one of the most common application areas for
continuous system simulation tools. This example is concerned with a simulation of a speed
control system for a water turbine used for the generation of electricity. Figure 1 is a block
diagram of a highly simplified description of a system of this kind. The turbine, which is
of the impulse type, is represented by a linear transfer function which also incorporates
dynamics of the pipeline system. Control of the turbine is accomplished through feedback of
a signal proportional to turbine shaft speed and comparison with the desired (reference) speed
signal. Any difference between the desired and actual speed provides an error signal which
is processed by the controller block to provide the signal applied to the turbine actuator input
to change the water flow in such a way that the error is continuously minimised. The
controller may be implemented either in analogue (continuous) or digital form. The model
is linear throughout, apart from backlash in the mechanical linkages associated with the
turbine inlet actuator. The purpose of the model is to allow the performance of the model of
the closed loop system to be investigated using both continuous and digital controllers. This
is a useful illustration of continuous and discrete simulation techniques being used together
to approach an important class of practical engineering problem.

A number of controller transfer functions can be considered for this type of application.
Detailed consideration of possible forms of controller are not of primary interest in the
present context but any readers interested in this aspect, or in the underlying model, may find
further details elsewhere (e.g.[1-2]). For the present purposes the controller considered is of
the "temporary droop” type implemented in continuous form. This type of controller has a
transfer function of the form:-

1+8T,

Cls) = >
o+ (c+p)T,s+T,T,s

(1)

21

ARGESIM REPORT NO.5

In this controller transfer function only the parameters ¢ and p may be regarded as adjustable
quantities. The other parameters (T, and T,) are fixed quantities and are not available for
controller tuning.

Appropriate parameter values for the plant and controller are as follows:
T, = 7.0 sec. (inertial time constant)
T, = 1.1 sec. (water time constant)
T, = 0.2 sec. (actuator servo time constant)
All model variables, such as turbine speed are expressed as normalised (per unit) quantities.

Figure 2 shows the DYNAMIC segment of a SLIM program (TURB.SLI) for the
simulation model and the full source may be found on the diskette. Parameter values for the
nominal set of conditions are provided in the program listing. The simulation experiment in
this case involves investigation of the response of the control system to a step change of the
reference speed. It can be seen from Figure 3 that the response is stable but oscillatory in
nature for the controller parameters values used. A program TURBI .SLI, which allows input
from a data file, is also included in the Appendix to this section of the notes. This version
of the simulation program, together with the appropriate data files in the same format as the
test file TURBL.IN, provides a convenient means of experimenting with controller parameter
values.

One interesting extension to this simulation program involves the inclusion of
mechanical backlash between the servomotor and the turbine inlet. This is an important
feature of real mechanical systems of this kind and is known to have a destabilising eftfect on
the overall control system. Backlash is a double-valued form of nonlinearity which has a
steady-state input-output characteristic of the form shown in Figure 3. It generally arises
because of "slack’ in mechanical linkages and gears. With backlash present movement of the
input in one direction produces a proportional movement of the output, but any reversal of
the direction of the input will cause the output to stop before following the input again.

The representation of backlash and other similar double-valued nonlinearities which
involve a form of "memory”, such as hysteresis, can be difficult. One approach is to use
principles first established for the modelling of backlash elements using analogue computers
[3]. This involves the use of an integrator with feedback to provide the memory element.
Figure 4 shows a block diagram for a representation of backlash by this type of method.
Essentially the system works by comparing the integrator output, which is the output variable
for the backlash element, with the input. The integrator input is controlled through
comparator elements and logic blocks and when the input reverses direction (at the extremes
of travel) the integrator input becomes zero. The integrator input remains zero until the input
variable has changed by an amount equal to the width of the backlash element. It is then
switched back to the output of the summing element. This causes the integrator output to
remain fixed in value for a period of time and this corresponds to the flat top and bottom
sections on the diagram showing the input-output characteristics for the backlash. Although
presented here in block-diagram form the implementation of a backlash model of this kind
is quite simple using the equation-oriented methods. Figure 5 shows the DYNAMIC segment
of a SLIM program TURB2.SLI which is a version of the turbine speed control system model
with backlash incorporated. This program and the corresponding data file TURB2.IN are
listed in the Appendix. '

22

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

The oscillation observed on the response shown in Figure 2 is influenced by the backlash
parameter a, as well as by the parameters of the controller. A well damped step response in
the absence of backlash (a,=0.0) can become a maintained oscillation if the backlash is
increased sufficiently (Figure 6).

Figure 7 is an ACSL program listing for this example. Note that a special statement
BCKLSH is available in ACSL to represent backlash effects and use has been made of this
facility. Figure 8 shows results obtained from this ACSL program. In modern block-oriented
tools such as XANALOG and SIMULINK special facilities are also available for the
simulation of nonlinear elements such as backlash. Figure 9 shows an XANALOG block
diagram for this problem.

Further investigations which could be carried out using this model and the SLIM
simulation programs include determination of the minimum value of the backlash parameter
b which gives rise to a maintained oscillation in terms of turbine speed. This "limit cycling”
type of behaviour is clearly an undesirable situation in a speed control system and one that
should be avoided in practice. For those with an appropriate level of understanding of control
systems analysis techniques the simulation result for the critical value of the backlash
parameter may be compared with predictions from theory, based upon describing function
analysis. It is interesting to consider the reasons for any differences between the simulation
result and the value predicted by theory. It should be remembered that the describing function
approach involves some important simplifying assumptions and approximations; the
significance of some of these can be investigated easily using the simulation.

3. Simulation of a simple digi control system

Figure 10 is a block diagram of a simple closed-loop digital control system. The
difference between the reference signal and the plant output forms an error which is sampled
by the digital-to-analogue converter. The digital processor carries out some form of numerical
operation on the error samples and provides an actuating signal to the plant input through the
digital-to-analogue converter. Figure 11 shows part of the corresponding SLIM program
listing for the simplest possible situation in which the control computer simple samples the
error signal and outputs the sampled error values periodically as input to the plant. The
complete program file, named DIGCON.SLI, and the necessary input data file DIGCON.IN,
can be found on the diskette. Examination of the DIGCON.SLI shows that, because SLIM
does not have special facilities for mixed continuous and discrete system simulation, the
sampling period is defined as a multiple of the communication interval parameter and the
facilities of the DYNAMIC segment and DERIVATIVE section are used to emulate the
discrete action of the controller. The sampled variable is held constant in a zero-order hold
type of action by a loop within the DYNAMIC segment. Any discrete calculations
representing the action of a control algorithm within the control computer must aiso be
performed within the DYNAMIC segment. Values of variables of interest in the simulation
may be written to the output file in the usual way, at times set by the communication interval.

Figure 12 shows results obtained for three different sampling periods. It can be seen
that the system shows an increasing tendency to oscillate as the sampling period is increased
and eventually becomes unstable. Sampled data theory (see, for example [14]) predicts that
for this system instability occurs when the sampling period is greater than 0.549 sec.. This
is consistent with the results presented in Figure 12 and detailed investigations using the

23

ARGESIM REPORT NO.5

simulation program can confirm the theoretical result more precisely.

The DIGCON.SLI program can be modified easily to allow for more complex controller
action. For example, if one wanted to simulate the system with a controller which
implemented a difference equation of the form

O(kT) =0((k-1)T) + I(kT) -0.5I((k-1)T) (2)

the changes to the simulation program would all be made in the initial part of the DYNAMIC
segment. Figure 13 shows the relevant part of the listing and the complete program is listed
in the Appendix as the file DIGCON1.SLI. Note how the discrete input and output variables
are stored for one sample period and updated. The transfer function of the controller of
Equation (2), expressed in terms of z transforms, is as follows:

I(z) 1~z z-1

O(z) _1-0.5z27 _z-0.5 (3)

In the special case when the sample period is 0.347 sec. the controller should, from sampled-
data theory, act as a "dead beat" compensator [4]. In such a situation the plant output should
exhibit zero steady state error and should rise to its final value, in response to a step change
of system reference input, in one sampling period. Figure 14 shows results from the
simulation program which are consistent with theory for this special case.

Some other equation-oriented simulation languages, such as ACSL, include special
facilities which can be very useful for the simulation of digital control systems. In ACSL, for
example, DISCRETE sections representing the difference equations or z-transfer function of
a digital controller may be inserted within the DYNAMIC segment. Such DISCRETE
sections are thus similar to DERIVATIVE sections but communicate with the continuous parts
of the simulation at regular predetermined times. Figures 15 and 16 show XANALOG and
SIMULINK block diagrams for this digital control problem and illustrate some more of the
specialised blocks and icons available with these simulation tools.

This example offers any reader interested in automatic control systems many
opportunities for experimentation. It is clear from the listing of the SLIM program
DIGCON1.SLI that, with some minor changes to the DYNAMIC segment, it would be very
easy to replace the dead beat compensator by some other form of controller. Similarly any
other form of plant transfer function could be used in place of the one given in Figure 10,
with only some simple changes to the DERIVATIVE section of the program being necessary.

References

[1] Murray-Smith, D.J. "Continuous System Simulation", Chapman and Hall, London, 1995.

[2] Bryce, G.W., Foord, T.R., Murray-Smith, D.J. and Agnew, P., ’Hybrid simulation
of water turbine governors’, Simulation Council Proceedings, Vol.6, Part 1, pp. 35-44,
1976.

[3] Ricci, F.J. "Analog-Logic Computer Programming and Simulation”, Spartan Books
1972.

[4] Leigh, J.R., "Applied Digital Control", Prentice-Hall Intl., Englewood Cliffs, N.J.,

U.S.A., 1984.

24

COMETT - CoursE "FuzzY SYSTEMS AND CONTROL"

E Y
Mrat Y : cls) ! Yl NLE
1+ 8T,
- ACTUATOR SERVO TURBINE AND LOAD

Figure 1: Block diagram of closed-loop system for automatic control of speed of water
turbine connected to an electrical generator.

kkkkkkkkkkkkkkkkkxStart of Dynamic Segmentkxkkk ik ik xkkkk*

oNoNY!

DYNAMIC

khkkkkkkikkkkkkkkkxStart of Derivative Segment**ixkkkkkiik

Q00

DERIVATIVE
DT1=(V-T1)*(2.0/TW)
T1=INTEG(DT1,T10)
TO=T1~TW*DT1
TA=T0-TL
DNS=TA/TIA
ANS=INTEG (DNS,ANSO)
E1=REF-ANS
DDY1=(E1-SIG*Y1~-((SIG+AMU)*TX+TY)*DY1) /(TX*TY)
DY1=INTEG(DDY1,DDY10)
Y1=INTEG(DY1,Y10)
Y=Y1+TX*DY1
DV=(Y=-V) /TS
V=INTEG (DV,V0)
DERIVATIVE END

kkkkhkkkkkkkkkrrkkxxx*Fnd of Derivative Sectionk**xkkikkkkkxkx

Values ot t, ref} tl and ans for current communication
interval output to results file

oEoRONONONS!

TYPE T,REF,TL,ANS

Test for end of simulation run

Q00N

IF(T-TMAX)10,10,12
DYNAMIC END

=
o

*kkkkkkkkkkkkkkkkkdx*End of Dynamic Segmentiiskkxkkkkkikikx

PEONORS]

*kkkkkkhkkkhkkhkkkkkrkrrkrTerminal Segmentrrxkkkkidskkddkkkhkkk
12 STOP
END

Figure 2: Part of SLIM program TURB.SLI for simulation of the turbine speed control
system with a temporary-droop type of govemor.

ARGESIM REPORT NO.5

0 20 - 40 60 80 .

®)
Figure 3: A typical simulated response of the speed control system to a step change in
reference speed. ‘

; 1

COMPARE [-? !

\

-)
-a

b . T

<
-+
[=8
o

Figure 4: Block diagram illustrating one technique for representation of backlash element.

I M B

O LOO0e sy GO

Ny
GOVERNOR R

.Pi(l;'l:'(\/): RN ™ -
c(s) H
G LOo0e t 00 r) S . O0Ce—0 " :
H .
. BE TR M - t M
! Gov TEMP. ML SRERRVO L ML LB ENE L ML ENTTE A M
H . :
. .
H H
H .
. .
H .
H .
. .
H .
: .
i H
H .
i ;
H .
[PPSR PP LR L L bbbt rd

e eeeieeamseesesaamEestessesseieeessasssssacnoasatiisisiosiesiasenoiTiiiiootiIIIIIET

Figure 9: XANALOG block diagram of speed control problem.
26

- COMETT - CoURsE "Fuzzy SYSTEMS AND CONTROL"
******************Start—gf—ﬁvnamfc—ﬁegment###**#&###&***

DYNAMIC

kkkkkkkkkkkkkkkk*xStart of Derivative Segmentrikixixkkkkkk
DERIVATIVE
Section for representation of backlash element

IF(AB-0.001)40,45,45
DB=V-YB
IF(DB+AB)60,50,50
FB=DB

GOTO 100
1F(DB-AB)80,70,70
FB=DB

GOTO 100

FB=0.0 :
YB=INTEG(10.0*FB,YBO)
GOTO 110

YB=V

End of section for backlash

DT1=(YB-T1)*(2.0/TW)
T1=INTEG(DT1,T10)
TO=T1-TW*DT1
TA=TO-TL
DNS=TA/TIA
ANS=INTEG (DNS,ANSO)
E1=REF-ANS
DDY1=(E1-SIG*Y1~((SIG+AMU)*TX+TY)*DY1)/(TX*TY)
DY1=INTEG(DDY1,DDY10)
Y1=INTEG(DY1,Y10)
Y=Y1+TX*DY1
DV=(Y~V) /TS
V=INTEG(DV,VO0)
DERIVATIVE END

kkkkkkkkkkkkkkxkkkk*End of Derivative Sectionkkkkkkkkkkkkdk

Values of t, ref, tl, ans and yb for current communication
interval output to results file

TYPE T,REF,TL,ANS,YB
Test for end of simulation run

IF(T-TMAX)10,10,12
DYNAMIC END

hhkkkdkhkkkhdekkkkkrkrkrkEnd Qf'Dynamic Segment****************

kkkkkkkkkkrhkkkkrkEkkkkkk*Terminal Segmentxxxkkkkkkkhkkkkkkk
STOP - 1 : :
END ' :

Figure 5: Part of SLIM program TURB2.SLI for simulation of the turbine speed control
system with a temporary-droop type of governor and backlash between the servomotor and
the turbine inlet valve.

27

- ARGESIM REPORT NO.5

PROGRAM turb2.cs%
"Simulation of governed hydro-turbine system with"
"a temporary-droop governor and with backlash between"
"servo-motor and turbine inlet actuator"
INITIAL
"Data for plant and governor transfer functions"
CONSTANT tw=1.1, ts=0.2, tia=7.0
CONSTANT ab=0.06 $ "backlash parameter"
CONSTANT tx=16.0, ty=0.3, sig=0.03, mu=0.25
"Data for reference 1nput and dlsturbance input"
CONSTANT ref=0.1, tl1=0.0
"Data for experiment duration”
CONSTANT tend=99.9
ALGORITHM IALG=4 $ "Runge-Kutta second order"
CINTERVAL CINT=1.0
"Initial conditions™”
t1=0.0
v=0.0
y1=0.0
dy1=0.0
yb0=0.0
END $ "of INITIAL"

DYNAMIC
DERIVATIVE A
"Turbine"
dtl=(yb-tl)*(2.0/tw)
t1=INTEG(dt1,0.0)
t0=tl-tw*dtl
' n Lé adn
ta=to+tl
dns=ta/tia
ns=INTEG(dns,0. 0)
"Governor"
el=ref-ns N
- ddyl=(el- 51g*y1 ((sig+mu) *tx+ty)*dyl) /(tx*ty)
dyl1=INTEG(ddy1,0.0)
y1=INTEG(dyl1,0.0)
y=yl+tx*dyl
- "Servo motor"
dv=(y-v)/ts
v=INTEG(dv,0.0)
- yb=BCKLSH(yb0 ,ab,v)
END $ "of DERIVATIVE"
TERMT (t.GE.tend)

END $ "of DYNAMIC"

TERMINAL

END $ vof TERMINAL"
END $. "of PROGRAM"

Figure 7: ACSL‘Pr:ogram listing for the speed control problem.

28

COMETT - Courske "FuzzZy SYSTEMS AND CONTROL"

20 40 60 80 ¢

(s)
Figure 6: Response of the simulated speed control system with sufficient backlash to cause
limit cycle oscillations. The continuous line is the control valve position while the dashed line
is the output speed.

i. TURBTDZ AB=0.0 2 TURBTDZ HB=0. 02
8 &
= &
i Mool . g2 Aol
[72] 3.)"
8| : 8 -
=) J °‘ J g
2 o
Tow oz _ om 0.75 00 ?
a . T m02 TIME 1.0 b 0.00 "-2.? .12 TUIﬁtE’ 0.75 1.00

Figure 8: Results from ACSL simulation, a)with no backlash and b)with backlash of 0.02

29

ARGESIM REPORT NO.5

DIGITAL
ADC > pac |OL| 4 ouTPUT
PROCESSOR S+ 2 Y(s)

Figure 10: Block diagram of simple digital control system

o e e — = - - - = T = e wwe g = e e e wm e o

e . A e - - - - —— o e ah e et = e e e e em e e e ew o -

'
,
- Y
) ' : '
! 1 ' \
[} \ N s ;
t i i ' 1
1 h ' ! !
5 I f N] X '
' : ! . ' ' !
. t : ', t ' 4
A | 1 ' t ' :
' ! ' * i ‘ '
o : : ! . b
§ I ' § ' ' :
-] [+ i
Lol o ‘._..I ; H i ; : : ‘ :
-5k --- Lo P I
0 2 4 6 t
c ®
i

Figure 12: Responses {output (continuous line) and error (dashed line)} of digital control
system for 3 values of controller sampling interval (a=0.1s, b=0.28s, ¢=0.56s).

30

COMETT - CouRsE "FuzzyY SYSTEMS AND CONTROL"

DYNAMIC
I=I+1
IF(I)15,25,15
IF(I-MULT)20,25,25
E=R-Y
AIN=E
OUT=OUT1+AIN-0.5*AIN1
OUT1=0UT
AIN1=AIN
I=0
TYPE T,V,E,Y

kkkhkkkkkkkrxkxkx*Start of Derivative Sectionk***kkxkkkkkikk

DERIVATIVE
DERIV=-(Y~-AK*OUT) /TAW
Y=INTEG(DERIV,0.0)
DERIVATIVE END
kkkkkkkkkkkkkkkikx%*FEnd of Derivative Section***xkkkkkkikkkkxx
Test for:end of simulation run

IF(T-TMAX)10,10,12
DYNAMIC END

kkkkkkkkkkkkkkxk*End of Dynamic Segmenti*kkxkkkkkkkkdkhkkkkk

*kkkkkkkkkkkkkkkrxxxxTerminal Segmentrkxxxxkkkkkkkkkkkkhkkhk

STOP
END

Figure 13: Part of SLIM program DIGCONI.SLI for simulation of digital control systern.

31

ARGESIM REPORT NO.5

C
C kkkkkkkkkkkkkkkkkxkStart of Dynamic Segment***************
c
DYNAMIC
I=I+1
IF(I)15,25,15

15 IF(I—MULT)20,25,25
25 AIN=R-Y
' OUT=AIN
' I=0
20 TYPE T,R,AIN,Y
C
C kkkkkkkkrkkkkkxx*Start of Derivative Section**************
C
DERIVATIVE
DERIV=-(Y-AK*OUT)/TAW
Y=INTEG(DERIV,0.0)
DERIVATIVE END
C
C*******************End of Derivative Section*****************
C
¢ Test for end of simulation run
C
IF(T-TMAX)10,10,12
0 DYNAMIC END

1
C
C *****************End of Dynamic Segment********************
c) .

C *********************Terminal Segment**********************
C

1

2 STOP
END

Figure 11: Part of SLIM program DIGCON.SLI for simulation of digital control system.

>

L v ™

12+ ' ' ' ' i

1. -

. .8 B -
6} _
4t]
2]
)

0 2 4 P :
2 O

s b -

£ o
1.]
I q
6} |
Ar)
2t]
0
0 2 4 6 .

b , ' ‘ (s)

Figure 14: Responses from sys_tem—wiﬂ;—gizead-beat—control applied for step change of

rafarence

COMETT - CoURSE "FUZZY SYSTEMS AND CONTROL",

DYNAMIC
I=I+1
IF(I)15,25,15
IF(I-MULT)20,25,25
E=R-Y
AIN=E
OUT=OUT1+AIN-0.5%AIN1
OUT1=0UT
AIN1=AIN
I=0
TYPE T,V,E,Y

kkkkkhkkkkkkkkkkk*Start of Derivative Section*®*kxkxkkkkkdkk ki

DERIVATIVE
DERIV=-(Y-AK*OUT) /TAW
Y=INTEG(DERIV,0.0)
DERIVATIVE END
kkkkkkkkkkkikrkxx*FEnd of Derivative Section*****************
Test for end of simulation run

IF(T-TMAX)10,10,12
DYNAMIC END

*kkkkkkkkkkkkxkx*xEnd of Dynamic Segmentxxxkkkkkdkkkkkkkkkkkk

*hkkkkkkkkkkkkkxkkkx*kTerminal Segmentrkxkkkkskkkhkkkkkkkkkhk

STOP
END

Figure 13: Part of SLIM program DIGCON I .SLI for simulation of digital control systen.

33

ARGESIM REPORT NO.5

T

-2.00e+00

-1.00e+00

Figure 15: XANALOG block diagram for digital control sys

tem.

unit step - _ digital con.

<3

Figure 16: SIMULINK diagram for digital control system.

34

COMETT - CoursE "Fuzzy SYSTEMS AND CONTROL"

APPENDIX

Listings of SLIM Programs for Examples.

35

Listing of SLIM Program TURB.SLI

ARGESIM REPORT NO.5

Simulation of hydro-turbine speed control system with temporary
droop type of governor. No backlash included in turbine model.

kkkkkkkhkkkhkkhkrkkrkrkkkInitial Segmentitkxkktkdkkhkhkkkhkkkkkk

First three lines of the program establish the number of
channels, the number of samples and the time interval
for outputs to the results file

NCH=4

NSA=400

SAM=0.25

OO0 000

Parameter values for coefficients in the system equations

[oNeRe]

TW=1.1
TS=0.2
TIA=7.0
TX=16.0
TY=0.3
SIG=0.03
AMU=0.25

Data for reference and disturbance inputs

o NoNe!

REF=0.1
TL=0.0

Set communication interval and values for integration
parameters

Qo0

CINTERVAL(SAM)
MINTERVAL(1.0E-6)
MERROR(1.0E-6)
XERROR(1.0E-6)

Set initial conditions

(PR NS

3
il
o

OOl Ol -
[N e]

O .

T10
Vo=
Y10
D¥Y1
ANS

O

0

I H o
O O
[=}

-

Define the maximum value of the independent variable (time t)

QOO0

TMAX=100.0

Information about file organisation written to the results
file

OO0

TYPE NCH
TYPE NSA
TYPE SAM

Information about initial values of variables written to
results file

QOO0

TYPE T,REF,TL,ANSO

36

OO0

OO0

OO0

= Q00
o

[oReNONY]

12

COMETT - COURSE "Fuzzy SYSTEMS AND CONTROL"

kkkkkkkkkkkkkkkkrkStart of Dynamic Segmentxkxxkxxkkkkkkkk
DYNAMIC
******************Start of Derivative Seagment*®xkkkkxkxk

- DERIVATIVE
DT1=(V-T1)*(2.0/TW)
T1=INTEG(DT1,T10)
TO=T1-TW*DT1
TA=TO~TL
DNS=TA/TIA
ANS=INTEG (DNS,ANSO)
E1=REF-ANS
DDY1=(E1-SIG*Y1-((SIG+AMU)*TX+TY)*DY1) /(TX*TY)
DY1=INTEG(DDY1,DDY10)
Y1=INTEG(DY1,Y10)
Y=Y1+TX*DY1
DV=(Y-V) /TS
V=INTEG (DV,VO0)

DERIVATIVE END

kkkkkkkkkhkkkkhkkhk**x*End of Derivative Sectionk*kxkkkkkkkkkx

Values ot t, ref, tl1 and ans for current communication
interval output to results file

TYPE T,REF,TL,ANS
Test for end of simulation run

IF(T-TMAX)10,10,12
DYNAMIC END

kkkkkkkkkkkkkkkkkkk**End of Dynamic Segmentrxxkkkxkikkxkkkhs
kkkkrkkkkkkkkkxkkrkdkrk*kkTerminal Segmenthkkkkkkkkrkskkrkhhxs

STOP
END

37

Q00 OO0 0ON00

eNeKe!

OO0

ONo0

QMO0 Q00

QOO0

Listing of SLIM Program JLIRBI_SLI
ARGESIM REPORT NO.5

Simulation of hyvdro-turbine speed control system with temporary
droop type of governor. No backlash included in turbine model.
Typical data from file TURB1.IN.

kkkkhhkkkkkkkkxrkk**x4Tnitial Seamentrikkkkkkkrkdkkkkkhkkkk®

First three lines of the program establish the number of
channels, the number of samples and the time interval
for outputs to the results file

NCH=4
NSA=400
SAM=0.25

Parameter values for coefficients in the system equations

ACCEPT TW
ACCEPT TS
ACCEPT TIA
ACCEPT TX
ACCEPT TY
ACCEPT 5IG
ACCEPT AMU

Data for reference and disturbance inputs

ACCEPT REF
ACCEPT TL

Set communication interval and values for integration
parameters

CINTERVAL(SAM)
MINTERVAL(1.0E-6)
MERROR(1.0E~-6)
XERROR(1.0E-6)

Set initial conditions

T=0.0
T10=0.0"
V0=0.0
Y10=0.0
DY10=0.0
ANS0=0.0

Define the maximum value of the independent variable (time t)
TMAX=100.0

Information about file organisation written to the results
file - -

TYPE. NCH
TYPE NSA
TYPE SAM

Information about initial values of variables written to
results: file

38

COMETT - CoURSE "FuzzyY SYSTEMS AND CONTROL"

TYPE T,REF,TL,ANSO
C khkkkkrkhhkhkrxkkkx%xx%Start of Dynamic Segment**************
DYNAMIC

*hkkkkkkkkkkkkkkk*kStart of Derivative Segmentxkkkkxikikis

Q00

DERIVATIVE
DT1=(V-T1)*(2.0/TW)
T1=INTEG(DT1,T10)
TO0=T1~TW*DT1
TA=T0O-TL
DNS=TA/TIA
ANS=INTEG(DNS,ANSO)
E1=REF-ANS
DDY1=(E1=-SIG*Y1~((SIG+AMU)*TX+TY)*DY1)/(TX*TY)
DY1=INTEG(DDY1,DDY10)
Y1=INTEG(DY1,Y10)
Y=Y1+TX*DY1
DV=(Y~V) /TS
V=INTEG(DV,V0)

DERIVATIVE END

kkkkkkkkkkkkrrkkxrxr*End of Derivative Sectionkkkxkkxskxkkrkksk

Values ot t, ref, tl and ans for current communication
interval output to results file

QOO0 0

TYPE T,REF,TL,ANS

Test for end of simulation run

Q00

IF(T-TMAX)10,10,12
DYNAMIC END

[
[}

kkkkdekkkkkkkrkkkkkkkx*End of Dynamic Segmentrxxxxkxkkkkkkkkk

FeXeXoXe!

kokkkkkkhkkkkkkkkkkkkkrkkr*Ternminal Segmentrrrkkdrxkkkkdhkhhhh*
12 STOP
END

39

QOO0 NOCOOOQONO0N

QOO0 QOO0

e e NP

Qo0 o000

QOO0

(@]

Listi
isting of Program TU?B@ ARGESIM REPORT NO.S

Simulation of hydro-turbine speed control system with
temporary droop type of governor. Backlash included
in turbine model. Input data from file TURB2.IN.

kkkkkkkkkkhkhkkkkkrx kx4 Tnitial Seamentirkkkkkkkkkkhhkkrkkk

First three lines of the program establish the number of
channels, the number of samples and the time interval
for outputs to the results file

NCH=5

NSA=400

SAM=0.25

Input parameter values for coefficients in the systen equations
(from data file)

ACCEPT TW,TS,TIA
ACCEPT AB

ACCEPT TX,TY
ACCEPT SIG,AMU

Input data for reference and disturbance inputs
ACCEPT REF,TL

Set communication interval and values for integration
parameters

CINTERVAL(SAM)
MINTERVAL(1.0E-5)
MERROR(1.0E-4)
XERROR(1.0E-4)

Set initial conditions

T=0.0
T10=0.0
V0=0.0
¥10=0.0""
DY10=0.0
¥YB0=0.0
ANS0=0.0

Define the maximum value of the independent variable (time t)
TMAX=100.0

Information about file organisation written to the results
file ‘

TYPE NCH

TYPE NSA .

TYPE SAM

Information about initial values of variables written to
results file

TYPE T,REF,TL,ANSO,YBO

COMETT - COURSE "FuzzyY SYSTEMS AND CONTROL"

C ******************StHrt—Uf—ﬁvnamIC—Seument**************
C
DYNAMIC
C
C kkkkhkkkkkkkkkkkx*%xStart of Derivative Segment***********
C
DERIVATIVE
C
C Section for representation of backlash element
C
: IF(AB-0.001)40,45,45
45 DB=V-YB
IF(DB+AB)60,50,50
60 FB=DB
GOTO 100
50 IF(DB-AB)80,70,70
70 FB=DB
GOTO 100
80 FB=0.0
100 YB=INTEG(10.0*FB,YB0)
GOTO 110
40 YB=V
C .
C End of section for backlash
C
110 DTL1=(YB-T1)*(2.0/TW)
- T1=INTEG(DT1,T10)
TO=T1-TW*DT1
TA=T0~TL
DNS=TA/TIA
ANS=INTEG(DNS,ANSO)
E1=REF-ANS
DDY1=(E1-SIG*Y1~((SIG+AMU)*TX+TY)*DY1)/(TX*TY)
DY1=INTEG(DDY1,DDY10)
Y1=INTEG(DY1,Y10)
Y=Y1+TX*DY1
DV=(Y¥~-V) /TS
V=INTEG(DV,VO)
DERIVATIVE END
C
C ********************End of DeerathG Sectionkkxkkkkhkkhkik
C
C Values of t ref, tl, ans and yb for current communication
C interval output to results file
C
TYPE T REF TL,ANS, YB
C
C Test for end of simulation run
C
IF(T—TMAX)lO,lO,lz
10 DYNAMIC END
C [
C khkkkkkkkhkikktrhkikkkkr*xEnd of Dynamic Segmenth®skktkkkikkikkkhk
C S '
C hkkkkdkkdkhkkkkkkkkkkkkkkkr*Terminal Segment xkkkikkhkkkhkk kkk
12 STOP

END

41

ARGESIM REPORT NO.5

Data file TURBI.IN

~ NO -

—~ O >

O ¢ o+ e s e
~~ 00000

Data file TURB2.IN

N O [')
A NOO MO N—HO

. « 0
HONOHOO0OO0OO0

42

€2 €202¢20202¢02¢€2¢02102

20202 Q2

12023 ¢2

\v2u202 (240202

L2 LI L2202 102

T2 w2 22

LY S O S O S |

Listing of SLIM Program DIGCON.SLI
COMETT - CoUrSE "FUzZzy SYSTEMS AND CONTROL"

Simulation of a simple digital control system.
Input data from file DIGCON.IN.

khkkkkhkkkkkkkkkkkkrkrk*Initial Segmentrxsdkkkkkkhkkikik

First three lines of the program establish the number
of channels, the number of samples and the time interval
for outputs to the results file

NCH=4
NSA=400
ACCEPT SAM

Input parameter value for coefficient in the system equations
(from data file)

ACCEPT AK
ACCEPT TAW

Read in value of reference
ACCEPT R
Set initial value of the independent variable (time t)

T=0.0
AIN=0.0
=-1
¥=0.0
ouT=0.0

Define the maximum value of the independent variable (time t)
ACCEPT TMAX

Set interval for output of variables to ouput file and
read in integer value representing the multiple

of this interval for sampling interval for digital control.
Also set values for integration parameters

CINTERVAL(SAM)
ACCEPT MULT
MINTERVAL(1.0E~6)
MERROR(1.0E~4)
XERROR(1.0E-4)

Information about file organisation written to the results
file

TYPE NCH
TYPE NSA
TYPE SAM

kkkkkkkkkkkkkkxkk**Start of Dynamic Segmentrxxxkxtkkkxkkxx

DYNAMIC
IF(I)15,25,15

43

« L ‘.‘,‘,7‘.
AT A

ARGESIM REPORT NO.5

15 IF(I-MUETY207,25;25
25 © AIN=R-Y ‘
OUT=AIN
I=0
20 TYPE T,R,AIN,Y
C .

c *****************Start of Derivative Sectionk*x*kxkxkkxkkkkk*
C ; '
DERIVATIVE
DERIV=-(Y-AK*QUT) /TAW
Y=INTEG(DERIV,0.0)
DERIVATIVE END
C
ChkxkkkhkkkhkhkkhkkkkkkkFnd of Derivative Sectionk**xxkkkkkrkihhkkik
C
C Test for end of simulation run

C
IF(T-TMAX)10,10,12

10 DYNAMIC END

c

C Hkkkkkkkkkkkkd*r*End of Dynamic Segmenth %k kkkdkk ki dkdkk ki kk

C :
C hkkkkkdkkkkkkkkkkikr*Terminal Segmentrikkkkkkskxkkrkhdhhkkk
C
12 STOP
END

cNoNoNoNoNoNoNoNo Ko Ne)

QOO0 oNoNoNe]

pNeNe]

QOO0 OO0

€2 ¢(2¢2

1202 Q2

Listing of SLIM Program DIGCONI1.SLI

COMETT - COURSE "FUZzY SYSTEMS AND CONTROL"

Simulation of a simple digital control system with "dead-
beat" compensation.
Input data from file DIGCON1.IN.

kkkkkhkkkkkhkhkkkxkkkk*xInitial Segmentxxkkkkkkkkkkkkkk

First three lines of the program establish the number
of channels, the number of samples and the time interval
for outputs to the results file

NCH=4
NSA=230
ACCEPT SaM

Input parameter value for coefficient in the systenm equations
(from data file)

ACCEPT AK
ACCEPT TAW

Read in value of reference
ACCEPT R
Set initial value of the independent variable (time t)

T=0.0
E=R

=-1
OUT=0.0
AIN1=0.0
OUT1=0.0
¥=0.0
V=1.3

Define the maximum value of the independent variable (time t)
ACCEPT TMAX

Set interval for output of variables to ouput file and
read in integer value representing the multiple

of this interval for sampling interval for digital control.
Also set values for integration parameters

CINTERVAL (SAM)
ACCEPT MULT
MINTERVAL(1.0E-6)
MERROR(1.0E-4)
XERROR(1.0E-4)

Infbrﬁation about file organisation written to the results
file

TYPE NCH
TYPE NSA
TYPE SAM

kkkkkkkkkkkkkkkkx*k*Start of Dynamic Segment#®*%kkkkkkkkkkx

45

ARGESIM REPORT NO.5

c
DYNAMIC
I=I+1
IF(I)15,25,15
15 IF (I-MULT)20, 25,25
25 E=R-Y
AIN=E
OUT=O0UT1+AIN~-0.5*AIN1
OUT1=0UT
AIN1=AIN
1=0
20 TYPE T,V,E,Y
c

C kkkkkkkkkikkrk*kk*Start of Derivative Sectionkxxxkxkkkkdkkkkk*k
C
DERIVATIVE
DERIV=-(Y~AK*OUT) /TAW
Y=INTEG(DERIV,0.0)
DERIVATIVE END
C
C*******************End of Derivative Section**xxxkkkkkkkdkitkk
C
C Test for end of simulation run

C '
IF(T-TMAX)10,10,12
10 DYNAMIC END

C kkkkkkkkkkkkxx**End of Dynamic Segmentx*xxkkkkkdkkkkhdkkkk

C C
C kkkkkkkkdkkkkkkkkkkkxTerminal Segmentrkxxtkkikrkhhkdkkkkkkdhk
c =
12 STOP.
END

O ONO
COULMOOoO

Data file DIGCON.IN
' COMETT - CoURSE "Fuzzy SYSTEMS AND CONTROL"

Data file DIGCONI.IN

47

COMETT - CoURSE "Fuzzy SYSTEMS AND CONTROL"

Internal Verification and External Validation of Simulation
Models for Control Systems Analysis and Design
Topics considered include the following:
a) Terminology and definitions concerning simulation model verification validation.
Usetul sources of information include a set of guidelines published in 1979 by the

Technical Committee on Model Credibility of the Society for Computer Simulation [1] and
various textbooks (e.g. [2-4]). An important distinction may be made between inrernal
verification and external validation {2,5].
b) Internal Verification

The processes of internal verification involve checks for:

1) Internal consistency
and ii) Algorithmic validity

Appropriate methods involve static checks and dynamic checks.

¢) External Validation

Criteria for external validation involve assessment of accuracy and suitability of a model
for the intended application. They may include [6]:

Theoretical validity (consistent with accepted theories)

Empirical validity (adequate agreement with real system)

Pragmatic validity (satisfies application’s requirements)

Heuristic validity (basis for explanation of system)

Empirical validation involves comparisons between behaviour of the model and behaviour

of the real system. This can involve a number of methods mcluding:
(1) Methods based on comparisons of response data (e. g. [4L17D
(if) Methods based on system identification methods (e. g. [7-12))
(iii) Methods based on sensitivity analysis (e.g. [4],[7))
(iv) Methods based on inverse models (e.g. {10])

Of the above four approaches to empirical validation methods (1) and (ii) are the most widely

49

ARGESIM REPORT NO.5

used at present.

d) Robustness issues in external validation

This is especially important when system identification techniques are used as part of the
external validation process. One must have confidence in the accuracy and reliability of the
tools being used. These issues are explored in detail elsewhere (e.g. [13])

e) Possible outcomes of the external validation process

At least three possible outcomes arise. These are:

1. The measured data sets from the real system cannot be explained by any model structure
and parameter set considered. The model structure and assumptions must be reviewed.

2. One or more models gives a satisfactory match to system response data but the uncertainty
level for some parameters is high. The model may not be of much predictive value.

3. Satisfactory agreement is obtained with experimental test results and model parameter
values are plausible. The model may be used for the intended application until new evidence
falsifies the model in some way.
f) Documentation of the validation process

Model documentation should include the following:

1. A clear statement of the purpose of the model.

2. Descriptions of the model in conceptual and mathematical terms, including basic
assumptions.

3. A statement concerning the range of conditions for which the model has been tested and
the level of agreement throughout that range.

4. A description of all tests used for internal verification and external validation with relevant
results.

References

[1] S.C.S. Technical Committee on Model Credibility, *Terminology for model credibility’,
Simulation, Vol. 32, pp. 103-4, 1979.

[2] Shannon, R.E., "System Simulation. The Art and the Science", Prentice-Hall, Englewood
Cliffs, N.J., U.S.A., 1975.

[3] Spriet, J.A. and Vansteenkiste, G.C. "Computer-Aided Modelling and Simulation",
Academic Press, London, U.K., 1982.

[4] Murray-Smith, D.J. "Continuous System Simulation", Chapman & Hall, London, 1995.

50

COMETT - COURSE "FuzzyY SYSTEMS AND CONTROL"

[5] Murray-Smith, D.J., "A review of methods for the validation of continuous system
simulation models’, in Nock, K.G. (editor), "Proceedings 1990 UKSC Conference on
Computer Simulation”, pp. 108-111, United Kingdom Simulation Council, Burgess Hill,
1990.

[6] Murray-Smith, D.J. and Carson, E.R., "The modelling process in respiratory medicine’,
in Cramp, D.G. and Carson, E.R. (editors), "The Respiratory System", pp. 296-333, Croom
Heim, London, 1988.

[7] Murray-Smith, D.J. Advances in simulation model validation: theory, software and
applications, in Proceedings EUROSIM’95 Congress, Wien, September 1995.

[8] Unbehauen, H. and Rao, G.P., "Identification of Continuous Systems", North-Holland,
Amsterdam, The Netherlands, 1987.

[9] Beck, J.V. and Arnold, K.J., "Parameter Estimation in Engineering and Science”, John
Wiley & Sons, New York, U.S.A, 1977.

[10] Bradley, R., Padfield, G.D., Murray-Smith, D.J. and Thomson, D.G., >Validation of
Helicopter Mathematical Models’, Transactions of Institute of Measurement and Control, Vol.
12, pp. 186-196, 1990.

[11] AGARD Advisory Report No. 280, "Rotorcraft System Identification”, AGARD,
Neuilly sur Seine, France, 1991.

[12] Sinha, N.K. and Kuszta, B., "Modeling and Identification of Dynamic Systems”, Van
Nostrand Reinhold Company, New York, U.S.A., 1983.

[13] Murray-Smith, D.J., Modelling and robustness issues in rotorcraft system
identification’, AGARD Lecture Series No. 178, "Rotorcraft System Identification”,
AGARD, Neuilly sur Seine, France, 1991.

51

ARGESIM REPORT NO.5

INTERNAL VERIFICATION

Assessment of consistency and accuracy
of a simulation model compared with
the underlying mathematical model in
terms of :-

a) logical, mathematical and conceptual features.

b) algornthmlc correctness (e.g. appropriate
numerlcal methods for mtended application).

52

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

EXTERNAL VALIDATION

Assessment of the mathematical model
and its suitability for the intended
application.

Must distinguish between:-
a) Functional Validation

and b) Physical or Theoretical Validation

53

ARGESIM REPORT NO.5

EXTERNAL VALIDATION AS PART
OF MODEL DEVELOPMENT

PROCESS:

components — sub-models — complete model

54

COMETT - COURSE "Fuzzy SYSTEMS AND CONTROL"

Both functional and
physical/theoretical validation
processes involve elements of empirical
validation

i.e. assessment of level of agreement
between model variables and
corresponding data from the real
system. |

55

ARGESIM REPORT NO.5

EMPIRICAL VALIDATION

Complexity of instrumentation
o 1
amount of a priori knowledge

56

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

METHODS BASED ON
COMPARISONS OF RESPONSE

DATA

a) Overlaying of plots for model variables and
corresponding system variables.

57

ARGESIM REPORT NO.5

METHODS BASED ON
COMPARISONS OF RESPONSE

DATA

b) Plots of differences between model and system
responses.

58

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

THEIL'S INEQUALITY
COEFFICIENT (TIC)

n
> (yi-zi)z
TIC = i=1

n n
2 2
y.~ + J Z.

0= TIC < 1I ¢

TIC < 0 : time series almost identical

TIC < 1 : time series differ significantly

59

ARGESIM REPORT NO.5

FITNESS FUNCTION APPROACH

- 1
c.8. f(Y) - W

where e(y) = '11i . (yi-zi)2

1

- Abas

| 0sf(y)s#’1

f(y) = 1 : time series almost identical

f(y) < 0 : time series differ significantly

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

METHODS BASED ON

COMPARISONS OF RESPONSE
DATA

c)

Involving numerical measures of goodness-of-fit

n T ‘
e.g. J= '21 (yi - Zi) Wi(yi-zi)

Y = measured response at sample i

z, = model response at sample i

wi' = weighting function

61

ARGESIM REPORT NO.5

METHODS BASED ON
COMPARISONS OF RESPONSE
DATA

d) STATISTICAL METHODS

e.g. Hlstograms IR
ool b g complete data set
' Frequency distributions |

Fitting of stochastic models

62

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

METHODS BASED ON
COMPARISONS OF RESPONSE
DATA

MODEL DISTORTION APPROACH
(Butterfield and Thomas)

Assessment in terms of PARAMETER
DISTORTION needed to ensure that model achieves
exact fit.

Compare parameter changes with uncertainty levels

associated with the nominal parameter set.

—— e

63

ARGESIM REPORT NO.5

METHODS BASED ON SYSTEM
IDENTIFICATION TECHNIQUES

a) Identifiability analysis

b) Estimation of paremeters in identifiable models
¢) - Cross-validation

COMETT - CouURSE "Fuzzy SYSTEMS AND CONTROL"

METHODS BASED ON SENSITIVITY
ANALYSIS (Tomovic et al.)

a) Can help establish dependence of each part of
response on each of the parameters of the model.

b) Canuse to mvestlgate whether parameter
3 changes alone sufficnent to provnde required
‘match of model and system.

¢) Can suggest possible presence of fundamental
structural errors in the model.

65

ARGESIM REPORT NO.5

METHODS BASED ON INVERSE
MODELS

Steps:

a) Create inverse model

b) Drive inverse model using measured response
data from the real system.

) Compare mput time series predlcted by inverse
- model with input time series recorded from the
real system.

Advantages ,

Avoids effects of small offset and bias
componqnts at system input.

leferences may be more apparent at the system
* mpuh ENESP

v N ‘[[
(KR!
N Ty
R
. :
T
BT i R
s 1 1 T o
: t
foe d R LR
SR
NS S O S I SR S T I T S SO :
v ! : A yod B S
. f < S }

COMETT - COURSE "FUzZZY SYSTEMS AND CONTROL"

MODEL DOCUMENTATION

Should include:-

a) Full details of purpose of model and the intended
application.

b) Assumptions within the model.
¢) Simplifications and approximations introduced.
d D“etéail‘s' of tests applied for internal verification.

e) Detailsof external validation processes.

‘ ’1“ j B
SO
4) “2;&
[I‘f ‘ :

67

ARGESIM REPORT NO.5

EXTERNAL VALIDATION viewed as
a form of MODEL CALIBRATION
PROCESS:-

Establishing useful range of model expressed in
terms of

3 b) frequency 2;5;

oL
5 v i
s

i.e. range over which variables of model match
corresponding quantities of real system toa
stated level of accuracy. ' oo

W
' 3r;

68

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

Case Study I - Plant Modelling for a Two-Tank Liquid Level Control System

1. Introduction

For a vessel holding a mass of fluid M, the rate of change of mass in the container must
equal the total mass inflow rate (Q;) minus the total mass outflow rate (Q,). That is

dM _ 5 -
=00, (1)

The mass of fluid, M, is related to the volume of fluid in the vessel, V, by the equation

M=pV (2)

where p is the fluid density. For an incompressible fluid p is constant and thus

M=pV (3)

Figure 1 shows a vessel of rectangular cross section, with surface area A, it is possible to
relate the mass of liquid, M, to the liquid height, H, through an equation

M= pAH (4)

The hydrostatic pressure at the base of the vessel is then

P=pgH (5)

where g is the gravitational constant. For the system of Figure 1, if the pressure at the
surface of the liquid and at the outlet are the same and equal to P, (say, atmospheric pressure)
the pressure difference between the tank base and the outlet is given by (P,+P)-P, which is
simply P. The output flow rate Q, is dependent on P and, for the case of laminar flow, is
conventionally described by an equation of the form

. P
%= % (6)

where R is the fluid resistance.

Assume now that Qi(t) is known and that we want to predict the system behaviour in
terms of the liquid height H(t). From Equations (1), (4), (5) and (6) we may write

69

ARGESIM REPORT NO.5

".@.‘Q: . - —-———ng (7)
PAGE "0 TR
so that
A__d_f_{:g;i-—-_g—}! (8)
dat P R

Note that Q; is the mass flow rate and thus Q/p is the volume flow rate, (Q,), so that

dH . - _g_q (9)
dt R

Note that the relationship describing the flow at the outlet of the vessel is not always
that shown in Equation (6) and the form of expression which is appropriate depends upon the
nature of the outlet. For example, if the outlet is simply a hole in the side wall of the tank
a condition known as orifice flow occurs. In this case, if the size of the orifice is small, and
the pressure variation over the orifice area is thus negligible compared with the average
orifice pressure, it can be shown (from the principle of conservation of energy) that the mass
flow rate through the orifice is given by

Qozcdaoxlzp£ =Cda0\/—2_§l-_l (10)

where a, is the orifice area and C, is the discharge coefficient. If, on the other hand, the
outlet is through a pipe with turbulent flow, the appropriate relationship is

Q, - £ (11

where Ry is a constant. Practical hydraulic components, such as valves, can be described by
Equation (6) for small pressure drops but have to be described by Equation (11) in many
cases due to turbulence at typical operating conditions.

2. Modelling of a pair of interconnected tanks

When a hydraulic system incorporates more than one liquid storage vessel the principle
of conservation of mass (Equation (1)) may be applied to each element in turn. However,
there is coupling between the vessels and the nature of this coupling depends upon the precise
configuration of the vessels and upon the operating conditions. The interconnected tanks being
modelled in this chapter are bench-top systems intended for use in teaching the principles of
automatic control engineering [1].

Figure 2 is a schematic diagram of the system being considered. It consists of a

70

COMETT - COURSE "Fuzzy SYSTEMS AND CONTROL"

container of volume 6 litres having a centre partition which divides the container into two
separate tanks. Coupling between the tanks is provided by a number of holes of various
diameters near the base of the partition and the extent of the coupling may be adjusted
through the insertion of plugs into one or more of these holes. The system is equipped with
a drain tap, under manual control, and the flow rate from one of the tanks can be adjusted
through this. The other tank has an inflow provided by a variable speed pump which is
electrically driven. Both tanks are equipped with sensors which measure the pressure at the
base of each tank and thus provide an electrical output voltage proportional to the liquid
level.

2.1 A nonlinear mathematical model

Following the approach used in Section 1 the equation describing tank 1 in Figure 2 has
the form

dH
Al”‘éf‘ =Q, - Qy, 12

where H; is the height of liquid in tank 1, Q, is the input volume flow rate and Q,, is the
volume flow rate from tank 1 to tank 2 and A, is the cross-sectional area. Similarly for tank
2 we can write

dH, (13)
AZ_E— = Qv —Qvo

where H, is the height of liquid in tank 2 and Q,, is the flow rate of liquid out of tank 2.
Considering the holes connecting the two tanks and the drain tap all as simple orifices allows
the flow rates to be related to the liquid heights by the following two equations

Q,; =C,a/2e(H -H)) (14

and

Q,, = Cy0,\2¢(H,~Hy) (15)

where a, is the cross sectional area of the orifice between the two tanks, a, is the cross-
sectional area of the orifice representing the drain tap, H, is the height of the drain tap above
the base of the tank and g is the gravitational constant.

2.2 Linearisation of the model

For control system design studies it is appropriate to consider a linearised model in
which the model variables represent small variations about steady state values. Thus the input
flow variable is q, representing small variations about a steady flow rate Q,. Similarly the
other variables represent small variations about steady values q,, in Q,;, G, in Q,,, hy in H,
and h, in H,. In the steady state

va‘ = Qv] = QVO (16)

71

S+oibln.) ARGESIM REPORT NO.5

L
d,; ~ 4, =4 7

4 dh,
qv] qW) 2 dt

17)

(18)

From Equation (14) it is clear that Q, is a function of both H, and H,. Hence the small
variation in flow, g,., must depend on the steady levels H, and H, about which the system is

operating. In general, one may theretore write

aQ, aQ,
qvl = . h 1 + ! h2
oH, ' oH,

Differentiating Equation (14) partially with respect to H, and H, in turn gives

C,a,/28 (

h, - hy)
2 /H - H,

qvl =

Similarly

_ aQVOh - Cdzazy/igh
H, * 2/E-H,

Substituting for g, and g, in Equations (17) and (18) gives

dh
Al‘gtl =q,; — ok, —hy)

4vo

dh,
Az—é-t— “1("1 - hZ) “2”2
where
C dlal\/'ZE
cc, =
2/H - H,
and
Cdzaz\/—ZE
ocZ =

72

(19

(20)

2y

(22)

(23)

(24)

25

COMETT - COURSE "FUzzZyY SYSTEMS AND CONTROL"

Reorganisation of Equations (22) and (23) gives a second order state-space model as follows

1

|y oy
S e S|
h A A h —
.1 _ 1 1 1 LA q, (26)
hy | 41 (egra)in, 0
A, 4

Taking Laplace transforms it is possible to obtain the transfer function descriptions relating
the depth h, and the depth h, to the input flow rate q.. These are as follows:

1
o 2N
h2(8)= 2 qw.(s) 27)

. (A1“1+A2“1+A2“2)S . A1A2S2
o0, 0,0,
and
(0‘1+“2)(1 +5 AZ)
o, o «, o

hy(s) = 172 12 4,05 (28)

A al+Ax +A AA
1+(1“ 2% Zaz)s+ 172 2

LT @,

These both involve a pair of simple real poles and the characteristic equation in both cases

is
Ao A0 A0 AA,
(1+STI)(1+ST2)=1+(10y A0, T, 2)s+ L (29)
a0, a,a,
or
(1+sT)(+sT,) =0 (30)
where
AA
T,T, = 2 (31)
oy,
and
A A Ao,
S b R (32)
0,0y

73

el) ARGESIM REPORT NO.5

3. Programs for simulation of the nonlinear coupled tank system

A complete source program for simulation of the two-tanks system, using the SLIM
simulation language and based on Equations (12) to (15), is included as a .SLI file
(TANKS.SLI) in the Appendix to these notes. Nominal parameter values for this nonlinear
model, corresponding to a real laboratory-scale coupled tank system, are as shown in Table
1. A data file (TANKS.IN) is provided for this nominal set of parameters. Figure 3 shows
an XANALOG block diagram for this simulation model.

Some results based on the simulation program T ANKS.SLI and the given parameter set
are shown in Figure 4. In all cases the inflow was zero and the drain tap on the second tank
was fully open.

3.1 Internal verification of the simulation program

The first stage of internal verification is concerned with checking that the structure of
the simulation program is consistent with the mathematical model. This involves working
backwards from the statements in the program, especially those within the derivative section,
to ensure that when translated back to the form of differential equations they are the same as
those of the original model. Checks should also be made of the parameter values used in the
program or in the parameter input file to ensure that they correspond exactly to the
parameter set of the model itself.

The second stage of internal verification is concerned with numerical accuracy. In the
case of fixed step integration methods comparisons can be made of results obtained with a
number of different sizes of integration step length and with different integration techniques.
This provides the user with some understanding of the sensitivity of results to the step length
and of the overall suitability of the numerical methods chosen. in the case of variable step
integration algorithms tests can be carried out to compare results with different settings of the
selative and absolute error limits and with different values of the minimum integration step
to be allowed. In both cases some comparisons can be made using a number of different
values of the communication interval to ensure that interesting events in the simulation model
are not being hidden from the user simply because of an inappropriate choice of this
parameter which determines the interval between output samples.

1.2 External validation of the simulation model

Statements about model validity must always be made in the context of an intended
application. In the case of the coupled tank system the computer simulation is to be used as
a basis for the design of an automatic control system for regulation of level in one of the
tanks. There is particular interest therefore in the accuracy of the model in predicting steady
state conditions and in predicting the form of small transients about any given steady
operating point. Such comparisons are very easily made in the case of small-scale laboratory
equipment of this kind and agreement between steady-state measurements and steady-state
model predictions is generally quite good for most parts of the operating range. Table 2
shows some typical results obtained from measurements on the real system and corresponding
tests on the simulation model. Differences between the steady-state liquid levels in the
simulation model and in the real system, for a given value of input flow rate, are significant
and vary slightly with operating point. Figures 5 shows discrepancies between the model and

74

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

system for a test involving a large change in operating conditions. Response data for small
perturbation step tests carried out about one chosen operating point give time constants which
are broadly in agreement with values determined from the linearised model in the form of
Equations (27) and (28).

The discrepancies in the model exposed by the steady state tests and the large
perturbation responses are believed to be due mainly to the limitations of Equations (14) and
(15) in describing the relationships between output flow and the liquid level in each tank.
These equations apply to an ideal simple orifice and the actual physical effects at the tank
outlets do not agree exactly with this simplified model.

With closed-loop control added to the real system and to the simulation model the
agreement can be shown to be significantly closer. This is important since the equipment is
intended to be used for investigations of closed-loop control. In simulation studies involving
control system design applications there is always particular interest in the overall robustness
of the control system and the effect which modelling errors and uncertainties may have on
the performance of the closed-loop system. Although control systems are normally designed
using linearised models, simulation studies carried out on a proposed closed-loop system
using a nonlinear model of the plant can often be highly illuminating. Such an investigation
may reveal problems with the proposed design which would otherwise only come to light
during the commissioning and testing of the real system .

4 Discussion

This case study provides an illustration of a relatively simple nonlinear system which
can be modelled in a classical way using physical laws and principles. The simulation model
is easily implemented using either equation-oriented or block-oriented tools. The relatively
simple nature of the system and the variables which are accessible for measurement in the real
hardware make this an interesting but straightforward system for the application of external
validation methods.

Possibilities for using the simulation program TANKS.SLI as a basis for further
investigations may be found elsewhere [2].

References
[1] Wellstead, P.E., "Coupled Tanks Apparatus: Manual", TecQuipment International Ltd,

Long Eaton, Nottingham, NG10 2AN, U.K., 1981.
{2] Murray-Smith, D.J., "Continuous System Simulation”, Chapman & Hall, London, 1995.

75

%ol) ARGESIM REPORT NO.5

76

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

----------- csemsensntaessaurveessaneneon vy

al /A

I .S0ea~—-0S 1.03 e@e+r-o2 INTI

esameacssnccne®

3

[K1—

3.00@e—-02
1A

K of

1.03e+02 INT2

tesassscanncnas

“Gr.....-..-.....................
, < T TR Y Nadeas Dg

-
i
i
i
+
" ;
e ;
TE i
B
0.18 1 :
! L 4 H
¥ N
; | :
: O.t4
- - ¢
e st s e 7o 3 U . e o h e e
1y
1 P

Figure '4kr-_vSimulation results for three sets of initial cqndmons.

71

vl) ARGESIM REPORT NO.S

o 100 200 300 400 500 600 j
KN t
: (S)
Figure 5: Simulation results for level in second tank, with measured response from
the real system. -

78

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

PARAMETER

SYMBOL

VALUE

Cross-sectional area, tank
no. 1

A,

0.0097 m’

Cross-sectional area, tank
no. 2

A,

0.0097 m’

Orifice area, between
tanks

d

0.00003956 m’

Orifice area, outlet from
tank no. 2

s

0.0000385 m’

Coetfticient of discharge,
inter-tank orifice

o

0.75

Coetficient of discharge,

outlet orifice from tank

Gravitational constant g 9.81 ms”

Pump calibration constant_| G, 00000072 m's V'
 Depth sensor calibration G 3333 Vm®
-constant Co iR,
‘iHei'ghtof outlet above . Hi - 0.03m

L

ifable‘ 1 i«Pﬂ‘r‘am‘eter values for the coupled-tank model

[EES S ANk PR S 3

S
~ measured
v;s;:z‘(cm) ‘

model
- (cm)

‘measured . |

(em) 7

e g e

U 13.1

15.2

ey g

N feeg .',:‘.'::::‘;.;’2.':5“.” 0 FrintPRRY A

1::2 '4 .7 R ol I PR

9.7
'”A'irié;"'f'.é

Pepivng o Frainnn ter cnbuos Do i 0 oyl e el
Table 2: System and model variables under steady-state conditions

for three operating points

79

Srodblin.) ARGESIM REPORT NO.5

APPENDIX

Listing of SLIM program for Case Study

80

Nd N2 VL Vg

(24243

€2¢2 €2

Listing of program TANKS. SLI
COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

simulation of the coupled tanks apparatus under
open-loop conditions. A typical input data set

is

available in the file TANKS.IN.

NCH=5
NSA=500
SAM=1.0
TMAX=500.0

Information about output file organisation

TYPE NCH
TYPE NSA
TYPE SAM

Input parameter values for model

ACCEPT QI ,H10,H20
CD1=0.75
CD2=0.5

.A1=3.956E-5 .

A2=3,85E-5 .
G=9.81
H3=0.03
A=9.7E-3

Calcﬁi&tiéﬁ;of equilibrium levels

. H2SS=H3+(1.0/(2.0%G))*((QI/(CD2*A2))*(QI/(CD2*A2)))
H1SS=H28S+(1.0/(2.0%G))*((QI/(CD1*A1))*(QI/(CD1*Al)))

Hi=H10-:
H2=H20-:
T=0.0¢

INTERVAL(SAM)

Values for integration parameters

Engd

HINTERVAL (1. 0E-6)
MERROR(1.0E-4)
XERROR(1.0E-4)

Bﬁfiﬁifiai segment, start of DYNAMIC segment

D¥NAMIC .
DERIVATIVE
ciavion IFfH1I-H3)442,2 .
IF(H2-H3)3,5,5
i Ql,-—'o\'o T S U SC IS S i
- ~GOTO. 7. . .. i TR
A Ql=-CDl*Al*SQRT(2.0*G*(H2-Hl))

et 5 IF(H1-H2)5,6,6
tiwiERwQ@?CPﬁ*Al*SQRT(2-0*G*(H1‘H2))
GOTO 10

ALliaE TOF ;§i3§?53)?4718:Aﬁ335f5

Q0=0.0
+&OTO0 20
QO=CD2*A2*SQRT(2.0*G* (H2-H3))

NLLNA (S T

ARGESIM REPORT NO.5
20 CONTLINUR

DH1=(1.0/A)*(QI-Q1)
DH2=(1.0/A)*(Q1-Q0)
H1=INTEG(DH1,H10)
H2=INTEG(DH2,H20)
DERIVATIVE END
TYPE T, H1SS,H2SS, Hl,H2
IF(T-TMAX)50,50,60

50 DYNAMIC END
60 STOP
END

Data file TANKS.IN

33.32B-6 - .
0.05
0.2

82

COMETT - COURSE "FUzZY SYSTEMS AND CONTROL"

SLIM - A Simple Continuous System Simulation Language

USER’S GUIDE

D.J. Murray-Smith
Department of Electronics and Electrical Engineering
University of Glasgow
Glasgow G122 80Q
Scotland
United Kingdom

Version 1.0
July 1994

(as distributed on diskette with the book "Continuous System Simulation",
by D.J. Murray-Smith, published by Chapman and Hall, London, 1994)

83

%ol) ARGESIM REPORT NO.5

1. INTRODUCTION

The name SLIM stands for "A Simulation Language for Introductory Modelling".
It involves a subset of the CSSL standard established by the Sci Technical
Committee in 1967. SLIM has been developed specifically as a language
through which those new to continuous system simulation can be introduced
to the principles of the subject.

The SLIM software included on the diskette which accompanies the book
vcontinuous System Simulation" by D.J. Murray-Smith is the most basic
version of the SLIM family. Only one integration method is available (a
variable-step method) and features such as function tables, pure delays, the
use of arrays, the use of multiple DERIVATIVE sections, sub-model
capabilities, sorting etc. are not provided. Such features may be found in
many commercially-supported simulation languages. SLIM provides only the
most basic simulation facilities but it is a very easily-used simulation
tool and, with a little ingenuity, can be applied to a remarkably wide range
of problems, as shown by the examples of Chapter 8 in the book and by the

case studies in later Chapters.

Detailed practical information concerning the installation of the SLIM
software and on the preparation and running of SLIM programs may be found
in Section 4 of this Guide. This information is specific to the version of
SLIM included on the diskette accompanying the book. Other versions of SLIM
have been developed which incorporate additional facilities and are suitable
for use with other operating systems, such as VMS and UNIX. A version has
also been produced for use on a Parsytec parallel processor system under
the PARIX system.

The SLIM software consists of a language processor which has been written in
FORTRAN 77 which is capable of translating and interpreting programs written
using the special SLIM instruction set. This instruction set involves a smal]
subset of FORTRAN together with a number of the special CSSL instructions
needed for simulation applications. SLIN, like many other examples of
application-specific software systems, is based upon the use of a syntax-
driven parser with a separate executor routine. The language processor first
parses the user’s program and detects any statements which are invalid. Once
the validity of the complete program has been established, the software
produces intermediate code which is not seen by the user but which can be

interpreted by the executor routine.
2. THE SYNTAX OF THE SLIM LANGUAGE

SLIM follows the principles of the 1967 CSSL standard and the syntax has
much in common with ACSL and other widely used languages. There are, however
no explicit INITIAL and TERMINAL statements and the structure of the progran
is defined only through DYNAMIC, DERIVATIVE, DERIVATIVE END and DYNAMIC END
statements.

It should be noted that SLIM follows some of the conventions of FORTRAN and,
in accordance with the standard for that language, all program statements

in SLIM must begin at, or to the right of, the seventh colunrn of a program
line. The first five columns are used only for comments or labels. Comments |

are indicated by the character ‘C’ in the first column of the line and are |
|

84

COMETT - COURSE "FUzZY SYSTEMS AND CONTROL"

rored completely 1n the translation process. Labels must be numeric symbols
i may be entered in any or all of the first five columns. The sixth column
st always contain a space unless the line in question is a comment line.
per case characters must be used throughout, except for comments which may
volve upper or lower case characters, as desired. Blank lines should not
included in a SLIM program and tab facilities should not be used to insert

aces.

additional link with FORTRAN is the fact that the two types of variable
fined within SLIM, integer variables and real variables, are distinguished
cording to the letter of the alphabet with which the variable name starts.
1 integer variable names must begin with the letters I1,J,K,L.M and N

ereas real variable names must start with anv other letter of the alphabet.
al variables and constants may have magnitudes in the range 1.18E-38 to
40E+38 while integer variables and constants must have magnitudes in the

nge 0 to 32768.

tion of letters and numerals (after the

riable names may involve any combina
only have six

rst character which must of course be a letter) but can
aracters in total.

amples of valid real variables are:

VALUE
VALUEL
GAIN
ACC2A

amples of valid integer variables are:

INVALS
MPOINT
NFLAG
KP

val constants are exemplified by:

1.0
3.142
4 .8E-7
6E4

1d integer constants by:

1
567
22141

-atements in SLIM mav be divided conveniently into general-purpose
-atements which provide the normal facilities for numerical programming
ad which have counterparts in most high-level programming languages, and
1ose statements which are of special significance for simulation.

t should be noted that in the SLIM language expressions are evaluated
scording to the normal operator precedence rules. The order of evaluation

s therefore as follows:

** raising to a power
*,/ multiplication or division
+,- addition or subtraction

85

ofin) ARGESIM REPORT NO.5S

It should be noted that SLIM statements must not extend beyond one line of
code since there is no facility in the language for any form of continuation
line. Complex expressions may therefore have to be split initially into a
number of smaller expressions and combined at a later stage in the program.

i) GENERAL~-PURPOSE STATEMENTS
a) INTEGER AND REAL ASSIGNMENTS
This type of statement takes the general form:

Real variable = Real expression
or Integer variable = Integer expression

Examples of this type of assignment are:

VELOCY=(7.5-DISTCE)/4.982
IVALUE=8+7*K

Note that mixed expressions involving combinations of integers with real
variables or constants are not permitted and if detected will be rejected
as a syntax error.The functions FLOAT and IFIX may be used for data type
conversion to overcome this limitation.

Real intrinsic functions available within SLIM which may be included within
Real Assignment statements are as follows:

ABS,ALOG ,ATAN,COS ,EXP,FLOAT , SIN,SQRT and RND.

All these functions except RND are quite standard and have the same role

as the correspondingly named functions in FORTRAN. All except FLOAT involve
real arguments and give real results. FLOAT requires an integer argument
and produces a real result.

The function RND generates uniformly distributed random numbers having
values which lie between 0.0 and 1.0. The seed value used for random number
generation is determined by the argument used in calling the function. Ten
different seed values are available. All values of the argument which are
less than 2.0 lead to the use of one particular seed, values egual to or
greater than 2.0 put less than 3.0 lead to use of a second predetermined
seed value and so on for all other similar intervals in the range 3.0 to
10.0.. All argument values of 10.0 or greater lead to the use of the tenth
seed value.

The only integer intrinsic function in SLIM is IFIX. It can be used in the
same way as the corresponding function in FORTRAN. It requires a real
argument and returns an integer result.

b)INPUT STATEMENT

Input of data in SLIM is from a file named by the user. The form of the Inpu
statement is as follows:

ACCEPT variable list

?he variable list contains variable names which can pbe of either real or
integer type. An example of this type of SLIM assignment is:

ACCEPT VALUE,CONST,GAIN

36

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL" L

OUTPUT STATEMENT

file on disk but may also appear in

itput is always written to a named
m of the Output statement is:

\bular form on screen if desired. The for
TYPE variable list

TYPE VALUE,CONST,GAIN

.g.
TYPE J,IVAL

se variable list within an Ooutput statement must only involve variables of
{ables in a single variable list

re type. A mixture of integer and real vari
first few items in the output

s not permitted in an Output statement. The
ile provide information about the conditions selected within the simulation
un and are written to the file automatically. These include three integers

roviding system programming information which are not of direct interest to
he user followed by the values of the communication interval, the absolute
nd relative error parameters used in the program, and the minimum interval.

he next items have to be included in the output file but require the
nclusion of TYPE statements in the SLIM source program for the simulation.
hey involve, in order, the number of channels in the output (say NCH), the
umber of samples used in the simulation run (say NSAa) and the communication
nterval (say SAM). Every SLIM program must therefore include, at the end of

he initial segment, three lines such as:

TYPE NCH

TYPE NSA

TYPE SAM
shere NCH is the integer constant representing the number of output variables
"including the independent variable where appropriate), NSA is the integer
sonstant representing the number of samples over the complete time history
£ each variable and SAM is the real constant representing the communication
interval. It is, of course, important that these three quantities be written
-0 the output file in this particular order and that they should be the first
items output from the simulation program. It should be noted that in all
~ases the quantities NSA and SAM must be chosen to be consistent with the

interval of the independent variable (usually time) over which the results
are required. If, for example the independent variable has an initial value
I1=0.0 and a final value T=TMAX in the simulation program the guantities NSA

and SAM must be such that their product is equal to TMAX.

Immediately after this it is normal to output the initial values of the

independent variable and of the system variables of interest. Four TYPE
statements therefore normally appear within the initial segment of any SLIM

simulation program for which an output file is required.

d) ARITHMETIC IF STATEMENT

The syntax of an Arithmetic IF statement is as follows:

IF(arithmetic expression) Label 1, Label 2, Label 3

When this type of statement is executed the arithmetic expression is
evaluated and control passes to Label 1 if the result is negative, to Label
5> if the result is zero and to Label 3 if the result is positive. Examples of

such a statement are as follows:

87

%ola-) ARGESIM REPORT NO.5

IF({VELOCY~-THRESH)175.90,90
IF(IVAL-K)10,20.30

In the first case the expression (VELOCY-THRESH) is evaluated and control is
passed to the statements in lines labelled 175 or 90 depending on sign of the
result. In the second case the integer result from the evaluation of the
expression (IVAL-K) determines whether control passes to the statements with
labels 10, 20 or 30. It should be noted that in the case of real expressions
the condition corresponding to the result being zero is not of practical

:

value due to problems of round-off and other inaccuracles in real arithmetic.
e) GOTO STATEMENT

This statement causes the normal sequential process of program statement
execution to be interrupted. Control is passed unconditionally to the line
which has the label contained in the GOTO statement. For example, the
following section of program:

X=1.0
40 TYPE X
X=(X+10.0)/2.0
GOTO 40

would produce an endless loop which, if executed, would produce an output
sequence as follows:

5.50
7.75
8.875
9.4375
etc.

f) CONTINUE STATEMENT

A CONTINUE statement is a dummy execution statement and simply causes control
to be passed to the next statement in the program.

g) STOP STATEMENT
A STOP statement causes execution to cease. This is usually the last

executable statement in a SLIM prodgram. Like all other executable statements |
it can be given a label.

h) END STATEMENT

The purpose of an END statement is to indicate the end of the program. It
must therefore always be the last statement and since it is not executable
it cannot be given a label.

ii) SPECIAL-PURPOSE SIMULATION STATEMENTS
a) DYNAMIC STATEMENT

The DYNAMIC statement is used to indicate the start of the dynamic segment
of the simulation program. In SLIM only one dynamic segment is allowed
within a program. On entering the dynamic segment the processor assigns
initial values to the integration variables which are evaluated within the
derivative section. The dynamic segment contains the derivative section and
the segment is therefore in two parts, one above the derivative section

and the other below it.

88

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

)) DERIVATIVE STATEMENT

‘he DERIVATIVE statement indicates the beginning of the derivative section
jhich lies entirely within the dynamic seagment. The differential equations
ind other equations which define the dynamic simulation model are normally

sontained within this section.
:) DERIVATIVE END STATEMENT

‘he DERIVATIVE END statement defines the end of the derivative section. It
‘ndicates that all the integral assignments have been evaluated and the
umerical integration routine is called. On returning from the integration
-outine the problem variables are all updated. Once control has been passed
nto the derivative section it will not be passed beyond the DERIVATIVE END
statement until a new communication interval is about to start. If the

start of a new communication interval has not been reached control is passed
sack to the start of the derivative section and the integration process is
-epeated with the updated variables. This continues until, at the appropriate
-ime determined by the communication interval, control is transferred from
‘he derivative section to the second part of the dynamic segment but without

-e-assignment of initial values.

1) DYNAMIC END STATEMENT

‘he DYNAMIC END statement signifies the end of the dynamic segment. In order
-0 enter the region of the SLIM program lying bevond the DYNAMIC END
statement control must be transferred explicitly by means of a GOTO or

\rithmetic IF statement.
») INTEGRAL ASSIGNMENT STATEMENT

sach first order differential eguation gives rise to an Integral Assignment
statement. This type of statement has the form:

Real variable=INTEG(real expression, initial value)
Jhere initial value=real variable or real constant
\n example of a statement of this kind could have the following form:
X1=INTEG(V*W,X1INIT)

rhis indicates that the real expression V*#W is to be evaluated and from this
-he real variable X1 is to be calculated by integration with respect to the
independent variable (normally time). The initial condition for this
integration operation is provided by the real variable X1INIT which must have
seen defined at an earlier stage in the program (usually in the initial

segment).
F) CINTERVAL STATEMENT
fhe CINTERVAL statement sets the communication interval which defines the

increment of the independent variable at which control is passed from the
jerivative section to the dvnamic segment. The format of this statement is

3s follows:

CINTERVAL(unsigned real constant or real variable)

For example the statement

89

SrolPliae ARGESIM REPORT NO.5

CINTERVAL(0.2)

will cause control to be passed from the derivative section to the dyvnamic
segment every 0.2 units of the independent variable (e.g. every 0.2 sec.).
The default communication interval is 1.0 and this value is used in any
program in which no CINTERVAL is defined explicitly.

It should be noted, incidentally, that the default initial value of the

independent variable in a SLIM simulation is zero. Other initial values are

possible but must be set by the user using an assignment statement such as:
T=1.6

g) MINTERVAL STATEMENT

This statement defines the smallest step size allowed for a variable step
length method. If this lower limit is reached an error message is displayed
on the screen and control of the program is returned to the user. The
MINTERVAL statement has the general form:

MINTERVAL(unsigned real constant or real variable)
e.d. MINTERVAL(1.0E-5)

The default is MINTERVAL(1.0E-4).

h) XERROR STATEMENT

The XERROR statement is used to set the maximum absolute error that can be
accepted in the results of the variable step length numerical integration.
The value is defined on a basis of the error per integration step. The
variable step length routine used within SLIM either satisfies the
requirement defined in the XERROR statement or indicates to the user that the
step length has reached the minimum. The form of the statement is:

XERROR (unsigned real constant or real variable)
A typical example is :

XERROR(1.0E-5)
The default value corresponds to XERROR(1.0E-4).
i) MERROR STATEMENT
This statement is similar to XERROR but sets the maximum relative error (per
integration step). Again the requirement is satisfied automatically unless
the user is otherwise informed through an error message. The format of the

MERROR statement is similar to CINTERVAL, MINTERVAL and XERROR and a typical
example is:

MERROR(1.0E-4)
which would set the value to the default.
3. OUTPUT FACILITIES AND GRAPHICS

Graphical output may be obtained from the SLIM program by means of a post-
processing progran which uses the results file from SLIM as input. This

90

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

rogram, called SL1IMPLOYT, requests the name of the results file, togethgr
ith information about the channels of the output to be plotted. Both time
istory plots and x-y plots can be produced by SLIMPLOT.

he first few items in the output files produced by the SLIM progranm provide
nformation about the simulation run and about the internal organisation of
he output file, as specified above. This information, which must appear in

he standard format described in Section 2 (c) above, provides the post-
rocessing program with essential information which allows it to interpret

he simulation data which follows.

INSTRUCTIONS FOR INSTALLATION AND USE OF SLIM

‘he software included on this diskette includes the SLIM.EXE program and the
yost-processing program SLIMPLOT.EXE for the display of results in graphical

‘orm. Example progranms discussed in Chapters 6, 8, 10, 11 and 12 of
icontinuous System Simulation" by D.J. Murray-Smith may also be found on the

ijiskette, together with the necessary input data files.

1.1 Hardware requirements

run on any IBM-compatible personal computer
~unning the Microsoft DOS (MS-DOS) operating system. A computer with at least
sn 80286 or 80386 microprocessor is preferred, although not essential. It is
1lso recommended that the computer has the 80287 or 80387 floating-point
so-processor which will significantly reduce the time required to obtain

results.

fhe SLIM and SLIMPLOT programs

GA, EGA or VGA display

A hard disk is desirable and the computer must have C
f 512k bytes of RAM

~apabilities. The computer should contain a minimum o
memory. A standard ASCII text editor is necessary.

4.2 Software installation

This section of the User'’s Guide provides practical information about the
steps to be followed in installing the SLIM software on your computer.

The README.DOC file on the diskette also provides details of procedures for
installation of the SLIM and SLIMPLOT software, including a list of the
names of all the files which are provided and any updated features.

SLIM and SLIMPLOT will run successfully from a floppy disk drive but most

users prefer to mount the software on their hard disk. To do this you should
create a new directory (normally named SLIM) on the hard disk. All files on
the distribution diskette should be transferred to this new directory. To
create such a directory use the normal DOS command:

mkdir slim

If you wish you could then create separate path-accessible sub-directories
for user files. However, for simplicity, it is assumed in the remainder of
these notes that all SLIM files are in the SLIM directory, that the default

hard disk drive is c: and that floppy disk drive is a:.

To transfer the files from the SLIM diskette to the hard disk place the
diskette in the a: drive and copy all the distribution files into the c:\SLIM

directory as follows:

copy a: *.* c:\slim

91

o) ARGESIM REPORTNO.5

It is important to make pack-up copies of all of the files supplied on the
distribution diskette prior to attempting to make use of the software.
The original diskette should be stored safely.

4.3 Starting and exiting SLIM

Make the SLIM directory the current directory by entering the DOS command
cd\slim. When the pOS prompt (in this case C:\SLIM>) appears type:

slim

and the SLIM progran should start to execute. It first requests the name of
the SLIM program file to pe run. From this point the sequence of operations
follows the pattern of the example of Section 6.6.4 of the book. Any error
messages relating to errors in translation or occurring at run time should
be self explanatory. Syntax errors detected at the translation stage should
provide a reference to the line in which the error was found but will not
pinpoint the precise nature of the error. It is necessary for the user to
examine the relevant section of code to determine why the translation has

failed. Comment lines are ignored in the line numbering systenm for SLIM
error messages.

It may be useful to use the VDPOLS.SLI program file from the example in
Section 6.6.4 of the book to ensure that you are using SLIM correctly
and that the results of Chapter 6 can be reproduced on your own computer.

At the end of a simulation run the user is provided with an opportunity to
carry out a further run with the same progranm through a query of the form:

DO YOU WANT ANOTHER RUN? (Y/N)

Responding N returns the user to DOS and the DOS prompt appears.

4.4 Useful hints for using SLIM

In preparing simulation programs using the SLIM language features described
in Chapter 6 and in this User’s Guide it is important to take note of the
following points:

a) A SLIM program must follow the conventions explained in Chapter 6 and

section 2 of this Guide. These conventions are similar in many respects
to the conventions for FORTRAN 4 or FORTRAN 77 programming.

b) It should be noted that executable code must start in column 7 of each
line of program. Columns 1 to 5 are reserved for labels or for use in
comment lines. Comments must start with an upper case ¢ in column 1.

c) In creating a SLIM program using a general-purpose text editor, use of
the TAB key should be avoided. The space bar should be used to move
the cursor to the required column (e.g. column 7).

d) No blank lines should be included in a SLIM program. The presence of a
blank line in a SLIM source program causes problems at the translation
stage and may cause the computer to 'hang’.

e) Line numbers quoted in connection with error messages relate to lines
involving SLIM language statements only. Lines involving comments are
not given line numbers.

£f) Continuation lines are not permitted in SLIM programs and care must be
taken to avoid lengthy statements which involve more than 70 characters

92

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

or spaces. Attempts to use longer statements in SLIM program may cause
the computer to ‘hang’ at the translation stage. Long statements must
be split into two or more statements, each occupying a separate line of

code.
g) The distinction between integer and real quantities is important and
involves the normal naming conventions of FORTRAN. Real and integer
quantities cannot be used in direct combination within a single

statement.
h) All executable statements in a SLIM program must involve only upper

case letters. Comments may involve upper case and lower case letters
but must include an upper case C in column 1.

i) When a syntax error is detected at the program translation stage a
number of messages may be displayed which appear to relate to syntax
errors in a number of different jines. If there is no apparent reason
for an error in one particular line check the statements in the other

lines for which syntax errors have peen reported. Clearing the error
reported in one line may eliminate the apparently meaningless errors
reported in other lines.

.5 Starting and exiting SLIMPLOT

LIMPLOT is extremely easy to use. It is entered using the following command:
slimplot

he program then prompts the user for the file name of the SLIM output file
hich is to be plotted. This is followed by a request to the user to select
‘he type of output file (y versus time or an x-y plot), the number of
rariables (in the case of an y-t plot) and the column numbers of the

rariables.

'he column numbers referred to in the SLIMPLOT prompts are the column numbers
irising from use of the TYPE statement to generate the output data

*yom the SLIM program. For example, if the output is obtained from a
statement of the form:

TYPE T,X1,X2,X3

there will be four columns in the output file. Column 1 involves values of T
(the independent variable) and columns 2 to 4 involve the corresponding
values of the dependent variables X1, X2 and X3. If one wanted to plot Xl
and X3 the columns to be entered in response to the prompt from the SLIMPLOT
program would be 2 and 4. These column numbers may be entered as:

2,4
or
2 4

Text can be inserted by the user to provide a main (top) title and up to two
titles which appear below the graph. Both upper and lower case characters may
be used in these titles.

When graphical output has been displayed on the screen and the user wishes to
move on to a further stage of processing pressing the ENTER key clears the
graphical output from the screen and causes a new menu to appear. This has
one option which allows the user to exit from the SLIMPLOT program and others
which allow further plots to be produced.

4.6 Useful hints for using SLIMPLOT

93

2ol) ARGESIM REPORT NO.S

The following points should be noted:

a) Problems will be encountered if the number of time steps in a SLIM
output file is greater than the maximum allowed by SLIMPLOT.
If the maximum is exceeded an error message is displayed during the
running of the SLIMPLOT program. The SLIM program should then be re-run
with an increased communication interval (CINTERVAL) or a smaller
range for the independent variable. For problems where the
independent variable is time this means either increasing the time
step for the plot or reducing the length of the simulation run.

b) Hard copy output from SLIMPLOT is most easily obtained using the DOS
GRAPHICS command and the use of the Print Screen key. An alternative,
if an appropriate printer is available, is to make use of the printer
or plotter facilities in the 1ist of output devices which is displayed

during the running of SLIMPLOT.

5. EXAMPLES

Chapters 6, 8, 10, 11 and 12 of "Continuous System simulation" include
examples of SLIM programs. SLIM program files and data files for these
examples are provided on this diskette. The program files all involve file
names with a .SLI extension, while the input data files all involve files
with a .IN extension. Filenames are the same as those used in the relevant
chapters. It should be possible in each case to reproduce results presented
in tabular or graphical form in the book.

6. COMPARISONS OF SLIM WITH WIDELY-USED SIMULATION LANGUAGES

SLIM is intended to provide beginners with an introduction the principles of
continuous system simulation and has been designed as an inexpensive

but reasonably versatile teaching tool. It is not intended to compete
directly with commercially-supported languages. SLIM is most suitable for
relatively small simulation problems. It does conform to many of the
conventions of the CSSL specification and provides a convenient, efficient
and easily-used tool. Having gained some initial experience with SLIM

the user should be able to move on without difficulty to make use of other
more powerful languages, such as ACSL.

The maximum number of state variables which can be accommodated within a SLIM
simulation program using the version of the SLIM software which accompanies
the book "Continuous System Simulation" is 40. This is not seen as imposing
any serious restriction on the average beginner. All of the examples and case
studies considered involve less than ten state variables. The maximum number
of statements allowed within a SLIM program is 250. Once again typical
applications involve much smaller programs. Some other simulation languages,
such as ACSL, do not impose limitations of this kind.

While the restrictions in terms of program size are not thought to represent
1imits which are likely to be approached by the beginner, it is important to
understand that languages such as CSSL 1V, ACSL and DESIRE provide many
features which are not available within SLIM. Some of these restrict the
type of system which can be modelled using SLIM and others limit the options
available to the user at run time. The sub-set of facilities incorporated

in SLIM has been chosen to allow the beginner to gain experience rapidly,
without having to deal with the complexities associated with features in mor
comprehensive languages. A careful examination of the user manual for each
specific language allows the potential user to establish the precise

differences in every case.

94

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

e absence of ftacilities to model a pure time delay (transport delay) 18 one
portant example of a feature. available in many simulation tools, which has
t been included within the version ol SLIM provided with "Continuous

stem Simulation”. The lack of any facility to represent a function in
bular form is another example of a potentially useful feature which has

't been included. Sorting facilities and facilities for sub-models are also
t provided within SLIM. Simulation problems which require the use of
.cilities such as transport delays and function tables cannot therefore be
«ckled using SLIM, unless the problem can be reformulated in some way to
low it to be solved within the limitations of the language. Some other
itnguages, such as ACSL, provide a much more extensive set of facilities

\d therefore provide much more flexibility at the model definition stage.

1 comparison with ACSL and other similar languages SLIM has limited
wpabilities in terms of run-time options. There is no real separation of

ie model definition and the experiment in SLIM. Changes of parameters
:quire editing of the simulation program itself or changes of an associated
‘ta file. However, flexibility is avalilable in terms of output display
icilities in SLIM because of the fact that the graphical output options

wolve a separate post-processing program.

IM can be extremely effective when learning about the principles of
‘mulation and when used for the solution of problems for which its
icilities are appropriate. It is important, however, to understand its
‘mitations and to have an appreciation of the additicnal facilities of the

>ftware products which are available commercially.

DISCLAIMER

L1 parties must rely on their own skill and judgement when making use of
te SLIM and SLIMPLOT software. Neither the author nor the publishers
ssume any liability to anyone for any loss or damage caused by any error
- omission in the work, whether such error or omission is the result of
sgligence or any other cause. Any and all such liability is disclaimed.

. ACKNOWLEDGEMENTS

se features included in this version of the SLIM language are, as explained
1 Section 1 of this User’s Guide, a subset of the features considered
ssirable for equation-oriented continuous system simulation languages, as
acommended in 1967 by the relevant Simulation Councils inc. technical
smmittee. In considering the features to incorporate in this simulation
anguage, which has been designed specifically for teaching applications,
number of existing simulation tools were reviewed. One existing languadge
nich has had a particularly strong influence on SLIM is the MIMESIS

anguage which was developed by Ian Ricketts at the University of Dundee and
as described in his Ph.D. dissertation in 1977 (Ricketts,I.W. "MIMESIS - A
ontinuous System Simulation Language", Ph.D. Thesis, University of Dundee,
977). SLIM and MIMESIS are both based on the principles of syntax-driven
arsers as described by R.L. Gauthier and R.D. Ponto in their text entitled
Designing Systems Programs" (Gauthier, R.L. and Ponto, R.D. "Designing
ystem Programs", Prentice-Hall, New Jersey, 1970). Many features of the
nstruction set of SLIM are similar to those of MIMESIS, although the internal
tructure of the SLIM program and the detailed coding are different.
xperience gained in using the MIMESIS software has been of particular value
n the development of SLIM and the author is very grateful to Dr. Ricketts
or making MIMESIS available.

he author also wishes to record his thanks to present and former students
n the Department of Electronics and Electrical Engineering at the University

95

“o)ln) ARGESIM REPORT NO.5

of Glasgow who have assisted in the development of the SLIM software. A

number of student projects have been associated with the application of SLIM
to practical engineering problens and these have provided valuable information
about the range of problems which can be tackled conveniently using this
software. Very helpful feedback has also been provided freely py students who
have used SLIM in connection with courses in computer simulation methods, in
control engineering and in avionic systems at undergraduate and post-graduate

level.

The software has undergone much revision and modification during the

course of its development. Work on SLIM began in 1991 during a period of
sabbatical leave which was spent at the Technical University of Vienna.

The author is very grateful to Professor Dr. Felix Breitenecker of the
Department of Ssimulation Techniques at the Technical University of Vienna
for his assistance and support in making that visit possible and to the
University of Glasgow for providing the necessary leave of absence. Without
the opportunity provided by this period of uninterrupted work it is unlikely
that SLIM would have been developed.

The graphical routines included in the SLIMPLOT program are part of the NAG
Graphics Library. This product contains a collection of over 100 carefully
designed routines which provides FORTRAN and C programmers with a versatile
means of producing a graphical representation of numerical and statistical
results. It is used worldwide in commerce, financial modelling, industry
academic research and many other areas, and is available for a wide
spectrum of machines. Interfaces are also supplied to the most commonly used
plotting packages. NAG also provide a wide range of other products such as
mathematical and statistical routines in FORTRAN, C, Pascal and Ada: FORTRAN
90 compilers and tools: symbolic solvers: data visualization software: linear
programming software and a gateway generator which automatically generates
MATLAB gateway. For further information, a gquotation or details of vour local

distributor please contact:

Sales Department
NAG Ltd.
Wilkinson House
Jordan Hill Road
oxford 0X2 9BX
United Kingdom.

96

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

SLIM - A Simple Continuous System Simulation Language

USER’S GUIDE

D.J. Murray-Smith

Department of Electronics and Electrical Engineering
University of Glasgow

(as distributed on
by D.J. Murray-

Glasgow G12 8QQ
Scotland
United Kingdom

Version 1.0

July 1994

diskette with the book "Continuous System Simulation",

Smith, published by Chapman and Hall, London, 1994)

97

2ol) ARGESIM-REPORT NO.5

1. INTRODUCTION

The name SLIM stands for "A simulation Language for Introductory Modelling".
It involves a subset of the CcSSL Standard established by the Sci Technical
Committee in 1967. SLIM has been developed specifically as a language
through which those new to continuous system simulation can be introduced
to the principles of the subject.

The SLIM software included on the diskette which accompanies the book
wCcontinuous System Simulation" by D.J. Murray-Smith is the most basic
version of the SLIM family. Only one integration method is available (a
variable-step method) and features such as function tables, pure delays, the
use of arrays, the use of multiple DERIVATIVE sections, sub-model
capabilities, sorting etc. are not provided. Such features may be found in
many commercially-supported simulation languages. SLIM provides only the
most basic simulation facilities but it is a very easily-used simulation
tool and, with a little ingenuity, can be applied to a remarkably wide range
of problems, as shown by the examples of Chapter 8 in the book and by the
case studies in later Chapters.

Detailed practical information concerning the installation of the SLIM
software and on the preparation and running of SLIM programs may be found

in Section 4 of this Guide. This information is specific to the version of
SLIM included on the diskette accompanying the book. Oother versions of SLIM
nave been developed which incorporate additional facilities and are suitable
for use with other operating systems, such as VMS and UNIX. A version has
also been produced for use on a parsytec parallel processor system under

the PARIX systenmn.

The SLIM software consists of a language processor which has been written in
FORTRAN 77 which is capable of translating and interpreting programs written
using the special SLIM instruction set. This instruction set involves a small
subset of FORTRAN together with a number of the special CSSL instructions
needed for simulation applications. SLIM, like many other examples of
application—specific software systems, is pbased upon the use of a syntax-
driven parser with a separate executor routine. The language processor first
parses the user’s program and detects any statements which are invalid. Once
the validity of the complete program has been established, the software
produces intermediate code which is not seen by the user but which can be

interpreted by the executor routine.
2. THE SYNTAX OF THE SLIM LANGUAGE

SLIM follows the principles of the 1967 CSSL standard and the syntax has
much in common with ACSL and other widely used languages. There are, however
no explicit INITIAL and TERMINAL statements and the structure of the program
is defined only through DYNAMIC, DERIVATIVE, DERIVATIVE END and DYNAMIC END
statements.

It should be noted that SLIM follows some of the conventions of FORTRAN and,
in accordance with the standard for that language, all progran statements
in SLIM must begin at, or to the right of, the seventh column of a program
line. The first five columns are used only for comments oOr labels. Comments
are indicated by the character /¢’ in the first column of the line and are

98

COMETT - COURSE-"EUZZY-S¥STEMS AND CONTROL"—————— : -

nored completely in the translation process. Labels must be numeric symbols
d may be entered in any or all of the first five columns. The sixth column
st always contain a space unless the line in question is a comment line.
per case characters must be used throughout, except for comments which may
volve upper or lower case characters, as desired. Blank lines should not
included in a $LIM program and tab facilities should not be used to insert

aces.

the fact that the two types of variable
fined within SLIM, integer variables and real variables, are distinguished
.cording to the letter of the alphabet with which the variable name starts.

1 integer variable names must begin with the letters 1,J,K,L,M and N
lereas real variable names must start with any other letter of the alphabet.

,al variables and constants may have magnitudes in the range 1.18E-38 to
40E+38 while integer variables and constants must have magnitudes in the

inge 0 to 32768.

. additional link with FORTRAN is

ation of letters and numerals (after the

iriable names may involve any combin
be a letter) but can only have six

rst character which must of course
jaracters in total.

camples of valid real variables are:

VALUE
VALUE!L
GAIN
ACC2A

xamples of valid integer variables are:

INVALS
MPOINT
NFLAG
KP

ecal constants are exemplified by:

1.0
3.142
4 .8E~7
6E4

nd integer constants by:

1
567
22141

ided conveniently into general-purpose
normal facilities for numerical programming
t high-level programming languades. and
1 significance for simulation.

‘tatements in SLIM may be div
;tatements which provide the
\nd which have counterparts in mos
-hose statements which are of specia

ressions are evaluated

£ should be noted that in the SLIM language exp
The order of evaluation

sccording to the normal operator precedence rules.
is therefore as follows:

** raising to a power
*,/ multiplication or division
+,- addition or subtraction

99

ol) ARGESIM REPORTNO.S e o _ .

It should be noted that SLIM statements must not extend beyond one line of
code since there is no facility in the language for any form of continuation
line. Complex expressions may therefore have to be split initially into a
number of smaller expressions and combined at a later stage in the program.

i) GENERAL-PURPOSE STATEMENTS
a) INTEGER AND REAL ASSIGNMENTS
This type of statement takes the general form:

Real variable = Real expression
or Integer variable = Integer expression

Examples of this type of assignment are:

VELOCY=(7.5-DISTCE)/4.982
IVALUE=8+7*K

Note that mixed expressions involving combinations of integers with real
variables or constants are not permitted and if detected will be rejected
as a syntax error.The functions FLOAT and IFIX may be used for data type

conversion to overcome this limitation.

Real intrinsic functions available within SLIM which may be included within
Real Assignment statements are as follows:

ABS,ALOG,ATAN,COS,EXP,FLOAT,SIN,SQRT and RND.

All these functions except RND are quite standard and have the same role

as the correspondingly named functions in FORTRAN. All except FLOAT involve
real arguments and give real results. FLOAT requires an integer argument
and produces a real result.

The function RND generates uniformly distributed random nunmbers having
values which lie between 0.0 and 1.0. The seed value used for random number
generation is determined by the argument used in calling the function. Ten
different seed values are available. All values of the argument which are
less than 2.0 lead to the use of one particular seed, values equal to or
greater than 2.0 but less than 3.0 lead to use of a second predetermined
seed value and so on for all other similar intervals in the range 3.0 to
10.0.. All argument values of 10.0 or greater lead to the use of the tenth
seed value.

The only integer intrinsic function in SLIM is IFIX. It can be used in the
same way as the corresponding function in FORTRAN. It requires a real
argument and returns an integer result.

b)INPUT STATEMENT

Input of data in SLIM is from a file named by the user. The form of the Input
statement is as follows:

ACCEPT variable list

The variable list contains variable names which can be of either real or
integer type. An example of this type of SLIM assignment is:

ACCEPT VALUE,CONST,GAIN

100

COMETT - COURSE*FUZZY SYSTEMS AND CONTROL" ™ "~~~ 777

YOUTPUT STATEMENT

k but may also appear in

utput is always written to a named file on dis
the Output statement is:

abular form on screen if desired. The form of
TYPE variable list

.g. TYPE VALUE,CONST,GAIN
TYPE J,IVAL

he variable list within an Output statement must only involve variables of
ne type. A mixture of integer and real variables in a single variable list
s not permitted in an Output statement. The first few items in the output
‘ile provide information about the conditions selected within the simulation
.un and are written to the file automatically. These include three integers
yroviding system programming information which are not of direct interest to
he user followed by the values of the communication interval, the absolute
nd relative error parameters used in the program, and the minimum interval.

‘he next items have to be included in the output file but require the
‘nclusion of TYPE statements in the SI,IM source program for the simulation.
hey involve, in order, the number of channels in the output (say NCH), the
jumber of samples used in the simulation run (say NSA) and the communication
nterval (say SAM). Every SLIM program must therefore include, at the end of

-he initial segment, three lines such as:

TYPE NCH
TYPE NSA
TYPE SAaM

shere NCH is the integer constant representing the number of output variables
(including the independent variable where appropriate), NSA is the integer
~onstant representing the number of sanmples over the complete time history
Sfeach variable and SAM is the real constant representing the communication
interval. It is, of course, important that these three quantities be written
to the output file in this particular order and that they should be the first
items output from the simulation program. It should be noted that in all
cases the quantities NSA and SAM must be chosen to be consistent with the
interval of the independent variable (usually time) over which the results
are required. If, for example the independent variable has an initial value
T7=0.0 and a final value T=TMAX in the simulation program the guantities NSA
and SAM must be such that their product is equal to TMAX.

Inmediately after this it is normal to output the initial values of the
independent variable and of the system variables of interest. Four TYPE
statements therefore normally appear within the initial segment of any SLIM

simulation program for which an output file is required.

d) ARITHMETIC IF STATEMENT

The syntax of an Arithmetic IF statement is as follows:
IF(arithmetic expression) Label 1, Label 2, Label 3

When this tvpe of statement is executed the arithmetic expression is

evgluated and control passes to Label 1 if the result is negative, to Label
5> if the result is zero and to Label 3 if the result is positive. Examples of

such a statement are as follows:

101

(&) ARGESIMREPORTNO.S * -

IF(VELOCY-THRESH)175.90,90
IF(IVAL-K)10,20,30

In the first case the expression (VELOCY-THRESH) 1s evaluated and control is
passed to the statements in lines labelled 175 or 90 depending on sidgn of the
result. In the second case the integer result from the evaluation of the
expression (IVAL-K) determines whether control passes to the statements with
labels 10, 20 or 30. It should be noted that in the case of real expressions
the condition corresponding to the result being zero is not of practical
value due to problems of round-off and other inaccuracies in real arithmetic

e) GOTO STATEMENT

This statement causes the normal sequential process of program statement
execution to be interrupted. Control is passed unconditionally to the line
which has the label contained in the GOTO statement. For example, the
following section of program:

X=1.0

40 TYPE X
X=(X+10.0)/2.0
GOTO 40

would produce an endless loop which, if executed, would produce an output
sequence as follows:

5.50
7.75
8.875
9.4375
etc.

f) CONTINUE STATEMENT

A CONTINUE statement is a dummy execution statement and simply causes contro]
to be passed to the next statement in the program.

g) STOP STATEMENT

A STOP statement causes execution to cease. This is usually the last
executable statement in a SLIM program. Like all other executable statements
it can be given a label.

h) END STATEMENT

The purpose of an END statement is to indicate the end of the program. It
must therefore always be the last statement and since it is not executable
it cannot be given a label.

ii) SPECIAL-PURPOSE SIMULATION STATEMENTS
a) DYNAMIC STATEMENT

The DYNAMIC statement is used to jndicate the start of the dynamic segment
of the simulation program. In SLIM only one dynamic segment is allowed
within a program. On entering the dynamic segment the processor assigns
initial values to the integration variables which are evaluated within the
derivative section. The dynamic segment contains the derivative section and
the segment is therefore in two parts, one above the derivative section

and the other below it.

102

COMETT - COURSE "FUZZY SYéTEMS AND CONTROL'V'H

Y DERIVATLVE STATEMENT

of the derivative section
The ditferential eauations
lation model are normally

he DERIVATIVE statement indicates the beuinnind
hich lies entirely within the dvnamic seament.
nd other equations which def ine the dynamic simu
.ontained within this section.

:) DERIVATIVE END STATEMENT

‘he DERIVATIVE END statement defines the end of the derivative section. It
‘ndicates that all the integral assignments have been evaluated and the
jumerical integration routine is called. On returning from the integration
-outine the problem variables are all updated. Once control has been passed
nto the derivative section it will not be passed beyond the DERIVATIVE END
statement until a new communication interval is about to start. If the

start of a new communication interval has not been reached control is passed
sack to the start of the derivative section and the integration process is
-epeated with the updated variables. This continues until, at the appropriate
-ime determined by the communication interval, control is transferred from
-he derivative section to the second part of the dynamic segment but without

re-assignment of initial values.

i) DYNAMIC END STATEMENT

The DYNAMIC END statement signifies the end of the dvnamic segment. In order

to enter the region of the SLIM program lying beyond the DYNAMIC END

statement control must be transferred explicitly by means of a GOTO or

Arithmetic IF statement.
e)INTEGRAL ASSIGNMENT STATEMENT

Each first order differential equation gives rise to an Integral Assignment

statement. This type of statement has the form:
Real variable=INTEG(real expression, initial value)
where | initial value=real variable or real constant
An example of a statement of this kind could have the following form:
X1=INTEG(V*W,X1INIT)

This indicates that the real expression V*W is to be evaluated and from this
the real variable X1 is to be calculated by integration with respect to the

independent variable (normally time). The initial condition for this
integration operation is provided by the real variable X1INIT which must have
peen defined at an earlier stage in the prodgram (usually in the initial

segment).

f) CINTERVAL STATEMENT

The CINTERVAL statement sets the communication interval which defines the
increment of the independent variable at which control is passed from the
derivative section to the dynamic segment. The format of this statement is

as follows:

CINTERVAL(unsigned real constant or real variable)

For example the statement

103

Srolbin.) ARGESHM REPORT NO.5 -

CINTERVAL(0.2)

will cause control to be passed from the derivative section to the dvnamic

segment every 0.2 units of the independent variable (e.g. every 0.2 sec.).

The default communication interval is 1.0 and this value is used in any

program in which no CINTERVAL is defined explicitly.

It should be noted,incidentally, that the default initial value of the

independent variable in a SLIM simulation is zero. Other initial values are

possible but must be set by the user using an assignment statement such as:
T=1.6

g) MINTERVAL STATEMENT

This statement defines the smallest step size allowed for a variable step
length method. If this lower limit is reached an error messade is displayed
on the screen and control of the program is returned to the user. The
MINTERVAL statement has the general form:

MINTERVAL (unsigned real constant or real variable)
e.g. MINTERVAL(1l.0E-5)
The default is MINTERVAL(1.0E-4).
h) XERROR STATEMENT
The XERROR statement is used to set the maximum absolute error that can be
accepted in the results of the variable step length numerical integration.
The value is defined on a basis of the error per integration step. The
variable step length routine used within SLIM either satisfies the
requirement defined in the XERROR statement or indicates to the user that the
step length has reached the minimum. The form of the statement is:

XERROR(unsigned real constant or real variable)
A typical example is :

XERROR(1.0E-5)
The default value corresponds to XERROR(1.0E-4).
i) MERROR STATEMENT
This statement is similar to XERROR but sets the maximum relative error (per
integration step). Again the requirement is satisfied automatically unless
the user is otherwise informed through an error message. The format of the
MERROR statement is similar to CINTERVAL, MINTERVAL and XERROR and a typical
example is:

MERROR(1.0E-4)
which would set the value to the default.
3. OUTPUT FACILITIES AND GRAPHICS

Graphical output may be obtained from the SLIM program by means of a post-

processing program which uses the results file from SLIM as input. This

104

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

-ogram, called SLIMPLOT, requests the name of the results file, togethgr
th information about the channels of the output to be plotted. Both time
.story plots and x-y plots can be produced by SLIMPLOT.

files produced by the SLIM program provide
run and about the internal organisation of
This information, which must appear in
ve, provides the post-
h allows it to interpret

se first few items in the output
~formation about the simulation
i1e output file, as specified above.
re standard format described in Section 2 (c) abo
rocessing program with essential information whic
ne simulation data which follows.

INSTRUCTIONS FOR INSTALLATION AND USE OF SLIM
ludes the SLIM.EXE program and the

he software included on this diskette inc
ost-processing program SLIMPLOT.EXE for the display of results in graphical

orm. Example programs discussed in Chapters 6, 8, 10, 11 and 12 of
Ccontinuous System Simulation" by D.J. Murray-Smith may also be found on the

iskette, together with the necessary input data files.

.1 Hardware requirements

S run on any IBM-compatible personal computer
unning the Microsoft DOS (MS-DOS) operating system. A computer with at least
n 80286 or 80386 microprocessor is preferred, although not essential. It is
1so recommended that the computer has the 80287 or 80387 floating-point
o-processor which will significantly reduce the time required to obtain

esults.

he SLIM and SLIMPLOT program

. hard disk is desirable and the computer must have CGA, EGA or VGA display
apabilities. The computer should contain a minimum of 512k bytes of RAM
lemory. A standard ASCII text editor is necessary.

.2 software installation

‘his section of the User’s Guide provides practical information about the

steps to be followed in installing the SLIM software on your computer.

"he README.DOC file on the diskette also provides details of procedures for
nstallation of the SLIM and SLIMPLOT software, including a list of the

james of all the files which are provided and any updated features.

sLIM and SLIMPLOT will run successfully from a floppy disk drive but most
isers prefer to mount the software on their hard disk. To do this you should
~reate a new directory (normally named SLIM) on the hard disk. All files on
the distribution diskette should be transferred to this new directory. To
~reate such a directory use the normal DOS command:

nkdir slim

If you wish you could then create separate path-accessible sub-directories
for user files. However, for simplicity, it is assumed in the remainder of
these notes that all SLIM files are in the SLIM directory, that the default

hard disk drive is c: and that floppy disk drive is a:.

M diskette to the hard disk place the

To transfer the files from the SLI
all the distribution files into the c:\SLIM

diskette in the a: drive and copy
directory as follows:

copy a: *.* c:\slim

105

ARGESIM REPORTNO.S

ant to make back-up copies of all of the files suppl ied on the
tte prior to attempting to make use of the software.
hould be stored safely.

[t is import
distribution diske
The original diskette s

4.3 Starting and exiting SLIM

directory by entering the DOS command

\SLIM>) appears type:

Make the SLIM direc
cd\slim. When the D

tory the current
0S prompt (in this case C:

slim

It first requests the nameé of
the sequence of operations
.4 of the book. Any error
at run time should
lation stage should

to execute.

and the SLIM progranmn should start
From this point

the SLIM program file to be run.
follows the pattern of the example of Section 6.6
messages relating to errors in translation or occurring
be self explanatory. Syntax errors detected at the trans
provide a reference to the line in which the error was found pbut will not
pinpoint the precise nature of the error. It is necessary for the user to
examine the relevant section of code to determine why the translation has
failed. Comment lines are ignored in the 1ine numbering system for SLIM
error messages.

am file from the example in
g SLIM correctly
computer.

It may be useful to use the VDPOLS.SLI progr
Section 6.6.4 of the pbook to ensure that you are usin
and that the results of Chapter 6 can be reproduced on your own

ed with an opportunity to
ery of the form:

n the user is provid
the same progranm through a du

At the end of a simulation ru
carry out a further run with

DO YOU WANT ANOTHER RUN? (Y/N)

Responding N returns the user to pos and the DOS prompt appears.

4.4 Useful hints for using SLIM

language features described
ortant to take note of the

rograms using the SLIM
User‘’s Guide it is imp

In preparind simulation p
in Chapter 6 and in this
following points:

d in Chapter 6 and
lar in many respects

w the conventions explaine
Section 2 of this Guide. These conventions are simi
to the conventions for FORTRAN 4 or FORTRAN 77 prog
It should be noted that execu
1ine of program. Columns 1 to 5 are rese
comment lines. Comments must start with a
In creating a SLIM program using a genera

a) A SLIM program must follo

b)

n upper case C in column 1.

c) 1-purpose text editor, use of

the TAB key should be avoided.
the cursor to the required

d) No blank 1ines should be in

The space bar should be used to move
column (e.g. column 7).

cluded in a SLIM program. The presence of a

blank line in a SLIM source program causes problems at the translation
stage and may cause the computer to ‘hang’.

Line numbers guoted in connection with error
involving SLIM language statements only. Lines involvin
not given line numbers.
Continuation lines are
taken to avoid lengthy statements w

messages relate to lines
g comments are

e)

rams and care nust be
ore than 70 character

not permitted in SLIM prog
hich involve m

£)

106

COMETT - COURSE-"EUZZ¥-S¥STEMS AND CONTROL™

or spaces. Attempts to use longer statements in SLIM program may cause
the computer to ‘hana’ at the translation stage. Long statements must
be split into two or more statements, each occupying a separate line of
code.

a) The distinction between integer and real quantities is important and

involves the normal naming conventions of FORTRAN. Real and integer

quantities cannot be usied in dircct combination within a single
statement.

h) All executable statements in a SLIM program must involve only upber
case letters. Comments may involve upper case and lower case letters
but must include an upper case C in column 1.

i) when a syntax error is detected at the program translation stage a
number of messages may be displayed which appear to relate to syntax
errors in a number of different lines. If there is no apparent reason
for an error in one particular line check the statements in the other
lines for which syntax errors have been reported. Clearing the error
reported in one line may eliminate the apparently meaningless errors
reported in other lines.

1.5 Starting and exiting SLIMPLOT
SLIMPLOT is extremely easy to use. It is entered using the following command:
slimplot

rhe program then prompts the user for the file name of the SLIM output file
Jhich is to be plotted. This is followed by a request to the user to select
the type of output file (y versus time or an x-y plot), the number of
variables (in the case of an y-t plot) and the column numbers of the
variables.

The column numbers referred to in the SLIMPLOT prompts are the column numbers
arising from use of the TYPE statement to generate the output data

from the SLIM program. For example, if the output is obtained from a
statement of the form:

TYPE T,X1,X2,X3

there will be four columns in the output file. Column 1 involves values of T
(the independent variable) and columns 2 to 4 involve the corresponding
values of the dependent variables X1, X2 and X3. If one wanted to plot X1
and X3 the columns to be entered in response to the prompt from the SLIMPLOT
program would be 2 and 4. These column numbers may be entered as:

2,4
or
2 4

Text can be inserted by the user to provide a main (top) title and up to two
titles which appear below the graph. Both upper and lower case characters may
be used in these titles.

When graphical output has been displayed on the screen and the user wishes to
move on to a further stage of processing pressing the ENTER key clears the
graphical output from the screen and causes a new menu to appear. This has
one option which allows the user to exit from the SLIMPLOT prodgram and others
which allow further plots to be produced.

4.6 Useful hints for using SLIMPLOT

107

%ol lin.) ARGESIM-RERORT NO.S s S

The following voints should be noted:

a) Problems will be encountered if the number of time steps in a SLIM
output file is greater than the maximum allowed by SLIMPLOT.
If the maximum is exceeded an error message is displayed during the
running of the SLIMPLOT program. The SLIM program should then be re-run
with an increased communication interval (CINTERVAL) or a smaller
range for the independent variable. For problems where the
independent variable is time this means either increasing the time
step for the plot or reducing the length of the simulation run.

b) Hard copy output from SL,IMPLOT is most easily obtained using the DOS
GRAPHICS command and the use of the Print Screen key. An alternative,
if an appropriate printer is available, is to make use of the printer
or plotter facilities in the list of output devices which is displayed
during the running of SLIMPLOT.

5. EXAMPLES

Chapters 6, 8, 10, 11 and 12 of "Continuous System Simulation®” include
examples of SLIM programs. SLIM program files and data files for these
examples are provided on this diskette. The program files all involve file
names with a .SLI extension, while the input data files all involve files
with a .IN extension. Filenames are the same as those used in the relevant
chapters. It should be possible in each case to reproduce results presented
in tabular or graphical form in the book.

6. COMPARISONS OF SLIM WITH WIDELY-USED SIMULATION LANGUAGES

SLIM is intended to provide beginners with an introduction the principles of
continuous system simulation and has been designed as an inexpensive

put reasonably versatile teaching tool. It is not intended to compete
directly with commercially-supported languages. SLIM is most suitable for
relatively small simulation problems. It does conform to many of the
conventions of the CSSL specification and provides a convenient, efficient
and easily-used tool. Having gained some initial experience with SLIM

the user should be able to move on without difficulty to make use of other
more powerful languages, such as ACSL.

The maximum number of state variables which can be accommodated within a SLII
simulation program using the version of the SLIM software which accompanies
the book "Continuous System Simulation" is 40. This is not seen as imposing
any serious restriction on the average beginner. All of the examples and cas
studies considered involve less than ten state variables. The maximum number
of statements allowed within a SLIM program is 250. Once again typical
applications involve much smaller programs. Some other simulation languages,
such as ACSL, do not impose limitations of this kind.

While the restrictions in terms of program size are not thought to represent
limits which are likely to be approached by the beginner, it is important tc
understand that languages such as CSSL 1V, ACSL and DESIRE provide many
features which are not available within SLIM. Some of these restrict the
type of system which can be modelled using SLIM and others limit the options
available to the user at run time. The sub-set of facilities incorporated
in SLIM has been chosen to allow the beginner to gain experience rapidly,
without having to deal with the complexities associated with features in mor
comprehensive languages. A careful examination of the user manual for each
specific language allows the potential user to establish the precise
differences in every case.

108

COMETT - COURSE'FUZEY-S¥SFEMSAND CONTROE—— . - S

ve absence ol factlities to model a pure time delay (transport delay) LE One:
aportant example of a feature. avallable in many simulation tools, which has
5t been included within the version of SLIM provided with "Continuous

ystem Simulation™. The lack of any facility to represent a function in
abular form is another example of a potentially useful feature which has

>t been included. Sorting facilities and facilities for sub-models are also
ot provided within SLIM. Simulation problems which require the use of
acilities such as transport delays and function tables cannot therefore be
ackled using SLIM, unless the problem can be reformulated in some way to
llow it to be solved within the limitations of the language. Some other

anguages, such as ACSL, provide a much more extensive set of facilities

nd therefore provide much more flexibility at the model definition stage.

n comparison with ACSL and other similar languages SLIM has limited
apabilities in terms of run-time options. There is no real separation of

he model definition and the experiment in SLIM. Changes of parameters
equire editing of the simulation program itself or changes of an associated
ata file. However, flexibility is available in terms of output display
acilities in SLIM because of the fact that the graphical output options

nvolve a separate post-processing program.

LIM can be extremely effective when learning about the principles of
imulation and when used for the solution of problems for which its
acilities are appropriate. It is important, however, to understand its
imitations and to have an appreciation of the additional facilities of the
oftware products which are available commercially.

. DISCLAIMER

11 parties must rely on their own skill and judgement when making use of
he SLIM and SLIMPLOT software. Neither the author nor the publishers
ssume any liability to anyone for any loss or damage caused by any error
r omission in the work, whether such error or omission is the result of
egligence or any other cause. Any and all such liability is disclaimed.

. ACKNOWLEDGEMENTS

‘he features included in this version of the SLIM language are, as explained
n Section 1 of this User’s Guide, a subset of the features considered
lesirable for equation-oriented continuous system simulation languages,
-ecommended in 1967 by the relevant Simulation Councils inc. technical
.ommittee. In considering the features to incorporate in this simulation
.anguage, which has been designed specifically for teaching applications,

. number of existing simulation tools were reviewed. One existing languade
jhich has had a particularly strong influence on SLIM is the MIMESIS

.anguage which was developed by Ian Ricketts at the University of Dundee and
jas described in his Ph.D. dissertation in 1977 (Ricketts,I.W. "MIMESIS - A
‘ontinuous System Simulation Language", Ph.D. Thesis, University of Dundee,
.977). SLIM and MIMESIS are both based on the principles of syntax-driven
sarsers as described by R.L. Gauthier and R.D. Ponto in their text entitled
Designing Systems Programs" (Gauthier, R.L. and Ponto, R.D. "Designing

jystem Programs", Prentice-Hall, New Jersey, 1970). Many features of the
nstruction set of SLIM are similar to those of MIMESIS, although the internal
structure of the SLIM program and the detailed coding are different.
ixperience gained in using the MIMESIS software has been of particular value
in the development of SLIM and the author is very grateful to Dr. Ricketts

for making MIMESIS available.

as

lhe author also wishes to record his thanks to present and former students
in the Department of Electronics and Electrical Engineering at the University

109

ol) ARGESTM REPORT NO.S

of Glasgow who have assisted in the development of the SLIM software. A

number of student projects have peen associated with the application of SLIM
to practical endgineering problens and these have provided valuable information
about the range of problems which can pe tackled conveniently using this
sottware. Very helptut | aodback has also boeen provided freely by students who
have used SLIM in connection with courses in computer simulation methods, in
control engineering and 1in avionic systems at undergraduate and post-graduate

level.

The software has undergone much revision and modification during the
course of its development. Work on SLIM began in 1991 during a period of

sabbatical leave which was spent at the Technical University of Vienna.

The author is very grateful to Professor Dr. Felix Breitenecker of the
Department of gimulation Technigues at the Technical University of Vienna
for his assistance and support in making that visit possible and to the
University of Glasgow for providing the necessary leave of absence. Without
the opportunity provided by this period of uninterrupted work it is unlikely

that SLIM would have been developed.

The graphical routines included in the SLIMPLOT program are part of the NAG
Graphics Library. This product contains a collection of over 100 carefully
designed routines which provides FORTRAN and C programmers with a versatile
means of producing a graphical representation of numerical and statistical
results. It is used worldwide in commerce, financial modelling, industry
academic research and many other areas, and is available for a wide

spectrum of machines. Interfaces are also supplied to the most commonly used
plotting packages. NAG also provide a wide range of other products such as
mathematical and statistical routines in FORTRAN, C, Pascal and Ada; FORTRAN
90 compilers and tools: symbolic solvers: data visualization software; linear
programming software and a gateway generator which automatically generates
MATLAB gateway. For further information, a guotation or details of vour local

distributor please contact:

Sales Department
NAG Ltd.
Wilkinson House
Jordan Hill Road
Ooxford 0X2 9BX
United Kingdom.

110

COMETT - COURSE "FuzzY SYSTEMS AND CONTROL"

1. Was ist Fuzzy-Logik?

X v 2,_,|.m3nmn,c3_ E‘ﬂ: .) l - . 4 e
woasna [FT T e oman Prof. Dr-ing. D.PF. Moler

111

ARGESIM REPORT NO.5

FUZZY-LOGIK

Methodik des $Og. unscharfen
SchlieBens

Subjektive Unbestimmtheit von
Begriffen

Mathematisch fundierte Methode;
erlaubt graduierbare oder vage
Pradikate

So far as the laws of mathematic
refer to reality they are not cer-tain;
And so far as they are certain

they do not refer to reality
(A.Einstein)

1. Beispiel:
Tarsache: Sokrates war ein Mensch
Wissen: Menschen sind sterblich

Schiuffolgerung: Sokrates ist ge-
storben

2. Beispiel:
Tatsache: Die Tomate hat eine leicht rotliche Farbe
Wissen: Eine rote Tomate ist reif

SchiuBfolgerung: Die Tomate ist nicht ganz reif

——/\ Lehrstuhi for Prof. Dr.-Ing. D.P.F. Méller

TU Clausthal

-
I I [l Technische Informatik

\/ FG: FUZZY-LOGIK

112

COMETT - COURSE "FUzzZY SYSTEMS AND CONTROL"

Klassische Logik versus Fuzzy Logik

Scharfe Menge charakterisiert durch zwei-
wertige Funktion

faA:(x) -> {0,1}
Unscharfe Mengen charakterisiert durch
Zugehornigkeitsfunktion

TuA(X)

Die Funktion f(x) wird als zweiwertig bezeichnet, da sie entweder

den Wert 0 oder 1 annimmt, je nachdem ob das Element x zur Menge A

gehort oder nicht. Die Menge { 0,1 } ist die Wertemenge von A.

Ist als Wartemenge das gesamte Intervall | 0,1] zugelassen, geht die

scharfe Menge A iiber in die unscharfe Menge A. SRR
Eine unscharfe Menge A wird durch eine verallgemeinerte charakteristische
Funktuion /uA gekennzeic;hmet: X:-->10,1], die Zugehorigkeitsfunktion

von A genannt wird und iiber einen (von Fall zu Fall geeignet festzulegenden)
Grundbereich x definiert ist.

Je dichter der Wert /uA(X) zu dem Wert 1 tendiert, desto mehr entspricht x

der Charakteristik der Menge A.

N\

TU Clausthal I f I 'rl Lehrstunl for Prof. Dr.-Ing. D.P.F. Mdller

Technische Informatik

\/ FG' FUZZY-LOGIK

113

ARGESIM REPORT NO.5

DEFINITION:

Sei X etn unscharfe Menge.

Eine unscharfe Menge (fuzzy set) A iiber X wird charakterisiert
durch eine Zugehdrigkeitsfunktion /uA(X), die jedem Element aus
X eine relle Zahl aus dem Intervall | 0,1 | zuordnet.

Der Wert von /uA an der Stelle X wird Zugehirigkeitsgrad von X

zur Menge A bezeichnet.

3. Beispiel:
Sie wollen sich ein Cello kaufen. Die von Ihnen favorisierten

Instrumente liegen zwischen DM 3.500,00 und 8.000,00.

GRUNDMENGE:
X={3500,--,4500,--,5600,--,7200,--,8000,--,8500,-- }

UNSCHARFE MENGE:
A={(3500,--,0.3),(4500,--,0.6),(5600,--,0.9),(7200,--,0.4),
(8000,--,0.3),(8500,--,0. 1) }

A Lehrstuhl for _ 2
TU Clausthal I f I [' T e fomatik P rof. Dr-Ing. D.P.F. Mdller

\/ FG: FUZZY-LOGIK

114

COMETT - COURSE "FUzzyY SYSTEMS AND CONTROL"

FUZZY-LOGIK

ist ein expandierender Markt!

1988 begann in Japan die Verbreitung des industriellen Einsat-
zes einer neuartigen Logik, die nicht mehr auf den absoluten
Aussagen der monokontexturellen Logik ,,wahr® und ,.falsch*®
bzw. ,ja“und ,nein“ beruhte. Fir diesen neuen Logiktyp
wurde der Begriff FUZZY-LOGIK eingefiihrt, der am treffend-
sten mit ,,unscharfe Logik* {ibersetzt werden kann.

SEPSE

N

woasra [F]] wmwte . Prof. Dr-ng. D.P.F. Moller

\/ FG: FUZZY-LOGIK

115

el) ARGESIM REPORT NO.5

FUZZY-LOGIC Marktanteile

o Es ist zu erwarten, daf 1995 fiir mehr als 2,5 Mrd DM
Gerédte im Bereich der Konsumelektronik verkauft werden,
z. B. Audio, Video, Haushalt, etc., mit einem Anteil von
2 - 15 DM an Bauteilen der Mikroelektronik

¢ Esist zu erwarten, da 1995 der Gesamtmarkt von Geriten
und Systemen mit FUZZY-LOGIK-Bausteinen eine Gréfen-
ordnung von ca. 6 Mrd DM haben wird.

¢ Im Jahr 2000 wird der Weltmarktanteil fiir , FUZZY-LOGIK-
HALBLEITER* auf ca. 15 Mrd DM geschitzt

N Lehrstuni for - #
weasea [F T) temwie " Prof. Dr-Ing. D.PF. Mdller

FG FUZZY-LOGIK

116

COMETT - COURSE "FUzZY SYSTEMS AND CONTROL"

Der Erfolg der FUZZY-LOGIC erklirt sich aus den vielen Vor-
teilen, die diese Logik mit sich bringt. Die mit FUZZY-LOGIC
realisierten Gerite sind beispielsweise wesentlich

e benutzerfreundlicher als Gerite, die auf den bisherigen
klassischen Verfahren basieren

o robuster und erfordern weniger Entwicklungszeit, bevor
sie in den Markt eingefiihrt werden kénnten, so daB eine
Just-in-Time-Entwicklung méglich ist

o weniger Regeln als vergleichbare Expertensysteme z. B.
bei Diagnoseanwendungen (Performancevorteil)

N Lehrstunl for - 4
weasna | FT) e . Prof. Dr-ing. DPF. Moller

\/ FG: FUZZY-LOGIK

117

ARGESIM REPORT NO.5

FUZZY-LOGIC basierte Regelung

¢ FUZZY-LOGIC wird z. Z. in hochentwickelten Syste-
men eingesetzt und reprisentiert bereits heute den nich-

sten Schritt der Entwicklung des sogenannten ,, Embedded
Control“

e Hochentwickelte Regler sind das erste Ziel fiir State-oi-
the-Art-Controller die auf FUZZY-LOGIC basieren

o Bereits fiir 1994 wird von einer Kostenreduzierung fiir
FUZZY-LOGIC-Bauteile erwartet, die es erlauben, auch
das Segment fiir die Routine-Regelung einzubeziehen, so-
genanntes LOW-END-CONTROLLER-Segment

o Insgesamt kann der FUZZY-LOGIC-Anteil im Controller-
Segment bereits heute auf ca. 40 % abgeschitzt werden

N

N Lehrstuhl fOr - F. Moller
TU Clausthal I f I [. Tgcﬁn\écne Informatik Prof. Dr. Ing. D.PF —

\/ FG: FUZZY-LOGIK

118

COMETT - COURSE "FUzzY SYSTEMS AND CONTROL"

2. Fuzzy-Logik in USA.J.D!

vossra [T TN et Prof. Dr-ing. D.PF. Moller

R ,,// \\\\
/ / FG: FUZZY-LOGIK

119

ARGESIM REPORT NO.5

MOOTAZZN 194 >

N\
BION '4d°a .m:_n.._D ‘1014 x_um::ohc_%p“mwﬁ:mwu__. -h.. H Lv H feyisne|d N4,

120

LIW Wioq TOULNOD AZZ N SNt Suniandisionesy

A103e10QR]
[euonEeN SOWeY SO Wi YIDOT AZZ N4 S[oNIw djjonuoysduesnz

VSVN 13p
199 YID0T AZZ N SIPNIW USYSS SI[UIYISeW UIZUNPUIMUEII0QOY

VSVYN J9P 19 TOYILNOD AZZ N4 N
[1eoM wi uonels 3aurd Junjddoyuy usyosnewoline I9p uonenUIS

0132014 auo1sijRa Y

COMETT - COURSE "FUzzZY SYSTEMS AND CONTROL"

AIDOT-AZZNA 94

18lIQN "4'd’a "Bul-1q "joid

N\
Aeudojul syosiuyosl,
0y jymyssye -.—r H * H feyisne|g N

™ y.

Nona(‘ANSISAIU[) 9181S SUABA

(0)S0Y 'g) BIUIOJI[ED) UIOYINOS JO ANSIFAIU()
uBMIYDIBYSES JO ANSISAIUN)

ANISISAIUN) 918IS BUIOIRD YLION

uojwey3urg 30X MaIN JO AJsIoAtu) 918IS
I[[BY20Y MIN ‘989]j0D rUO]

NI0X MIN JO ANsIsAlun KD

oosseyie] ‘AYSISAIU(911G BPLIOL
TIBUUIDUL)) JO ANISIQAIUN)

(yapez'v 1) Koo1og ‘BIuIojiR)) JO ANSIDAIUN)
Aueddigp ‘souoleroqeqy [jog L®LV

weySuwag ‘eweqe[y Jo ANSIdAIU(

uadnJeyosaq AINDOT AZZN I9p 1w yois 31p voddnidisygosioy

121

sodblin-) ARGESIM REPORT NO.5

MO0TAZZN :O4 >

191N 1'd'a Bul-Iq joig ML euostuoeL -¢— H L- H feqisnein N1

"UOUOT)RULIOJU] Touaduedagduas
-0[10A SUNY)Y INZ USUOIR[IY] STRIOSUN JBqN UdIPNJG —

‘wowISTURTDAIN-SSuNnI03
-[OJgM[YOS BJIRTISUN INJ UOFUNIONSIV)U[) BYOSIIAI0d[} —

‘usFunpuom
-uy-remduron—radng mjy swrysAsud)rodxr ajreyostn —

122

‘wolunpuamuyy
— ST0INY) JUIBI[[2IUT, INJ UOSRUIR(] 9)Z)IUIdA JIRTOSUN —

‘Ure8199s NZ FuUNYPIMUG[—oIeM)JOS ToP
19q JeIAIPMporJ olp win ‘wdysdsudgrdxi—-Azzn, uro —
‘9SS9Z01J S[[AL1)SNPUI INJ Ja[joryuo)) Azzng —
‘raso[sFunipra[dreryuatayi(] 9)USI[[2uUl JIRIPSUN —

‘uo3
“UNPUIMTY dupUIel[[e] [Py S-udjtadxs—Azzn,f aute —

‘sisfjeue auads Azzny
pun uonrudooar wragyed Azzny my swd)sdsusjrodxy —

COMETT - COURSE "FUzZZY SYSTEMS AND CONTROL"

AOOT-AZZNA ‘94

T . . . BULLIOJU] B8yOSjuyde
BN ‘4'd'd ‘Buj-aqg joig e e —.—. H .u—. H lewsnel0 NL

—

«Sureysds proddns uolsioap pue jradxo ALreurpro
aIe SIa[j0 I} pue Julvouldus [0I)U0D UI 8.1 8SOY) jo juadIad
06 1Moqy 001 jo o spoafoxd [njssaoons (g peil Apeaije aaey
om o180y Azzny uy ‘[nJsseodons arom ()p jnoqe 1o jusdrod o)
ATuo gnq ‘spoaloxd ooz moqe aavy om uedep ur aral suo)sAs
arodxe uy,, :#180[0UYDIT, JO 9IMYIIsU] 0AYOT, ‘oueldng ‘N ‘JoId

* Juaurdojesap o101 Azzng

jo 19juad Joruraxd s prrom a1y oq JIm STAIT . ‘UYPPeZ "V 1 ‘JoIiJ
* J[Pgewu goayrad v — 1ysns pue aones £os ayIJ S1 ssoufzzny yo 3dod

-10d AT, RITYSNSIRIA 19| IIISIOJIOIUDG ‘TUICYCAA 1IOQON "I(]
' SPU2 DI180] UI9)S9p| o191 M surdaq ssou

-AZZN,] . "eIWIOJI[R)) WIINOG JO AJISIPATU[) ‘ONsOY] }req ‘JoIJ
U9pIom japunidaq

ayeq17 epuad[o] yoanp uuey (edomy) pue[ipsInNa(] Nz YOd[3I9A
wit JidoT—Azzn,] 1dqnuagod jouede I9p J10UISSO[OSATMY 21(]

123

srolfae) ARGESIM REPORT NO.5

MO0T-AZZNS 94

1BIIOW '4'd°Q ‘Buj-1q tjoad e e —¢—. H n—. leuisneld L

Sunqpo1s

-9J|IH ‘USYOSUD UAIDI[B PUITIIMIIYN JIW PEYDIS[[350D I9uld Ul woIsAs
-a8apdsuaypunsan ‘zjoyzinN 10§ uadungapsaysienien() ‘9feI9N 19}
-JBYI2|Y3} UDPULNY WNZ INRIITYONS “QYONSIINY3] ‘osoudeipsdunisnt
-sny ‘sapnegan $ould JunwwnsagsHaYIaYydIS ‘unpuyys3unprayos

ug Jop 19q Junlajsyainag 19p Junzamisiaiun (9]j0NU0N ‘uonynp
-014 ‘Juejyping) ourld 19ydsiweuip ewndQO SUIPIIYISIDA ‘$93aMIDS
u2is3nsund sap Sunproyosiug ‘AvI 1vD ‘owaisAss3unieiog aydISneH

DwWoISASSUONRINSUO Y

(1040 y dnsauwoq) 19104o333dpyd JewoneRwWwesin ‘9
-§RPOLJ YOI RYISIIMPUR] USULDINIY ‘Qu9IsAS-ualrodxy ‘Sunuudayiyg
—ifury] ‘uoydrIdS JYIINIRY SSA[RUY SYOSIIUBWS ‘JunuuayIaIdISNN

Zua31[OU] SYOIISUNY

JOsSBIURISY[9S

9usasradsqeses) ‘91p1agdsieysne H SYoSLIY3d ‘19Z[2WYISSB[D)
SwasAssFunfrosioatassemyurs], ‘uaSejuesguniiorog neiassep 1YY
-19A3n7 98naziyejijea)] ‘TunIanssIny sydspewoIne ‘ojylomljely
SHIOTY [98SNONI((IOYISNRISNBIUWIRA ‘USJOYDIPIUdWDTZ ‘u9j0I9uIg

owo)shss3un(o3oy pun -s3unidoNdNg

NV

124

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

g g - R WIEULIOJU| OYOSIUYOa]
19JIQN '4d°d mc_.. 1d “jold D} jlymsiye] -a—r

[eyisne|g NL

I41

NURWSS

usdunizomsneyurquUaIR(g

= ‘93apdsnoypunssn anz
owaISAS ‘SUIOSIYNMOG USPUIYISLIDY NINYDIIUSIJQ) 1P Ul $P asK[BuY

SI9PON 9]r1ZOS

SUDJJRYJID A UIYDIYISUIW J][IPOW

uapoylswsiunjpuryag

Joydsiizipawt Junydonsidiun ‘FunssowsTun[yrIISIg SWYRUIUIIGOS]
sreumndo ‘Sumesagsduneniogminig ‘Junjpueysg-seayue ‘Sunz
-19S19qNPJIEg SYOSILIZIPIW ‘UINIYNURINISGIT UOA 9S0UTRI(] ‘Udd|Y
-01dz1oH uoA Junjpueyag pun asouder ‘9souFeI(] SYISIUIZIPIWUYRY

QwNSAS oYOSIUIZIPOW

125

Sl) ARGESIM REPORT NO.5

AIDOTAZZNL 04

e ey - R WIBULIOJUJ OYOSIUYDe]
1eligW "4'd°q "BuI-1q “Joid ooy : H 4 H —

‘qejsgreurrioqer] Wil suajsAG-[[0Iuoy]

~ToA)JRIS] UDJIRTISUN SOUIS PUN SI9)0(|0Y] UsjIeysun

soula urIo,] ur o1dor] Azzn o1p 1y uafardsragsdunpuam
-UY U9JaINUOY UOA FUNJIIMSNIY 9IMOS NRAINY ‘Janmijus] —

(g0 ‘ewaysAssIunppimiuy ‘ueydrIoqoIszinuag)

UoUIa)SAG-[01U0) AZZN] UOA SJINMIUG] SOP FUNZINISISY)
-U() INZ URIPWSIIH UWOA NBQJNY Pun Iuniyormjusy —

"UOUIR)SAG-[0IJU0N)
Azzng uoA je EEEm TP dunyonsivjun 1Bp e pund
-ToMT[DG UIdP JTU ‘DLI0dY [—[01yu0)) AZ2ZNn, Iop wnipniyg —

UMWY, [, UapPU3[0] Uap
JTUT WINLIOJRIOQRI S9SAIP IS Jgejaq ‘00 SITUOIIR[G IYsIaje],
uoIuI() Iop UOA RYRURUIBA TYSayR], "I(] UOA JUnjfer] Iop Iaju()

Joryuo)) Azzn,] :WMIIOYeIOqR] |

126

COMETT - COURSE "FUZzZY SYSTEMS AND-CONTROL"

I

X4

H

B

W “1?’:983‘

v__oouiNNE 04

JBJIOW '4'd'a .mc_n.._ﬂ 10id x:m::oh_w.wﬁw__gﬁ:“w.._m -;—; H L- H jByisne|d N.L

Ni}

N

SRR

ey

e

[N

R

24

\«

mﬂﬂo\._m%mqﬁ radxy Azzng —

‘rassazoxd

-sGunpuysunproyosjur woa wS IMJSIJU() INZ dUI)SAG —

\.

v

‘Sunuusyreapyg —

ﬁ&& IM (OIS WIdpaI[d ‘P 00 [eLs
NpUJ OLI)O3[5] BITYSNSIR\ TOP: UoA 1esyeT, OIowo], "I UoA
dun TN, 18P 12JUN SWNLIOYE SQNW U9)10MZ SOP 991938310 Iy II(T

e tii’:&i;s:s-:ium»

tih

8”1%}823 2%

Suissaool, uoryeuroyuy ?:«_ :&ﬁ AzzZn,] .Ez:oo,foﬁ_,mg 7

1‘1_5‘{\)\1 R

127

Svolblia.) ARGESIM REPORT NO.5

AOOTAZZNS ‘94

1ejloN 4da -Buj-1Q "joid x:w::ou.:“%—ﬂ”_mhzmw.w_ -hv H % H jeyisne|d NL

‘aIeMpIeH AZZng —

‘oremyjoq Azzng —

‘myppyrpry—remduro) Azzng —
;uaq

ey UIPUOTO] JIUI UATPDI[IUASIM UIT UTS}D(IRIIJA] USUIDS JTUI
IS 9819FRYPsaq P ‘ORI BWLIL Top uoA nqouosey If1og "1q

royndwon Azzn,y WIMIIOyRIOqe] ¢

128

COMETT - COURSE "Fuzzy SYSTEMS AND CONTROL"

WIEULIOJUJ 8YISIUyoa), — h
| 9

BlION 'dd°d .mc_n.._n_ Jold Jn} jlynysiye

MOOT-AZZN4 94 >

UdNUBQUIIRQ “NIUYINUIZIPIN ‘SUNISISHIBUIOINRYDIZOL]
(19[IQW 1 "d"Q) ANEWIOJU] SYDSIUYDS L, IN [YnISIYDT]
PIRHIAIPZ-TRYISNRLD

(10qud) voneyIssely A2zngd N1 19p pun AT Y 19p Uy
Znuwsyn)

(osnay) uoneurtojug Azzn,J 10y oddnidsyeqly Azzng
ramyosunerg

(Buusowuy sanbruyna g, wodijaiuf 103 K101vIogey ueadoinyg) 9L174
(uo13ojouyda |, 19uadou] yuawadeur W) LIA

0nuo
Azznyg K109y], 19S Azzn,g .oanm@mwcsﬁmzog:smwcsv_n_u:uﬁ:w
‘BunpursFunproyosiug ‘uosoieiodQ uoa Funioqy syosneWIYIRW
‘UdIOIRYIIPO N uoydsnsindul] pun uaroeidd() uoa Junyssioyis
(uuBULIDWIUNZ ["H) Y2IBasaYy-suonesodQ Inj [ynisiya]
usyory

ANVYTHODSILOIA

129

Sroddln-) ARGESIM REPORT NO.5

AID0T-AZZNd 94

— — v_:m—.EOuC_ O:Oﬂﬂ:&@.—.
._m__ —2 n* n_ O @C_ ;_O D—O._Q s _:EwEmJ -h feyisne|n NL

(112uyoOT M) UIeg wnnuazs3unydsio zuog-Isjulied ‘0Ip

SuUI2ZUOY suawolg sap s3Juejag a1p Inj 1307 Azzng 19p Funjnig

(queggu1dy @) sddnin 93104 yse] Azzng 47 ‘OV SUdWOIS
usyduny

(PIemNn09'S) uopoyIaW-£zzn
MW 9SA[RURUIIR(‘UDZIDN 19 UOA Sunidizijizzn, ‘A109Y4], 19§ Azznyg
Sizdiay

(1971013°d) sdnoin 1so101u] [R102dg

‘UISSI N N Azzny (SSIM Y O) §1807 Azzng pun 9219\ S[BUOININ
nessed ‘uaydunpy ‘uofuepy

(pununto wnpudzsuonensuowgq £zzn.g) 7

owdlsAsuanradxyg ‘Y1301
Azzn g spow Jnmiuosdunijeyds ‘9jjyssunproyosiuyg 91I91USL0RIZ
(yosnay g) 1 YNeWoFu| [YmsIya

duniou

-oudF[989y sydsnewoINe ‘UOFUNYOdNSISIUNSIBIIYRIS ‘|0NU0)) A2Zn,]
(1pudty}"H) Sunjodoy pun Funidondlg oYOSLIYO[N [YNISIYOT]
pununlo(

130

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

MOOTAZZN 194 >

BIION '4d°a .m:_u.._h_ ‘J01d x__m::oucrmﬂw_mhcmw.__. -a—r H L. H feyisne|d NL

Sizdro "ATu[‘Premjor) ‘S UOoA UdZUdJN dJreyosu) —

‘zgruwa) H, ‘ddry
‘' H T0A 9SS9Z01J IDTISTUTDd) FUNPJI([[dPOA o) Ieydsu —

131

‘BqsuaB8oy] UoA JR)ISIoATU)
19p o130[]0ypAs g InJ NIsu] ‘dOIPNIL0Y] ‘H pun Isur
-wiry -y uoa ‘Suruoseay] Azzn,g jo syoadsy [eoldojotphs g —

‘Broqaploy ‘109Ud)) OYIjULIdG
TN ‘se1dg] uoa ‘Surtroseay] [euonIpuoy) [eIpopIALl —

‘ZUTRTN)B)ISIOAIU() TP I)RWD)RIA
mj yeymyeq ‘1eqap) ‘S uoa saanseapy Azzng jo A109YJ, —

‘Tegraddnpp
1e)IsTeAIU) aTPsIdrag ‘9[e0]] ‘() uoa ‘AJojoday, Azzn, —

‘Sromrosunerg 38)I18I9A

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

3. Strukturelle Gliederung
der Fuzzy-Applikationen

FG: FUZZY-LOGIK

. ,\\»4\ 4,,.//'.
Lehrstuh far :
wossra [FT T e Prof. Dr-ng. D.PF. Moller

133

ARGESIM REPORT NO.5

AIDOT-AZZNS -O4d

‘\\tx‘ {/ «
e g B 1 - IEULIOJU| BYDSIUYOR g A
9lIQW '4d'd Bul-ug Jouid “Ec_camw_cm..r_ —l—l H L._ H lewsned N1
/./,/ s/

($ SN "OIN ul) apjIBN-AzZNng

0SGcc 0GcS 00SY 0002
0S. 089 006Gl G661
0Sl Gdc oSV 1661

VSN vdOodNd NVdvlr yer:

134

ADOTAZZNS -Od

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

VT A NIBULIOJU| BYDSIUYDS)
1910 *4'd°Q *Bul-1Q "joid 104 {ynisIyeT] —I—I H L- H feysneld Nl

Z66T UBATITINS®IAISOITd ST T=210

(buesssIagsSjJuTun=T

/ pTuUuedua Tuwuopr =0T) ZUCAD TN usTIrIS TZasux
—WwoOoMN ISIYUYT UDTTEONZSg usuoTiledTTrTddw
—ARAZZTJJd JIDP OLPUNISP™ S TITSD DT T=22>2AANOQHNIaOAS

STuuS4yoso

STbhOoTOSSD

J-rodsuue g,

AHTI3xewuasyugaeinl

sTrTbIaxsosudg

AR Junely "1 —3JFJmn L
STPhOoOTOTZOS

D TUWOUOMO T uszZzuveuTrT.Jg

= I o B

UT= TP

o ThaelgaadIarsjpuTrTiaixsa,T
TasaadasauTrTyUuovads SUST T rTInagenN
SSATEeUROINTS T
Punuusyaoyuoceads
PbuniToboIagazZzoaxdg
burtaogssuTbusg
punzanijsIasjpunspunproaoyosgudg
HT3j3oqoda

DONOINMNMNOAADDINAY
YoYOYYYoUNIIITON

135

*+oln.) ARGESIM REPORT NO.5

Strukturelle Gliederung
dex Fuzzy—Applikationen -

Umsetzungsrféordernde Kriterien
fur Fuzzy—Control -

einfachexr Zugang zZu meff— und
regeltechnischen Problemstel —
lJungen auf der Basis mensch—
lichexr AnNnschauwungsweise

r

Implementierung von Erxrfahrungs-—
wissen,

Potentiell Reduktion der Ent—
wicklungszeit,

MOglichkeit neuer oder verbes—
Serter Funktionaliat,

Breite der Anwendungsfelder .

I'ndikatoren =zZur ITdentifikation
sinnvoller Anwendungsfelder :

fehlende mathematische Modelle,
nichtlineare Problemstellungen,
eingeschrankte Sensorik,

totzeitbehaftete Systeme.

Umsetzungshemmende Defizite:

Fehlen allgemeiner Entwurfs—
und Optimierungsstrategien,

Fehlen von Kriterien =zZur . Gute—
beurteilung und zZum Stabilitats-—
nachweis,

Fehlen von Normungs-— und Zulas-—
sungskriterien.

Lehrstuhl for - F. 5ller
womsna | F] TD S mas Prof. Dr-ing. D.PF Mol

/ i 136
\ LYY LAY

,,,,,,,
ARG

"

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL

trukturelle Gliederung
er Fuzzy—Applikationen -

usgewahlte Anwendungsgebiete)

utomobilsektor
erfahrenstechnik
teuverungstechnik
aschinenbau
ideotechnik
hotoapparate
aushaltsgerate

nstererkennung

ntwicklungstendenzen :

ntelligente Sensorik und Aktorik

nbindung an Standard—Schnitt—
tellen

ntegration in Werkzeugumgebung

ntegration in Datenbanken

N ' Lehrstul) :
v [F T Tl e omase Prof. Dr-ing. D.PF. Moller
——————-q\\\\\///// FG: FUZZY-LOGIK

137

PRI

ARGESIM REPORT NO.5

Automobilsektor Im Jahre 1990, angeregt durch die Veroffentlichungen von Nissan,
Subaru und Honda, beschiftigten sich alle deutschen Automobilfirmen und deren Zulie-
ferer mit den Problemkreisen von Antiblockiersystemen, Antischlupfregelung, automa-
tischen Schaltgetrieben, Klimaanlagen sowie mit AbstandsmeBsystemen in Verbindung
mit automatischem Kolonnenfahren. Auch die aktive Fahrwerksdampfung wurde unter-
sucht. Es gab Versuche, wie die Stabilitat der StraBenlage durch ein Fuzzy-Logik-System
verbessert werden kann. Eine interessante Anwendung stellt die sogenannte ” Kollisions-
Vermeidung” dar, die von verschiedenen Herstellern mit unterschiedlichem Erfolg unter-
sucht wurde.

Besondere Beachtung fand das von Mazda in Japan vorgestellte automatische Viergang-
Schaltgetriebe, das auch die fiir eine Automatik problematischen Bereiche ”Bergauf-
Fahren”, "Bergab-Fahren” hervorragend beherrschte. Siemens berichtete anlaBlich des
1. Berliner FAN-Treffens von den Erfolgen in einem umgebauten Serienfahrzeug. Das
Fuzzy-System wihlt zwischen den beiden Kennlinienfeldern "wirtschaftlicher Fahrer” und
msportlicher Fahrer” aus, und ist insbesondere am Berg durch das im Vergleich zur kon-
ventionellen Automatik wesentlich effizienter schaltende Getriebe deutlich dberlegen.

Im Bereich der Last- und Nutzfahrzeuge wurde insbesondere die Problematik der be-
liebig variierbaren Gewichtsverteilung in Schaufeln, Anhangern oder Transportmedien
untersucht. Potentielle Anwendungen sind z.B. das Transportieren von Miilltonnen (die
unterschiedlich gefiillt sind) oder das Transportieren von Baggerschaufeln (&hnliche An-
wendung).

Die Implementierungen reichen hier von der reinen Softwareldsung auf den traditionellen
MeBsystemen in Prototyp-Fahrzeugen bis zu bislang nur ” angedachten” Implementationen
auf Mikrocontroller-Ebene. Daneben gibt es Studien zu Kombinationen von Fuzzy-Logik
und Neuronalen Netze, z.B. auf dem Gebiet der automatische Anfahrhilfe, des fiihrerlosen
Fahrzeugs (Volkswagen) oder fiir das Kolonnenfahren innerhalb des Projektes Prometheus
(Opel). Hier wurden sowohl der Tempomat als auch der Abstandsregler mittels Fuzzy-
Logik sehr effizient gelost. Dabei handelt es sich hier noch um einen Versuch, vom Einsatz
in der Serie sind diese Regler noch weit entfernt. Dies ist nicht zuletzt auch darauf zuriick-
zufiihren, daB die heute realisierte Abstandsmessung mit Laser noch nicht kostengiinstig
fir die Serie zu produzieren ist.

Die Automobil-Firmen und ihre Zulieferer sind sowieso mit der Bekanntgabe ihrer Ergeb-
nisse recht zuriickhaltend, und da die Zeit bis zum Einfithren eines neuen Automobilm-

oaells relativ lange ist, werden wohl auch i - .
A ch in der nach . oo
Ergebnisse bekannt werden. sten Zeit noch keine weitreichenden

Lehrstuhl for A
woa |FT Tl mM % omas Prof: Dr-ing. D.PF. Moller

——\/ FG: FUZZY-LOGIK

138

COMETT - COURSE "Fuzzy SYSTEMS AND CONTROL"

AOO0TAZZNS 04

fjewl
19110 4'd’°C mc_ 5 hohn_ e atrm;_mw__«ﬁm% —n—u H L. H leyisneld N1

‘uajIemIa N180-Azzn,] 1op Sunpuamuy 93191q UL Jjunynyz ul jge| Jiuydsjuadeuy

L Ua11ynjedsusssim, 19p plRjusqeSjny 9jom se(] ‘pueRISSUISSIA\ USYIomsuaydsunm Junp
-UoMUY QUIPW3[[e 21p INj WLUIG Jne $31219q USWYSUISU[) d[[e JYdIU pUIS Ydou I13qy
‘UapIom }I9SSIQISA UIPOYJRJN UISAIP iUl SIS)ORIY SIp juswdfeuew

-91815u7] sep ([0S sSnNeUY Joqnie(] USISISIJRWOIN® NZ USPOYJRN ash[eurudje(] Azznj uoa
QI Hw udj() Iap Sunydoyjuy d1p (Hquo ustSojouyda], 1juadi|[a3u] Juswaleuely) LI
j1wr uotye1adooy] Ut U[QY] QUL S1WBYI[OPIF-) 1P 1yonsiaa pyaloidjofd uayo[os wWaue
uj pitm uayooidse sjrolaq uafunSe], US[RIA Jne J[I9}I0A UDISP 12qN ‘udFaljion usdnpuam
-uejo[td ‘] 'Z gep ‘Os 9Jnay }SI USUWIYIUIOU() USSIIp Ul puel§ 13(] "usdez YAV pun
YAONIYHOE ‘0Z)V ‘dSvd uswil] I1sp ass1uqa3Iy SIp lm ‘usfunpusmuy uaydI[uye
uoA [yez[alA duId 3 1q13 os ¢(1z19s98utd J[0JIF W YIvWSUR(] Ul UdIYRl (O] "D IOA S}1313q
USPINM USIYRJISA §9S9Ip) 3IYnj] uagny IoA susjouuarg sap dizulig sep ydIs UBW UUIAN

‘yolalag uaiqes}s
USp Ul I9palm 19[89Y US[[PUOIJUIAUOCY USP YN} ‘M2Zq }I9I31I0Y pun jne 19[3oY uajneqa3
-jne [[puorjusauocy wnz [a[ered Ia[FoYy-A2zzn Iop 1311} ([WLSAIp U] ‘}sI IeqydsiIayaq
yoou winey ISpo JYoIu Jj[e,] WIISAIP Ul J9qe ‘JU3Ipaq UIS[3Y UI[[oUOIIUSAUOY Jlul dIp ‘jne
UO1}}edY SWLISY)OXd 2JUURUIFOS SUD UIBUNPUIMUY UIYDISIWIAYD UL }311} *g'7 ‘PUls USYDS
-119Yy3q Nz ISMYDS IYas INU JISpO JYOIU UIWIISASUIIIAdXY US[[aUOIJUSAUOY jlWl 3Ip pun
‘Usplom JUBIPaq JaIyrjusFe[UY USIIYRMIQ UDUId YIINP Ip ‘USSSIZOIJ UOA [YRZ[IIA SUID §3
1q13 nequafe[uy USYOSIWSYD W] IIJSNPUI UIYISIWIYD JIP Ul HIUYDIIISUIYBJIIA

139

%ol) ARGESIM REPORT NO.5

Hersteller von Steuerungen Da8 die japanische Firma OMRON dje Fuzzy-Logik be-
reits vor Jahren forciert hat, um ihre eigenen Produkte zu verbessern, darf als bekannt
vorausgesetzt werden. In Deutschland war die Interkama 1992 fiir einige Firmen der
Start in die Fuzzy-logik. Wihrend Siemens bereits seit ca. 2 Jahren mit Togai InfraLo-
gic mit einem Fuzzy-Hersteller intensiv zusammenarbeitet und auf der Interkama fiir ihre
Systeme Teleperm-M fertige Fuzzy-Systeme mit bereits realisierten Anwendungen prisen-
tierte, zeigten die Firmen Hartmann & Braun und Kléckner-Méller in Zusammenarbeit
mit Herstellern von Systemen die Integration von existierenden Entwicklungsoberflichen
(TILShell bei Hartmann & Braun, fuzzyTECH bei Kléckner-Méller) in ihre Systeme.
Daneben sind weitere Projekte vorgesehen. Der Vorteil fiir diese Art der Integration
liegt darin, daB der Kundenkreis der Steuerungshersteller eine erweiterte Moglichkeit hat,
komplexe Systemproblematiken zu programmieren.

Eine weitere auf diesern Gebiet aktive Firma ist ABB in Mannheim, die die Fuzzy-Logik
ihren Kunden als neues Leistungsmerkmal anbietet. Zusammen mit der Universitit Zittau
wurde ein Fuzzy-Controller mit wissensbasiertem analytischen Regler (WAR) entwickelt,
der die Vorteile des konventionellen Reglers nutzt und gleichzeitig dessen Nachteile um-
geht, indem statt der "Fuzzy-Sets” verschiedene StellgréBen analytisch ermittelt werden.

Siemens sieht die Fuzzy-Technologie als eine der wichtigsten Kerntechnologien fiir den
Konzern an. In einer von Dr. Reinfrank im Zentralbereich ZFE geleiteten Arbeitsgruppe
von 20 Personen wird Applikationsunterstiitzung fiir alle Unternehmensbereiche ange-
boten. Die Gruppe Automatisierungstechnik in Erlangen hat beispielsweise eine Steue-

rung von Zellstoffkochern in Portugal entwickelt, und zwar nicht als rei.ne Fuzzy-LoBglk-
Steuerung, sondern als Erweiterung konventioneller Systeme 'ax.xf der Bil.SlS fler Pfoze. au-
tomatisierungssysteme Teleperm-M. In Planung ist die Reahslerupg f'ur die Serie Sima-
tic S5. Siemens hat {iberdies mit der Fuzzy-Steuerung SIFLOC ein eigenes Produkt als
Projektierungswerkzeug fiir Labor und reale ProzeBe entwickelt.

Es zeichnet sich ab, daB die Hersteller industrieller Steuerungen Fuzzy-Komponenten in
ihre Produkte integrieren und kompakte Fuzzy-Steuerungen einsetzen.werden. Von dep
SPS-Hersteller wird oftmals bemangelt, da die Anwender zwar die reine Ste.uerung m{t
den SPS-Geriten erledigen, aber komplexe Regelungen mit anderen Hxlfsmxttelfl rea!l-
sieren. Da oft auf die Erfahrung von praxiserprobten Regelungste.chmkerr'l zurucfcgflf-
fen wird, was sich natiirlich im Preis fir komplexe Anlagen z.s.usm.rkt, reizt naturhc}h
die Fuzzy-Logik die SPS-Hersteller, ihren Anwendern die Méglichkeit 2u v?rka:ufen, die
Regelung durch vor Ort vorhandene Techniker einstellen zu lassen, da ja fur die Fuz(ziy-
Logik-basierten Systeme kein Systemwissen, sondern nur Anwendungswissen notwendig

1st.

Lehrstuhl for -Ing. D.P.F. Maller
sthal I f I TI Technische Informatik Prof. Dr. Ing D

—_\/ FG: FUZZY-LOGIK

140

AID0T-AZZNS 04

lewyisne|d N1

. | . — — ;x:mEBE. ayosiuyoay
1BJION '4d°d mr__u 1J "Joid 104 [ynisiys —I—I H h_-

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

“Injeladwalqie,] 19)]yemol yos[e) 19q syd1}sj0y Jopo -ne[g sap ylyeW
-9[qO01J 9Ip JUUSY INDJRWEROIPIA I9paf ‘pIim Jw[yad auazsjydl|sade], sutd ul Junq
-93wnjydI[Isuny] Jauia uoa uusm dstoms[ardsiaq ‘uswiyounzioa usqie 1op Junjels
-w() arewjdo autd win ‘4zynuaq [P} WSI[IY S[e piim yiBoT-£zzn] a1(] :InyyaiIoyqIe] ‘¥

"JY2IU YoInpep YoIs qI3I0 98
-dﬂ@ﬁ:m uwmu wﬁﬂuwuﬁuv—ﬁomuw\/ uly .Cmﬁ@_mCOQEO& INJHIIIOY 2YOSIUOI}N3]a goanp
~0w®~mm Uayostueydol Walla jrul wcz_oxodg.ﬂw\/ olp Omﬁ.,ucc.mxwﬁ UalyejIaA apualaiu
-onjuny n3 sJuipis|e puis usyosimzu] ‘(,qe UIISIq We YljeuIojnesSUN[ONIRMIDA
olp 39leyds CGE:V puoj[ajsuapalajnz jydiu Naﬂﬂuwmwﬂsmwvﬂudgho\/ uayosiuol}yala uap
nj wmmmcﬂwwuvummﬂh I1p aEdmvme yone ualem jrwie(d plim JI93YI9[YdsIaA }}IUYdS
-Sny udj|yemald wap pusydaidsjus Junsoyny Iip ep ‘7eq1renbpyig 1ep Juniajyoafyos
~19A 9YDI[INIP BUIB IBIY YoIs 1qI3I8 J9PId] ‘UdQRY NZ INJHIIIOY SYISIUOIINI[d 1P
INJ Yorolog uaUld Win ‘UIgQIZIaA NZ YOSIUOIINI[d J[RYUIpP[IE USP ‘UIPOYISN USUIS)S
“AS UJUIPURYIOA UID 19q UIIRIYSIXD S5 "BUNPpUImMU Y -ALLIY 91597URES3IaUL JIP [Yom
w:d.w:< We Iem Injyalioy] o(OSIUOI}qa]o 3saI(] “cwwciwxodauv\/ uoa coSdmcwn”Eo& S

141

91yelqQ epusuisjjue winijuay
Wop sne [puyds yois a19puosaqsul ‘ayalq 238omoq Jne ULISISSNNO,] snyojony ‘g

"P[POpqR MSn JYRIMBILG “ydijuson
HUW YoIdIeg usydsiyLIy usp alspuosaqsul d1p ‘SunianajssFuniyolag sydsijewojny

“HI2IsI[eaI YDl2Iog WISIIP Ul UdUNpPUSMUY UOA JYI9Y SUID

Pvm s e - m e m—m mm e mmm e X

CAITATAN TTAAMYY rrAanm rAQaAanee

%ro&la-) ARGESIM REPORT NO.5

MO0 TAZZNA -O4

‘uogoj1e uoljeniis I9p guniassaqiap 2uld pjeq 191y NP
‘pIim 1813yoIsONIDG Iyaur pun Iyt u99e1a8s3unional§ usp Ul y18o7-Azznyg 91p Iaqe e(J

181punyeSue apinm G§ suowal§ 19p ¢JALS syoeidsiatuwrerdor a1p
jne re30], UoA (98en3ue] gutwwreidord Azzng) Tdd 2P Junisiyiog suty ‘(nequade[uy
ISYISIWAYD :um:oﬁwwcsv:okc,i suowalg uoa -wiadapd], J1p st sulyruUsny sjuueyaq
Sue[siq sun a31zutd 31(J -Sunzjnjsiaqup) -y1foT-A2zn] wney Yoou 32ZIop so 3qi13 injIaty
pun ‘0}19G-§4§ Iop jne 1yoIyosa3 Junisrwwre1fol uaSipuamiou 31(‘19991quy-GJS 2P
yoinp 33nzi10Adq UISPUOS ‘uaBunsor-feizedg ut Iafiusm Iemz pun ‘usjneNnz JIUoIN2[J
oIyl [[oUOI}IpeI} IoNBqUIUIYDSEIN 91p gep ‘usyes nz uuep ISl ‘usuugy uarenyoid xt3o]
-£zzn,] 1op UR[12}IOA USDP UOA JYILU YPOU 1oNeqUAUIYDSRIA SIp WNIRM ‘PUNIL) SBMZ I9(]

‘zyesuy Iayos(e} 1e80s 19y ‘roypipnidun utd jsydRUNZ SAIP 38! ‘41217S1X [[OPOJA $9313
-JUNUISA UISY OM 19pO ‘jeY Unj Nz USW9)SASG US[IqRISULINNIYS JIUL §3 UBUL OM ‘ep 919puos
-oqsul ‘}st uayas nz jruyoaysBun(aday o[[euCjuLAUCY SIp I} Juniojtemiy pun Sunzuediy
spe yIuyoa],-Azzn dp B(J "USUUQA Uoz}9sIo aWoIsAG US[[dUOIIUIAUOY 1P IIS qO “yonsi1ay
-un ulyjnerep owa)sAG-AZzn] 21 JsYdRUNZ USPIaM q[RYSS(] "1[18 Tequosiiayaq s[e pun jst
1101[qe)e 1P ‘}[[9ISIeP HJIUYIR], Suld JiuyoojsSun|a8ay 3[[UOIJUIAUOY 1P [[OM ‘UoZomsap
yor{yoesidney ‘uspue)sion y180-Azzn] 19p 3[193I0A dIp JydLu yaou Suesiq ey ‘@PIBN
uojsSiyyoim Iop Ioufd puR[YISINI(Ul IR -NEqUaUIYDSEN 19 NeqUIaUIYISEIN

e g i - ELLIOJU| BUYISIUYODL
JolloW “4'd'a “Bul-1a joid ot 1] T3 |

142

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL"

MIOOTAZZNS Od >

JBlloN 4'd'a Bu-ag youg PesEee |

104 [ynisiye]

[eyisne|g Ni

"UaIaIsEq UIB[[0IFUOD0INIA -} -} JN® ISPO }I3Isi[Ral D[SV SQUIDI S[B Jopamius uor)
-ejuswa[dw] 31p piim ‘st uazjasnzue JLIPalU JsIagne s[B YIUOIIN(F 1P [19JURUIISOY] uo.v
U9INpold 9satp ut vy '91y2lqQ aydijuye pun apisy-yiuoljya[y ‘198nesque)g ‘uaulydses
-yosepy ‘1o[ndsiIydson) ‘57e190)-US[[2MOINTJA] UIQUIT nzep :uayonsiaa ualsize|d nz JyIeN
Wap Jne 3)YNpold a1yl (£E61 Jeniga) eyiuyoajowo(] Uajsyoru Isp jne ydi[jydissneloa
ua)npoiduinsuoy| uoa 19]]99si1o]] a1p uaplam uedep ui s3jojiesineyIap a1p jne g NN

*14oY1a 19po 1193ul11aA 3unisIa[I0OJA SIp Ydsijewlojne plim
jiure(] “3jn7 uajdnesafue Jop peldqnel§ uaydijyoljquadne usp }[93j1WId SpoIpjoleljul W
pUR)SIOPIMO)O,] JBYORJUIS UIF ‘U}[RYId NZ D13 SI10J0J]y sap ‘uasnpdneg Jop Bunj[ajsuly
ayewiydo a1p yosijrwojne snerep wn ‘4Isrurel) uapunidiajup) pun uaydiddsy, usuapatydsIaa
000°0F BMI2 J1W 9pInm [[9POJA UIF "juUeNId XLIosuag a[[aizads Iaqn plim (‘"N [9qQQUIISIS
-lod ‘uesat(‘yotdday) 1yolqQ opusfnes nz seq ‘ue sjyalqQ uspusdnes nz sap peld
-sfunzynwyosiap uabijromaf wap Junjsajdneq aip yi1do1-Azzn aip 1ged urednesqnesg tog

‘sta1y[eyog uayosyizodsuapuny wauis jtur J13o7-£2zn g ©IA - }[[2ISUID }1921RL)
o[ew1}do aIp $asidy] sap }19YJIUIOY] UIYOSUNMIT ISUDIPAE WIOA IOp dIMOS 9FUSULIISSEAN
pun -sioy Iop sne 1op ‘Iayooystoy uajuadijejul uap sa 1qi3 ueder up ajeradsjjeysnely

143

%ol) ARGESIM REPORT NO.5

AIDOTAZZN -Od

e e - i ijeLwIoju] ayosiuyoa)
JolloW '4d'a ‘Bul-1a Joid et LT

‘URIIOUISq N 10SSaZOIJ-AZZN,] USUD YoInp UOLjRqYIsSe[Y] oIp plim JauUydalaq
speuSisgajy sop winijyadg sep lossozord[euSig Jo[e)FIp UM PUSIYEAY "}[2IMIUd YIIaI19q
-zuanbayjoipny wi s[eudig ayosysnye Inj wajsksesf[euy ule apInm G(I] BUWML 19p log

‘uaprouIaa nz uafessne[ys] wn ‘Funiyejry pun
uasstmuailadxy ue geJA soyoy U jsioW udBunssafy Iop Junjiamsny pun uotjejardiajuf
a1p 1I9pIOJIa ‘ST 1YaUI Wd[qold U 23n3Y udulRWAF|[e Wi udje(I19p gun[[ejsre pun
Funssejif puaIyBA\ "1Z}0safuld Jluyoa], uaBiinay Iap puelg s[e ask[euy Iydsiysnie Jp
plim owaisAG Iayosiueydow JunydnsIzju() InZ N180o7-AzzZng W 3UNUUINIIIIISNIA

feyisne|d Nl

144

A

] _ COMETT - CoURSE "FUZZY SYSTEMS AND CONTROL" .

Intelligente Sensortkumd—Aktorie—bie Semsoril-ansich-stellioftmals.cine grofie Her-
ausforderung dar. Die meisten Sensoren ermitteln eigentlich nicht den exakt vorliegenden
Wert, sondern einen anderen, oftmals verfalschten Wert. Durch Interpretation der MeB-

erge\)nisse, hiufig in Verbindung mit einer Korrelation anderer Daten, versucht man eine

Schatzung vorzunehmen. Ein gutes Beispiel hierfir sind die chemischen Sensoren, die die
Konzentration eines bestimmten Stoffes erkennen und meBtechnisch erfassen sollen.

Der heute oft beschrittene Weg ist meist recht aufwendig, indem man die analogen Mefida-
ten verstarkt, mit einem prazisen Analog-Digitalwandler in binére Form umwandelt, um
sie anschlieBend mit einer mathematischen Funktion {iber einen Rechner zu verarbeiten,
wie etwa im Beispiel der schnellen Fourier-Transformation, oder mittels statistischer Ver-
fahren. Das Ergebnis der Berechnungen wird schlieBlich einem Komparator zugefithrt, der
wiederum nur feststellt, ob das MeBergebnis innerhalb einer geforderten Toleranz liegt.

Die Integration von Fuzzy-Systemen zur Auswertung von MeBdaten in Sensoren oder
zur vereinfachten Ansteuerung in Aktoren kann zu verringerten Datenilibertragungsraten
fihren und damit die Systemkosten senken.

Anbindung an Standard-Schnittstellen Die heute vielfach gelieferte Schnittstelle in
Form eines C-Quellprogrammes erfordert die richtige Parameteriibergabe an das Fuzzy-
Subsystem und ist fir den Software- Entwickler recht transparent. Wir sind oftmals mit
potentiellen Anwendern ins Gesprich gekommen, die eine Anbindung an ihr Visual Basic,

" ihr Kalkulationsprogramm EXCEL oder Einbindung in ihr Prozefldatenerfassungssystem

J Clausthal

forderten.

Es gibt viele Schnittstellen in der heutigen Technik, die sich immer weiter entwickeln, oder
durch neue erginzt bzw. ersetzt werden. Man denke z.B. an die Schnittstelle IEC-Bus,
die diversen Feldbus-Systeme oder aber auch an die Steckkartensysteme wie VME-Bus,
ISA-Bus und SBUS. Fiir den Fuzzy-unerfahrenen Anwender ist es umso einfacher, diese
Technologie mit einzubinden, je besser ihm die Werkzeughersteller mit der Unterstiitzung
seiner Schnittstelle helfen. Natiirlich machen nicht alle Schnittstellen in dieser Form
Sinn, aber es lassen sich von der Anwenderseite diverse Schnittstellen als Schwerpunkte
erkennen.

Integration in Werkzeugumgebung Der Entwickler eines Fuzzy-Systems wird vor
der eigentlichen Realisierung sein Modell simulieren. Nach der Validierung seiner Losung
machte er méglichst sofort ohne grofe Umwege die bislang erzielten Ergebnisse in die
Praxis umsetzen. Bei einigen Werkzeugen steht der Anwender nun vor der Aufgabe, die
‘entsprechenden Interface-Routinen selbst zu programmieren, da der Werkzeughersteller
die Schnittstelle zu seiner Anwendung nicht standardmaBig implementiert hat. Findet er
allerdings hier eine verbreitete Schnittstelle vor, weil er sich vielleicht bei seinem System
fiir eine standardisierte Losung entschieden hat, so ist die Wahrscheinlichkeit deutlich
haher, vom Werkzeughersteller auch eine geeignete Schnittstelle erhalten zu kénnen.

Integration in Datenbanken Unscharfe Datenbankabfragen kénnen deren Verwen-
dung in vielen Situationen vereinfachen. Man stelle sich einen reisewilligen Kunden vor,
der eine Urlaubsunterkunft in Strandnihe, nicht zu weit vom Einkaufszentrum entfernt
sucht.

TfI Tl moma Prof. Dr-ing. D.PF. Moller

FG: FUZZY-LOGIK

145

ARGESIM REPORT NO.5

AMDOT-AZZNH 94 \/

T T . . I e L
IPN G A 0urg joid U [T [weon

WaARPjOINY
10A HUSHIP[EIRYOIRUY 10 [0q "g'Z Ziesury 103510 W usFunisrumdoIsiowere sandepe
PuIS 19GIoTH "pIm uaIyny Fjog wnz IS[euyds oFryumynz pun porundo uaSumsorms[qor
SUSPUBYIOA YIIYo9)s3unIonalg pun -s§unjogay Iop juomgog wop W YIS0 A7ZZ() SIp qoinp
ep ‘USYISqE OIS IgE] SH WAN FUNIONSISUBIY IOUID ‘wognez3ny] woa sJepuesIunsiorug
Iows “UAPIOS WOA FUNIISIQRIS INZ 7y wioq Suniend)sneIpAy I10p YowIog
wt usuoneyddy weisio oIp oIS wopuy pueposine(uy WOFUNIANGIS SJS QUGS Ul YIUyos],
osaIp oueuBom Funyosiog NS0T A7Z7ZN ISAISURIWT JII USTIOUION() WIS S[B WOIUI()
OPINM LIBISITESI STUIBASIORISIoUS UopUSYeSIOYUIS IOUIS NI uosuroIg SOISYOIOM WIS [one om
USITEJUY SaIoydtem Wio YIS0 AZZ(1] SIP YoInp Iop 10q Iepuss ur ujeq-() Iop sunrionslg oIp
YoNE SpinMm Jutesdg IST LSHUSWNY0p JUNIdNgISaqatner) sur yomp 'en SOIp oMM “1Z)9soFure
Sneq3nozIyey sop ororeg W YIS0 XZZM)d opImm SnozynL] 108nesqneis X7z uep
"1op100THR) X 77N USP ‘QUIYOSEWYISEA AZ7Z(OIp U Jz3oso3um dmarusFuy ustosmuedel

°P SIMP AIUOS, SIp opINM. UAIE(195,08 USP U] “HON0ISed NS0T XZZ()d I IBWouE(
(Il UJOYLIPIUSWIDZ WD USITEl 19F,0/ UOP UI WOYDS opInm YraqoolsSun(aFay 1op yowIog ury

&hhi«;hf@\iz}:s:s‘

146

[

COMETT - COURSE "FUZZY SYSTEMS AND CONTROL

feyIsne|D N1

MOOT-AZZNS 4 >
131

1BIOW '4d'Q Bul-ag youd M el _._.

‘ua1a1SIEal NZ s1ouydenidnery sop Sunise[oq Suyo SUNYISGIBISAIOA
omd 0S 151 USNOYSISURYQY USIBIUIYOIU SIPeISYooy W WSYDISISY wopqisuasimiersdursy
W Surueuqrey] ISYOSHEWONE 0F "OMOMYOJAl USIUBAS[I JIp INU ISUIdSI[enusy UWop
USINIYNIISYOZOL] USIIOLISA 19 WIJAI Pun 1210508 Snzog Ul USJe(] UOISPUE JIUI ZJEeSUY YI30]
A7Z7ZN USUId 19N USPIOA UJBPYOIAl USJIBYOSU[) "USZISSYd.Inp uoSunsQaIeMPpIRY] USPLIGAY
uoA zyeswg wop younp yone NS0T XZZNA S OIS pIM SUNNSGIBISAUSIBPYIIA 1op U]

147

ARGESIM REPORT NO.5

AOOTAZZNS 04

o« ge g . . . {jewsoju — ———
oo 4da Burugyorg e [T4 meeon

‘IRQ[OIZI0 USSUNISSSIGIo A
SYOIYRYOSHIM [OINDEP PUIS JNOUIAYDISSIORIDA Sp JNv [one JIMOS TSSUNISB[3QI[aAMUY)
oIp JNB YOUQUIH W] IgE] USIIYIQISY USIQNSSIYOHIO A UOA SUNISISTHOULIEY dUe Y1307
X770 1P goInp YIUuyod1o[SIqedie A 1op Ut FUNIoNSIS(OZOIJ JOp NZ YOIUYE (ep “USSIAMYIEU
oIS 1g§| uonB[MUIS 0joudIeed Yom(9IUOY USpIoM Uopunqagud JYOTU YISISSEP]
soyojem ‘madel] wnz s1aIyeyuae[y SOp USSSIMYOE] SEp Funjromag oSJIeyosSun SIp YoInp
WOy 19GISN] "UpIom HSLIFoIU FUnIons]sgozold SYOSIEUIoINe WS UL USUUYY ‘UQ[ISIEP
ogordusdrey) opeumdo oWy ISpPO JequuopRdg We gZ 9IS M USYQID opuUSLIaMS(Q
Nz JIeYosuf) PUIS UOpUY NZ OLISNPU[USYOSKUAYD IOP W pun SLISNPW[SNIISIUNITEN
Pp w gz QIS M uossozoidsgungnio,y UOA FUNIMLIS INZ guedny UWSZION HWIdd
usSp I UONRUWIGUIOD dIUL YOInp N80 AZZNA 1P 1°puy Suniondlsgezold Iop oIy W]

G

148

COMETT - COURSE "Fuzzy SYSTEMS AND CONTROL"

MOOTAZZNS O >
141

P . . . 1Eewsoju] ayasiu
18lIQW '4'd'@ ‘Bulig youg Meeeeeest L fewsneD N1

‘USPIOM TUURNID SHISZYNL JIS[YISIOAUSUIYOSEIA UOA “g Z USZUSPUS],
(one SONIOM[IZY Sop INPNIS 1010uS1998 19q 10qOM ‘WISJIOMIO NZ [OIRISQUAYOSIMY TSP
gomp THOTTHOS P LNO oA wnppdg sep NNYOIBQIN oI NS0T AZZNA 9P 1®Ielq
o[[0JIUOYSIBIENY) ISP U] "USWIUNSS] NZ unpomaqrerpeds duw yoInp uoqorduspog uoA
153 UNZ19S U BSNZIJOISPRYOS UAYDI[ParyosIaium 31p ‘qo3our o 18T drzurlg USYOUYE Woule
WAL 'IS! 19ISIS[IYEMOS Jyort gunqadqie,] 9)ULISUOY JUIS USUAP 19q ‘uoB[0JIe USPURISUITID
uoA Funuplonzqiej dUId BloWEYqIE IoUL oreugis -g pun -0 -y 10p Sumuomag 91Z1MS33
W80T AZZN:d Sud yoInp uuey 0§ ‘pueISUESoN) USIYONSIDIUN USP Iy (EWRGQLDH US WUED
1SI 9¢JQI0) SPUIINSIT (] 1210558 SuUNPIZog W ISPUBUONZ YIoM[eSaYy sopueIonuUaseIdal
uossImyoe,] Sep U [OoINp USplom wodunemag oSl USJIOMISNEN SUnIomIg
USIEYOSUN 10U USZUEGIUSIS OpudjeIyne uoplom IoQIotH WOPUWY NZ USIOIOWOII[H
19q SUNIDYOISSIBN[ENY I9P ‘USTHOI[IYOY WOA gunuuoyIg Jop ‘FumoqrerdApng I9p yoiog
un ‘gz uouoyelddy SuUnuueNISIAISN JIEYOSUN IIp {O.Mp puIS WONEYYISSers] Iop oIy Wy

149

ARGESIM REPORT NO.5

jeyisne;d Nl

MOOTAZZNS 104 >
141

e e . . YBULIOJ] BYDSIUYDS
s8lIQW “3'd'a “Bul-1a Joid mewaneet | L

-terougoym nz umneigordiandmo) uie UL HH “4ZNS9q ISWZIPIN

. . W [one NS

A ‘uassimuapIadxy sareqesiep WIEZ oL ot ‘soforzads ‘Yor[SQUI SO IBM 3o ?NNDM
o.6 :ob& 1517 -essTuqediyg SPUS[[QISUPALYNZ OWIDISAS TP UIJIY ToUIIOS[Y USYOSHoUs

o gone S UZIPN UO[EUOINSN USp Ju uoyewIquIOY] U] ‘31EMOSUSIRdXy SpulIdIStq

uozioN US[EUOINON Jue o7 Iz oIp 307 AZZ(A 9P Honemio ‘ST SUQI[BYIASIIIE[IO
sop osougold INZ wolshg Wo g Z So oM ‘suoishsuoyodxyg I0p Yorwg W]

B RIS RIS E)

150

COMETT - CouRsE "Fuzzy SYSTEMS AND CONTROL"

MOOT-AZZN4 104 >

JolIQW 4da BulFaa joid Mg s 1L Hn—.H e

puIS U)YOBI] NZ USUOIP|LIISAINDZ OM ‘U uowISAS AINLL TV AdVH ™ g0 AZZNA
uoa Sunziasui() I9p 10q YOIS USR] suoqa8I0A SOp UV 9S9ld WQIOLIOUSS NZ siseq[esoYy
spormrdo ‘onou dwR ZP/N So[RUOINAN WO oInp oy domr s9 ISt usZIESUAIE(U USRS
BoZ01 US[Eal Ul uop A J1o1SI[Ral Z1esuy NS0T AZZd 191510 WIS PIIM 10GIdTH uareraydo
oz1EsUy IS0 AZZNd)RS UaIdpue 19p Jne [oIs UasSe[USZION us[ewoInaN uoA JH NN

"UoYOIIQULIO NZ SUSUUNIH Sop pult S9ZIIN S9P JunrassoqIoAsIBIEn)

315 0S W ‘UeyPTun NZ ZIeSuy X771 Uoud YOINp BUIUIA S[EH0] o1aEn930S TONIoU

S9 151 WIYISNOA 'USIQIZNPIAL [OHGRYIo nozsGururel], Sp YOS IYE] SOZIN sop Sun3s[eqIoA
5soIp [oInQg pam pougojul Z)9N O[eUOIMON Sep W NS0T AZZNdA 2P [omp Sue3I0A
USpUAILID] NZ USWR Ioqn UOSSIMIOA (Bp ‘USQaIISUE JIBIOP uoNIuyda], 1opieq FUNPUWQIdA
JUIS 1P ‘USTUNPOIMIT SO 1q13 UeZ)oN US[RUOINAN USp NZ JRNUGFY SYOIIYOISUSFO S1p YoIm(]

151

ARGESIM REPORT NO.5

EBGBCiEiITIfSSEiIlEl]*)755ea,/ZkIIVVGErlCiLlIIg;SSg}EEI)j_621262

- Messen, Steuexrn, Regeln

Unschdrfe ist in dynamischen Systemen darin begrindet, daB exakte
mathematische Beschreibungen entweder gar nicht existieren oder
far das Anwendungsgebiet zu kompliziert sind.

Mittels Fuzzy-Logik kann diese Unschidrfe modelliert werden. Die
Konzepte der Fuzzy-Logik werden im MSR-Anwendungsgebiet angewen-
det, indem aktuell vorliegende Fakten mit einer Wissensbasis ver-
glichen und daraus giltige Schlisse gezogen werden. Die Wissens-
basis wird in Form von WENN...DANN...-Regeln notiert. Diese griin-
den sich auf die Fahigkeiten und die Erfahrung des Anwenders,
manchmal auch auf einfache Dimensionierungsregeln. Ihre Formulie-
rung ist an die natiirliche Sprache angelehnt.

— Entscheidungsfindung

Fir eine Vielzahl von Entscheidungsproblemen liegen keine befrie-
digenden analytisch-numerischen Lésungen vor, da die Quantifizie-
rung der 2zu berlcksichtigenden Kriterien unangemessen erscheint.
Mittels Fuzzy-Logik kénnen Ziele und Randbedingungen, wie sie bei
Entscheidungsproblemen vorliegen, qualitativ formuliert werden.
Hierfir sind Hilfsmittel entwickelt worden, mit den Zusammenhdnge
zwischen Zielen, Aktionen und Wirkungen qualitativ beschrieben
werden konnen, und die den Entscheider bei der Evaluierung mog-
licher Alternativen unterstiitzen.

——E3j.J_ci\fealrzilrkbeaj_t:Llruq;,/bdtlsst:ea:reaz:}iearurltlriq;

Anforderungen steigen hinsichtlich Leistungsf&higkeit und Genauig-
keit, werden z.Z. jedoch nicht vollstédndig erfiillt und sind auch
in naher Zukunft durch die klassischen Verfahren und Entwicklun-
gen nicht erfillbar. So werden z.B. klassische Kompressionsalgo-
rithmen der Notwendigkeit einer qualitativen Auswertung der Bild-
informationen nicht gerecht. Fuzzy-Logik kann in diesem Anwendngs-
gebiet hilfreich angewandt werden, indem sie mehrfach vorkommende
Subbilder zu erkennen versucht, oder durch Vergrdberungen, die
durch das menschliche Auge adaptiv ausgeglichen werden, diese Da-
tenmengen reduzieren. Fuzzy-Logik kann somit auch in der Erken-
nung von Abstufungen der Helligkeit oder der Strukturierung ginge—
setzt werden. Rein quantitative Methoden besitzen diese Mdéglich-
keiten in der Regel nicht.

- —— _
woamsna | LTI S mas Prof. Dr-ing. D.PF. Moller

\/ FG: FUZZY-LOGIK

152

COMETT - COURSE "FUzZY SYSTEMS AND CONTROL"

— Datenanalyse Klassifikation

Bei der Rechnerunterstiitzten Uberwachung und Diagnose muB in der
Regel eine Vielzahl von MeBwerten (Daten) beobachtet (erfaBft) und
fir Klassifikations- und Steuerungsaufgaben bewertet werden.
Dabei sind verschiedene Merkmale zu beobachten, deren Auspragun-
gen in Klassen eingeteilt werden. Bei der Beobachtung bzw. der
spdteren Analyse von MeBwerten werden zumeist Toleranzbereiche
fir die einzelnen Merkmale angegeben, wobei aber keine eindeutige
Klassenzuordnung erreicht wird. Durch qualitative Formulierung
der Toleranzbereiche mittes Fuzzy-Logik (unscharfe Mengen) kann
das Anwendungsproblem gelést werden.

— Optimierung

Optimierung ist ein breites Anwendungsgebiet, z.B. Optimierung
von Produktionsprozessen.

Klassische Optimierungsverfahren orientieren sich an der nume-
rischen Bestimmung von Extremwerten einer im Reglfall analytisch
beschriebenen Funktion bei gleichzeitiger Einhaltung eines Gite-
kriteriums (Fehlerfunktional). In der praktischen Anwendung sind
qualitative Charakterisierungen wie z.B. geringe Kosten oder hohe
Auslastung hdufig ausreichend und analytische oder quantitative
Aussagen Uber die Optimierungskriterien hdufig nicht méglich. Die
Fuzzy-Logik erlaubt es hier die Anwendungsproblemstellungen ein-
facher zu beschreiben und vorhandene "Toleranzraume" auszu-
schoépfen.

— Produktionsplanung

In der Produktionsplanung gibt es eine Vielzahl von Einzelpro-
blemen, die je nach Anwendungsgebiet des Produktionsprozesses zu
lésen sind, wie z.B. bei der Auftragsvergabe im Falle der Ferti-
gungsleittechnik oder das operative Produktionnsmanagement fir un-
terschiedliche Zeithorizonte und Entscheidungsebenen.

In Abhdngigkeit des Anwendungsgebietes kann Fuzzy-Logik, unter
Einbindung von Expertenwissen, z.B. in Form von WENN...DANN...-Re-
geln oder wissensbasierten Komponenten die Lésungsfindung erleich-
tern. Auch sind Fuzzy-Hybridl®&sungen unter Einbezug klassischer
Verfahren, wie z.B. Petri-Netze bei stark strukturierten Prozes-
en einsetzbar.

Prof. Dr.-Ing. D.P.F. Mdller

— A Lehrstuhl for
TU Clausthal I f I TI Technische Informatik

\\\\\///// FG: FUZZY-LOGIK

153

COMETT - CouRsE "FuzzY SYSTEMS AND CONTROL"

3.1 Fuzzy Control

woasta | F 1) tewwher U pe pring. D.P.F. Méller

155

Srollln ‘ARGESIM REPORT NO.5

3. FUZZY-REGELUNGSSYSTEME (FUZZY CONTROL)

Die Regelungstechnik befaft sich mit Methoden, AusgangsgroBen und Zustinde eines dynami-
schen Systems auf vorgegebenen Werten zu halten oder einer Solltrajektorie nachzufihren. Da-
her wird bei "klassischen” Regelungssystemen fiir deren Synthese die Ubertragungsfunktion
zwischen den Ein- und Ausgiingen des Reglers quantitativ mit Hilfe mathematischer Gleichun-
gen beschrieben. Die Idee, Fuzzy-Logik zur qualitatitven Beschreibung von
Regelungssystemen zu verwenden, wurde zuerst von Zadeh formuliert, die Umsetzung geht
auf Mamdami zuriick. Mitte der 70er Jahre untersuchte er die Anwendbarkeit unscharfer Ver-
fahren zur Automatisierung komplexer, nichtlinearer Prozesse mit groBen Totzeiten, die von
erfahrenen Anlagenbetreibern gesteuert wurden. sich aber einer (quantitativen) mathema-
tischen Beschreibung entzogen. Eine der ersten erfolgreichen Realisierungen einer Fuzzy-Lo-
gik-Regelung war die Automatisierung eines Zementbrennprozesses mit einem Fuzzy-Regler
vom Mamdani-Typ. Seither hat das Gebiet der Fuzzy-Regelungen vielfiltige Anwendungen
aufzuweisen. Bevor die spezifischen Methoden der Fuzzy-Regelung dargestellt werden, sind
die regelungstechnischen Grundlagen in kurzen Ziigen zu skizzieren.

3.1 Grundlegende Begriffe und Definitionen der Regelungstechnik

Ein Regelkreis besteht, wie aus Bild 3.1 ersichtlich, aus der Reihenschaltung eines Reglers und
eine Strecke in einer Regelschleife. Die zu regelnden Systemgrofien werden als Regelgrofien be-
zeichnet, die Sollwertvorgaben als FihrungsgroBen. Der momentane Wert der Fithrungsgrofe
und die aktuelle RegelgroBe bilden die Regeldifferenz. Der Regler generiert einen Stelleingriff,
der iiber Aktoren auf die Regelstrecke einwirkt.

Stor réfﬁe Pl
(4 o
Fiheungs l z egelgrofle
gréfle Wt el uck) > YU:)
Reg\u Shllsfé{S‘ Sdrecke

Bild 3.1 Regelkreis

Bei einer Festwertregelung mu die Regelgrofe moglichst genau auf einen vorgegebenen Fiih-
rungswert gehalten werden. Dabei miissen Storungen (die prinzipiell an jedem beliebigen
Punkt angreifen konnen) ausgeglichen werden. Sprungformige Anderungen der Sollwertvor-
gabe sollen schnell und ohne starke Oszillationen (Einschwingverhalten) ausgeregelt werden.

Bei einer Folgeregelung (Servoregelung) wird die RegelgroBe dem Verlauf der FiihrungsgroBe
kontinuierlich nachgefihrt, wobei der Entwurf auf ein geringes Schwingverhalten abzielt.

156

COMETT -'éb%_RSE "FuzZY SYSTEMS AND CONTROL"

3.2 Beschreibungsformen linearer Regelungssysteme
3.2.1 Grundlagen
In der Theorie linearer Regelungssysteme kann man auf eine Fiille bewihrter Verfahren zur
Synthese stabiler und robuster Regelungen zuriickgreifen. Voraussetzung fiir die Anwendung
dieser Methoden 1st die Verfiigbarkeit eines linearen mathematischen Modelles der Regelungs-
strecke, dessen dynamisches Verhalten hinreichend genau durch eine lineare Differential-
gleichung (DGL) beschrieben wird.
Setzt man die Linearitit als hervorragendes Systemmerkmal voraus, da mu} bei dynamischen
Regelungssystemen das Superpositionsprinzip gelten, welches besagt, daBl die Reaktion ei-
nes linearen Systems auf eine Summe von eingangssignalen gleich der Summe der Reaktionen
auf die Einzelsignale ist. Daraus folgt:

Eingangsgrofie uj (t) fuhrt zur Ausgangsgrobe yj (t)

EingangsgroBe up(t) fithrt zur Ausgangsgrofie yo(t)
und damit:

u(t) = uy(t) + up(t) filhrt zur Ausgangsgrofe y(t) =y () + y xt).
Dariiber hinaus muB} das Verstirkungsprinzip erfiillt sein:

Eingangsgrofie uj (t) fiihrt zur Ausgangsgrofie y(t)
und damit:

EingangsgroBe u(t) = cq (t) fiihrt zur AusgangsgroBe y(t) = cj(t) .

Superpositionsprinzip und Verstirkungsprinzip lassen sich bei linearen Systemen
zusammenfassen!

Beschreibungsformen it dynamische Regelungssystems sind DGLn im Zeib ereich z.B. der
Form:

yWia y@Dy taytag=by ™+bpu™Dt +bop-+bdp

mit m <n, den rellen Koeffizienten g, ty und y(i) als i-te Ableitung von y(t) nach der Zeit.
Die hochste auftretende Ableitung (hier n) wird Ordnung der DGL genannt.

Eine weitere Beschreibungsform ist die Modellierung dynamischer linearer Systeme im La-

olace- bzw. Frequenzbereich. Dabei geht die lineare DGL durch Laplacetransformation tiber
in die zugehorige Ubertragungsfunktion:

by + by 4+ bys + iy

157

ARGBSIM REPORT NO.5

Bislang wurden Beschreibungsformen fiir dynamische Systeme betrachtet, die dal Eingangs-
Ausgangsverhalten des Systems beschreieben. Mit diesen Verfahren kann nur der Verlauf der
AusgangsgroBe bei einer bestimmten Eingangsgrofe ermittelt werden, jedoch nicht der das im
inneren des System ablaufende dynamische Verhalten, welches durch die Zustandsgrofien des
Systems beschrieben wird. Hierzu miissen Zustandsraummodelle angewandt werden, welche
Systemen von DGLn 1. Ordnung enstprechen. Fir lineare Systeme haben sie die Form:

X =AX + BU

3.2.2 Klassische Reglertypen

In der regelungstechnischen Praxis haben sich drei Kategorien bewihrt:
- PID-Regeler (und Unterklassen)

- Kennlinien- bzw. Kennfeldregler

- Zustandsregler

3.2.2.1 PID-Regler

Der PID-Regler besteht aus einem P-Regler, dessen Ubertragungsverhalten durch das Regler-
funktional

u = Kpe
beschrieben wird, d.h. die Stellgrofe u ergibt sich aus der Regelabweichung € durch Multipli-
kation mit der Reglerverstirkung K 5 (Proportional-Regler), wobei der Parameter Kli) der

PI-Re

einzige Freiheitsgrad beim Entwurf ist, sowie einem Integral-Anteiel, was zum gler
fithrt mit dem Reglerfunktional

u = Kp(e + I/TN INT edt)

wobei Tn die Nachstellzeit ist, die eine Gewichtung des Integralterms erlaubt. Dieser sorgt
dafiir, daB sich auch geringe Regelabweichungen mit zunehmender Zeit immer stirker in der
StellgroBe auswirken und die bleibende Regelabweichung verschwindet.

Um die Schnelligkeit des Regelrs zu verbessern wird ein D-Term zugefiigt und man hat den
PID-Regler in der Form:

u = Kp(e + I/TN INT edT +Tye)

158

COMETT - COURSE "FU3z4-SYSTEMS AND CONTROL

wobei T,, die Vorhaltzeit des D-Anteils ist. Dabej bewirkt der D-Anteil, daB sich plotzliche
Anderungen der FihrungsgroBe, die einen unmittelbaren EinfluB auf die Regelabweichung ha-
ben, vom Regler schnell erkannt und verarbeitet werden konnen.

Somit kann zum PID-Regler allgemeingﬁltig festgehalten werden:
- Der P-Anteil sorgt fir allgemein glinstiges Regelverhalten,
- der I-Anteil sorgt fr stationire Genauigkeit,

- der D-Anteil sorgt fir schnelle Ausregelung.

l")

e - /l - - 7
s {
i
e ;—“K 2 ‘ T “ ﬂ/TN /.._—— — J ,/ e . >C: N

I T "
: \ i T 0 ;’
- DTy i \ Q& —

4 Jt

o Co

C - C,('(?O’/af

159

— 5 A -
ARGESIM REPORT NO.5

3.3 Grundstruktur der Fuzzy-Regelungssysteme

Das Blockschaltbild in Bild 3.2 zeigt an einem Beispiel die prinzipielle Struktur eines Reglers
der auf Fuzzy-Control basiert. Der besseren Verstindlichkeit halber wird ein single input/sin-
gle output fuzzy-controller (SISO) gewihlt -andere Fuzzy-Regler wie z.B. MIMO, SIMO, MI-
SO, arbeiten nach dem gleichen Prinzip-. Es gibt nur eine StellgroBe, also nur eine vom Reg-
ler vorzugebende EingangsgroBe des Prozesses. Die Aktionen des Reglers hingen nur von ei-
ner einzigen Eingangsgrofe ab, der Regelabweichung e.

{ Umgebuny ’
A —-——_—‘—‘i gl,;srungew
i defell |
L dld ¢ i l SJ’ . 1 \1(4)
! l elb) FLC ‘ recidc

Bild 3..2.. Regelung durch fuzzy controller mit e und de/dt als Eingangsgrofien

Der fuzzy controller berechnet seine AusgangsgroBe(n) aus seinen EingangsgroBe(n) anhand
linguistischer Regeln. Jede linguistische Regel verkniipft:

- eine Primisse, formuliert durch eine linguistische Aussage oder eine logische Verkniipfung
mehrerer linguistischer Aussagen iiber die EingangsggroBen des Reglers,

- mit einer Konklusion, ausgedriickt durch eine linguistische Aussage iiber die Ausgangsgrofe
(n) des Reglers.

Ein Fuzzy-Regler kann eine linguistische Regel nur dann nutzen, wenn die Aussagen in Prd-
misse und Konklusion folgender Beschrinkung geniigen: Jede Aussage gilt dem momentanen
Wert einer GrBe - und nicht ihrem zeitlichen Verhif. Ein Fuzzy-Regler berechnet grundsitz-
lich den aktuellen Wert seiner AusgangsgroBe aus den aktuellen Werten seiner Eingangsgrofen
arbeitet in Bezug auf seine Eingangsgrofen stets als reiner Proportionalregler.

Um dem Regler eine zeitliche Dynamik zu geben, kann man in den linguistischen Regeln die
AusgangsgroBe vom Zeitverhalten der Eingangsgrofie(n) abhéngig machen. Dann ist der Reg-
ler so auszulegen, daB der Fuzzy-Regler eine Kenngrofie des Zeitverhaltens dieser Eingangs-
groBe(n) als zusitzliche EingangsgroBe(n) erhdlt. Die zeitliche Ableitung der Regelabweichung
sie wird mit de/dt bezeichnet, wird auBerhalb des Fuzzy-Reglers gebildet, denn nur dann kann
der Fuzzy-Regler eine linguistische Regel auswerten, in deren Primisse eine Aussage iiber
de/dt gemacht wird. Damit kann davon ausgegangen werden, daB die gewiinschte zeitliche
Dynamik erreicht wird. Fiir den Fuzzy-Regler sind e und de/dt damit zwei unabhingige Ein-
gangsgroBen X und Y. Die Einbettung des Fuzzy-Reglers in seine Umgebung zeigt Bild 3.....
Der Regler besteht aus dem eigentlichen Fuzzy-Regler und einem Differenzierer. Ein analoges
Vorgehen ist erforderlich, wenn die Regelung einen integralen Anteil haben soll.

160

COMETT - COURsEaFéaY SYSTEMS AND CONTROL"

3.3.1 Aufbau und Wirkungsweise des Fuzzy Controller

Nachfolgend wird der Autbau und die Wirkungsweise eines Reglers auf Fuzzy-Logik-Basis,
der als Fuzzy Logic Controller FLC bezeichnet wird, beschrieben werden. Bild 3.3 zeigt das
Blockschaltbild eines FLC mit zwei Eingangs- und einer Ausgangsgrofie.

o
1) t(nt)
e () CE ,
—_—

Gk

®
- Y(nT) :t

Bild 3.3 Fuzzy Logic Controller FLC

Der FLC besteht im wesentlichen aus drei Komponenten:

- der Fuzzifizierung, d.h. der Einteilung der Ein- und Ausgangsgrofen in unscharfe Mengen

- der Regelbasis mit Inferenzmechanismus, die neben den Verkniipfungsregeln zwischen Ein-
und Ausgangsgrofen auch die Entscheidungslogik zur Bestimmung des unscharfen Ausgangs-
wertes beinhalten

- der Defuzzifizierung, d.h. der Umwandlung der unscharfen Mengen fiir die Ausgangsgrofie
in einen diese unscharfen Mengen reprisentierenden diskreten Ausgangswert

Aus Bild 3.3 lassen sich somit die folgenden Beziehungen ablesen:

e(nT) = y(nT) - Sollwert
B(nT) = F|GE*e(nT)]
r(nT) = [e(nT)-e(nT-T)}/T
T(nT) = FIGR+1(nT)]
u(nT) = GU+DF[u(nT)]

dabei ist n eine positive natiirliche Zahl und T kennzeichnet die Abtastschritte. Die Werte
e(nT), r(nT), y(nT) und u(nT) beschreiben den Fehler (error), die Anderung des Fehlers
(rate), den ProzeBausgang (y) sowie den Fuzzy-Regler-Ausgang (u), der gleichzeitig den
ProzeBeingang darstellt.

Der Fehler zum Zeitpunkt (nT-T) ist gegeben durch den Term e(nT-T).

GE (gain of error) und GR (gain of rate) bezeichnen die Skalierungsfaktoren fiir den Fehler
bzw. die Anderung des Fehlers und GU (gain of controller output) den Skalierungsfaktor fur
die Ausgangsgrofie des Fuzzy-Reglers.

161

ARGESIMIREPORT NO.5

Mit Hilfe diese Skalierungstaktoren werden die physikalischen GroBen in das Intervall von 0
bis 255 abgebildet, was einer 8 Bit Zahl entspricht-

F{] beschreibt die sog. Fuzzifizierung, d.h. die Einteilung der Eingangsgrofen und der Aus-
gangsgrofe in unscharfe Klassen. Der diskrete Wert des Regleusgangs u(nT) zum Zeitpunkt
nT, wird durch die Defuzzifizierung DF|| der unscharfen Mengen der AusgangsgroBe
berechnet.

Die Umsetzung dieser drei Komponenten hingt von der Realisierungsform des Fuzzy-Reglers
ab. Einerseits konnen die Schritte Fuzzifizierung und Regelbais/Inferenzmechanismus durch
Diskretisierung der linguistischen Variablen in Form einer (i.a. mehrdimensionalen) Relations-
matrix realisiert werden.

Durch Einbeziehung der Defuzzifizierung kann der Regler dann in eine mehrdimensionale Ta-
belle (eine sog. Look up-Table) iiberfiihrt werden, aus welcher sich der (scharfe) StellgroBen-
wert fur eine bestimmte Kombination von (scharfen) Eingangsgroffien unmittelbar oder durch
Interpolation von Zwischenwerten entnehmen l48t, ohne daB dazu noch irgendwelche Rechen-
schritte erforderlich sind. Diese Off-Line Realisierungsform ist fir spezielle Hardwarestruktu-
ren von besonderem Interesse.

Fiir die Regelbasis spielt die Wahl der Ein- und Ausgangsgrofen eine besondere Rolle. so daff
die Eingangsgrofen dem jeweiligen Anwendungsfall angepafit werden miissen. Neben der
Differenz zwischen Soll- und Istwert (Fehler/error) kann z.B. auch anstelle der Ableitung
dieses Fehlers die Ableitung des Istwertes als zweite Eingangsgrofie verwendet werden.

Die Komponenten eines Fuzzy-Reglers mit zwei Eingangs- und einer AusgangsgroBe honnen
somit wie folgt zusammengefalit werden:

- den Skalierungsfaktoren GE, GR und GU fiir die Ein- bzw. Ausgangsgrofien

- ein Fuzzifizierungsalgorithmus fiir die skalierten Ein- und Ausgangsgrofien

- die Regelbasis (Fuzzy Control Rules)

- der Fuzzy-Logik zur Berechnung der Inferenz

- der Defuzzifikationsmethode, um aus der unscharfen Menge der AusgangsgroBe einen diskre-

ten Ausgangswert zu berechnen.

Ein grofier Vorteil des FLC ist begriindet in dem Tatbestand, daf innerhalb dieses Reglers
auch Nichtlinearititen beriicksichtigt werden konne, was mit herkdmmlichen Reglern nur mit
entsprechendem Aufwand moglich ist. Die Implementierungsmoglichkeiten fur
Nichtlinearititen sind beim Fuzzy-Regler die folgenden:

- beim verwendeten Fuzzifizierungs-Algorithmus
- dem Fuzzy-Regelwerk

- der Art der Fuzzy-Logik, die fir die Berechnung der Inferenz verwendet wird (decision
making logic)

- der Defuzzifizierungsmethode, die zur Bestimmung der diskreten AusgangsgroBe herangezo-
gen wird.

162

COMETT - COURSE “139§ZY SYSTEMS AND CONTROL"

Aus der Darstellung wird ersichtlich, da8 beim Fuzzy-Regler im Vergleich zu einem konven-
tionellen PID-Regler weitaus mehr Parameter fiir die Variation zur Vertiigung stehen, was zum
einen den Vorteil einer guten Anpassungsmoglichkeit des Reglers an spezielle Anfor-derungen
beinhaltet, zum anderen jedoch die Gefahr mit sich bringt, daB bei der Reglerausle-

gung nur eine suboptimale Einstellung erreicht wird. Aus dieser kurzen Darstellung wird deut-
lich, daf auf dem Gebiet der Fuzzy-Logik nach wie vor ein Bedarf an theoretischer Arbeit
vorhanden ist um z.B. Kriterien zur Regelerauslegung bzw. Stabilititsbetrachtungen
entsprechend den konventionellen Reglern durchfiihren zu kdnnen.

Eine weitere Realisierungsvariante fiir FLC besteht darin, die StellgroBe fiir die aktuelle Kom-
bination von EingangsgroBen jeweils On-Line zu berechnen. Dazu geht man wie folgt vor:
- Ermittlung des Erfiillungsgrades fiir die einzelnen Primissen (WENN-Teile) der Regel

- Verkniipfung der einzelnen Erfiillungsgrade iiber den UND- bzw. ODER-Operator (z.B.
MIN- bzw. MAX-Operator)

- Regeln mit einem Erflillungsgrad E > 0 sind aktiv.
- Ermittlung der zugehorigen StellgroBen-Fuzzy-Mengen fiir alle aktiven Regeln

- Ermittlung der resultierenden Stellgré8en-Fuzzy-Mengen durch Uberlagerung aller Stell-
groBen-Fuzzy-Sets,

- Ermittlung der scharfen StellgroBen durch Defuzzifizierung.
Diese allgemeine Vorgehensweise kann verdeutlicht werden an folgendem Beispiel:

Fir FLC mit zwei Eingangsgrofen e =0,25 und e2=-0,3 soll die StellgroBe bestimmt
werden. Es sei angemommen, das nur zwei Regeln aktiv sind und zwar:

Ri: WENN ¢;=PK UND ep=NU DANN u=PK
Ry: WENN e;=N UND ep)=NK DANN U=N
mit PK = positiv klein

NU= null
NK= negativ klein

Anhand des nachfolgenden Bildes soll die Vorgehensweise schrittweise erliutert werden:

163

LL-10 66 66/680 xed ‘0-10 65 66/680 "1aL 'L Bamuasjsi] ‘Buiryolrajuf hbL68-d j1ua1as

:uayouniy aj|aissijeyasay o junynz
£8 6bb/Lbz0 Xed ‘Lb 092/1420 181 'L0L egeliszue] ‘uaydey y9025-a € JiW 9ieM1}0S

8.1 el doquiAs "gl buissasoid abew| ‘gL 10]BJ3UAG 807 7 :apo||ang-9 uoA Buniauauag m 066 @ 98 NIX0S1001'-009°L NG 98 V1LY W
SaNsnels mﬁm:_am gl souawoway] ‘gl yomian uaxoq(ool-gy1LvIN N asAjeue ajeunioyaieq Ja61galaq uaqiaiyag pun uasa] m
|eAnap ‘gJ uoneziwnd(:4eqziasula |jasianiuf) -jeubig ‘pnmuasalbay ‘Buniaiwndoiaiaweled | uauomyuny ‘Bia1aznuag PuaMIBAIBPAIA PUn LBYIBdS M
(INITNNIS pun 3||apoN 1aJeaulpydiu buniaistieaur] | 7 Japo/pun ueIu04 Jw uauoijung auabiy m

gy 11y nz bunzuebs3) gNNYILIIMEI-LIFZLHOI spueisnz uauabunmyosabula sap bunwwnsag M SAWRJJUIRY PUN SUOHBISYION ‘STd M
mazya3 ui bunjabay ‘Bunyansiawnwaysis XeJUAS ayaejuia ‘Bunpuamuy aanyesalu] m

‘Sunsana)g ‘Bunyiagiean- ‘Gunssepauajepyay 3p09-gy Ly Waiegsa| ui bunayoiads m :uayeyasuabiz

(INITNWIS nz BunzueBig) 8po)-ueiuo4 Japo - "-gyLyIA Ul 8320]g auabiy m ynawyiuewouAjod ‘bunuyosaipamuabiy m
SIVINHIIW :awajsAg sayasiueyaaw uonenuig seqbnpan ayaojgplepuels ajaia ‘izuaibaqun ynsnels ‘bunpamsnejawio] |

. i e S yasmyeld uauaq3-anjoelsary Jap |yez ‘ajlapow|ial M Bunpyommug-uawiyiuofjy ‘uonewiuy
m__, uoneuap| .r.:.,ﬁ S .s._: 15 m_ uvonedpuapy Buimopuipp ysojuiaep) 1apo ‘Buruaisiensip, ‘uaiepsyansiap uoa Gunpamsny m
Emymu}m g] sisayjuAg pue m__mzw:«..: 1 |o41u09 18q (uoneIsyIopA-XIun) JUoN/X ‘(Dd) SMOpuUIp-SIA awa)sAg 1RBUILIIL UONE|NWIS 3LAISeqsBuNyI1a|g M
-04 ‘gl ‘.,_m_mmn j013U07 Jeauljuop ‘g WalsAS |01u0) ine puaneqine ‘aqeBui3 ayasielb a11anuaLoNI0|g M o hm:_:_maam ik
uoneyyuepiwaishs pun yiuyseisbunjabay I8Py Waula ui ajia}||apojy W1BWYIIBUBZIR|Y ‘UOUYapsBuny2Ia|Y m
q1 buissasoiy (eubig :Bunnagiesanjeubig 81a14SIP pun ayaIpAINUNLOY ‘BieAUIIY2IU ‘BiRaUN Il -aj21qabsbunpuamuy

:Buniaijapopy

uauolpjunjziesnz ‘Buniaiwwelbord
uayasyizadsyoej ‘'vabiyejsbumsia) yw YNITNWIS ‘uone|nwig pun asAjeuy ‘Guniaijjapopy -uabig abipuamyne 1218813 "uapuamnzue Yaejurj

pun gy1LvIA uoa Bunzuebi3 inz (g1) NIX0G100L auaIseqp|iqyaojq ayasiyesb aip anj , ANINNWIS J8|yeyasuassimIniep pun ainaiabuj iy .ay1LVIN

A .m.. k2

..m.. !l_-
THpe s

L

_ - JWAISAS AyosiweuAp aseaul|
dvilvw 1nj ua8unzuesij -1yotu anj wiajsAssuoijejnwig uadunuydasayg
ayasijizadssdunpuamuy saj1a14333ut gviLlvw ul ‘uyoai-"yjew anj atemijos aid

ARGESIM Report no. 6

COMETT - Course "Object-Oriented
Discrete Simulation”

Seminar Modellbildung und Simulation
EUROSIM'95 Seminar

N. Kraus, F. Breitenecker

in ISBN ebook 978-3-901608-04-9 (3-901608-04-4)
DOI 10.11128/arep.4-5-6.ar6

© 1995 ARGESIM

ISBN 3-901608-06-0
ARGESIM Report No. 6

in ISBN ebook 978-3-901608-04-9 (3-901608-04-4)
DOI 10.11128/arep.4-5-6.ar6

ARGE Simulation News (ARGESIM)

c/o Technical University of Vienna

Wiedner Hauptstr. 8-10

A-1040 Vienna, Austria

Tel: +43-1-58801 5386, 5374, 5484

Fax: +43-1-5874211

Email: argesim @simserv.tuwien.ac.at
WWW: <URL:http://eurosim.tuwien.ac.at/>

OBJECT-ORIENTED DISCRETE SIMULATION

FOREWORD

At present there is a big need for automatisation of production processes, of manufacturing
processes, of control systems, etc. For automatisation at each level different hardware and software
tools are offered. It turns out that simulation is the most general tool offering not only certain

software but also methodology and know-how for automatisation

Simulation is the process of designing a computerised model of a system and experimenting with this
model in order to understand better the behaviour of the system, or to locate specific problems, or to

evaluate different strategies for the operation of the system, or to plan a new process.

This course offers an introduction for engineers, scientists, and interested people from other fields to

modern methods of computer simulation of and for automatisation.

Due to the nature of the investigated processes this course deals on the one side with discrete
simulation and optimisation in discrete simulation - in order to handle the planning and scheduling

problems in e.g. production systems.

On the other hand this course gives from the technical point of view insight into simulation tools for
controlling and optimising machines like robots, in order to increase the efficiency of stations, robots,

AGVs, etc. Especially the modem technique of fuzzy control and simulation will be considered.

The course consists of three independent units:

e Introduction into Discrete Simulation
e Simulation and Automatisation with Object-Oriented Tools (this report)

e Fuzzy Control for Automatisation

The first unit "Introduction into Discrete Simulation” is a basic unit introducing into the concepts of
discrete simulation, and into applications for automatisation. Also mathematical background
(statistic) will be sketched and modern methods for optimisation (genetic algorithms).

This unit adresses newcomers in simulation and automatisation. In this unit the classical simulation

tool GPSS/H and the PROOF animation system will be used.

ARGESIM REPORT NO.6

The second unit "Simulation and Automatisation with Object-Oriented Tools" adresses people from

application areas giving an overview about modelling,

simulating and opimising discrete processes (manufacturing processes, etc.) by means of modern
powerful object-oriented software tools.

Application and case studies presented in this unit work with the modern simulator SIMPLE++,
which allows to formulate optimisation and automatisation strategies by means of methods. As this

unit is based on applications, only little or no previous knowledge is necessary.

The third unit "Fuzzy Control for Automatisation” deals with the technical aspects of automatisation
and adresses (control) engineers or people from related areas. After a short introduction into basic
principles of (optimal) control for automatisation (of machines, robots, etc.) principles and
applications of the new tools Fuzzy Control are considered.

Specific software tools and general ones (MATLAB) will be discussed. Although this unit deals with
technical aspects and seems to be independent from the world of discrete processes, it completes the

first and the second unit from the view of automatisation.

After the course a participant should be able to make decisions about the use of modelling and
simulation methods in the area of automatisation, to work with simulation tools for automatisation

purposes, and to decide on an efficient use of simulation for a specific automatisation

All three units of the COMETT Course are available as ARGESIM Reports.

We wish to thank AESOP for making available the material for the second unit of this course.

v

OBJECT-ORIENTED DISCRETE SIMULATION

Seminare iiber Modellbildung
und Simulation

Seit dem Frithjahr 1991 veranstaltet das EDV-Zen-
trum gemeinsam mit der Abteilung Regelungsmathe-
matik und Simulationstechnik des Instituts fiir Techni-
sche Mathematik und der ARGE Simulation News
(ARGESIM) Vortragsveranstaltungen zum Thema Mo-
dellbildung und Simulation (Simulationsseminare). Or-
ganisatoren sind I. Husinsky und F. Breitenecker. Das
Ziel ist, verschiedene Simulationswerkzeuge vorzustel-
len, iiber ihre Einsatzméglichkeiten zu informieren und
Erfahrungen auszutauschen. Ferner werden bekannte
Simulationsfachleute eingeladen, Grundsatzvortrige
zum Thema Simulation zu halten. Im allgemeinen wer-
den die Seminare teilweise von Firmen gesponsert oder
iiber Simulationsprojekte mitfinanziert. Sie dauern ei-
nen halben oder einen Tag, es gibt schriftliche Unterla-
gen zu den Vortragen und Softwareprodukten. Ein Buf-
fet fordert die Kommunikation zwischen den Seminar-

teilnehmern in den Pausen.
Bis jetzt haben folgende Seminare stattgefunden:

Si 23.4. 1991 ACSL

S2 4.6. 1991 CTRL C XANALOG

S3 22.10.1991 |SIMUL R

S4 S.5.1992 ACSL

S5 6. 5. 1992 MicroSaint

S6 17. 6. 1992 Objektorientierte
Modellbeschreibung und
qualitative Simulation
(F. Cellier_University of Arizona)

S7 1. 7. 1992 Diskrete Simulation und Analyse
(D. Kelton, University of
Minnesota)

S8 23.10. 1992 |GPSS/H (T. Schriber, University
of Michigan)

S9 10. 12. 1992 |SIMPLE

S10 _]2.2.1993 MATLAB und SIMULINK

SI1 [25.3.1993 Modellbildung mit Bondgraphen
(D. Kamopp, University of
California)

S12 124.5.1993 MicroSaint

S13 122.6.1993 ACSL

S14 21.10.1993 XANALOG SIMNON

S15 |22.10.1993 GPSS/H (T. Schriber, University
of Michiean)

S16_ [11.11.1993 IDAS

S17 _ [7.12.1993 SIMPLE++

S18 |14.12.1993 Petrinetze, D_SIM
{R. Hohmann, Magdeburg)

S19 |4.2.1994 Modellbildung und Simulation in
der Lehre

S20 (14.3.1994 GPSS/H und Proof (T. Schriber,
University of Michigan)

S21 [13.4.1994 ACSL

S22 [10.5.1994 SIMUL_R, Partieile
Differentialgleichungen

S23 122.11.1994 [MATLAB/SIMULINK

S24 [14.12.1994 SIMPLE++

S25 [31.1.1995 Parallele Simulation, mosis

S26 [28.3.1995 ACSL

S27 129.3.1995 MicroSaint

S28 [13.6.1995 COMETT II, Pant one, Discrete
Simulation

S29 |28.6.1995 COMETT II, Part two, Simulation
and Automatisation

Teilnehm €l(angemeldet)

HRBHNKET N®R

11.2%

Die Teilnehmer, etwa 30 bis 110 je Seminar, kommen
zum GroBteil von der TU, aber auch von anderen Uni-
versititen und aus der Industrie. Bei den bisherigen Se-
minaren waren etwa 20% der Teilnehmer aus der Indu-
strie.

Das Programm eines Seminars setzt sich im allgemei-
nen aus einem oder zwei Grundlagenvortragen, mehreren
Anwendervortriagen, Produktprdsentationen, Vorfithrun-
gen am Rechner und Diskussionen zusammen.

Die Teilnehmer werden um eine Anmeldung gebe-
ten, daher konnen die Unterlagen (Seminarberichte).
die zu Beginn des Seminars verteilt werden, schon eine
Teilnehmerliste enthalten. Ab Herbst 1995 erscheinen
die Unterlagen als ARGESIM Report. Alle, die bereits
an einem Seminar teilgenommen haben, werden auto-
matisch zu den weiteren Seminaren eingeladen.

Information:

1. Husinsky, EDV-Zentrum, Technische Universitit
Wien, Wiedner Hauptstr. 8-10, A-1040 Wien,

Tel: (0222) 58801 5484, Fax: (0222) 587 42 11,
E-Mail: husinsky @edvz.tuwien.ac.at

Prof Dr. F. Breitenecker, Abt. Regelungsmathematik u.
Simulationstechnik, Inst. 114, Technische Universitit
Wien, Wiedner Hauptstr. 8-10, A-1040 Wien,

Tel: (0222) 58801 5374, Fax: (0222) 587 42 11,
E-Mail: fbreiten @email.tuwien.ac.at

ARGESIM REPORT NO.6

About ARGESIM

ARGE Simulation News (ARGESIM) is a non-profit working group providing the infra structure
for the administration of EUROSIM activities and other activities in the area of modelling and
simulation.

ARGESIM organizes and provides the infra structure for
e the production of the journal EUROSIM Simulation News Europe
the comparison of simulation software (EUROSIM Comparisons)
the organisation of seminars and courses on modelling and simulation
COMETT Courses on Simulation
"Seminare iiber Modellbildung und Simulation"
development of simulation software, for instance: mosis - continuous parallel
simulation, D_SIM - discrete :imulation with Petri Nets, GOMA - optimization in
ACSL
e running a WWW - server on EUROSIM activities and on activities of member
societies of EUROSIM

e running a FTP-Server with software demos, for instance

* demos of continuous simulation software

* demos of discrete simulation software

* demos of engineering software tools

* full versions of tools developed within ARGESIM

At present ARGESIM consists mainly of staff members of the Dept. Simulation Technique and of
the Computing Services of the Technical University Vienna.

In 1995 ARGESIM became also a publisher and started the seriecs ARGESIM Reports. These
reports will publish short monographs on new developments in modelling and simulation, course
material for COMETT courses and other simulation courses, Proceedings for simulation
conferences, summaries of the EUROSIM comparisons, etc.

Up to now the following reports have been published:

No. Titde Authors / Editors ISBN
#1 Congress EUROSIM'S5 - Late Paper Volume F. Breitenecker, |. Husinsky 3-901608-01-X
#2 Congress EUROSIM'95 - Session Software F. Breitenecker, |. Husinsky 3-901608-01-X
Products and Tools

#3 EUROSIM'95 - Poster Book F. Breitenecker, |. Husinsky 3-901608-01-X

#4 Seminar Modelibildung und Simulation - F. Breitenecker, |. Husinsky, 3-901608-04-4
Simulation in der Didaktik M. Salzmann

#5 Seminar Modelibildung und Simulation - D. Murray-Smith, D.P.F. Mdller, 3-901608-04-4
COMETT - Course *Fuzzy Systems and Control* F. Breitenecker

#6 Seminar Modellbildung und Simulation -COMETT - N. Kraus, F. Breitenecker 3-901608-04-4
Course "Object-Oriented Discrete Simulation®

#7 EUROSIM Comparison 1 - Solutions and Results F. Breitenecker, |. Husinsky 3-901608-07-9

#8 EUROSIM Comparison 2 - Solutions and Results F. Breitenecker, |. Husinsky 3-901608-07-9

For information contact: ARGESIM, c/o Dept. Simulation Techniques,

atmn. F. Breitenecker, Technical University Vienna
Wiedner HauptstraBe 8-10, A - 1040 Vienna
Tel. +43-1-58801-5374, -5386, -5484, Fax: +43-1-5874211

Email: argesim @simserv.tuwien.ac.at

OBJECT-ORIENTED DISCRETE SIMULATION

TABLE OF CONTENTS

Foreword

Seminare iiber Modellbildung und Simulation

About ARGESIM

SIMPLE++ Overview

Profit from PROFIT

SIMPLE++ Tutorial

vii

34

OBIJECT-ORIENTED DISCRETE SIMULATION

The New Class of
Simulation Software

M The standard software for
object-oriented, graphical and
integrated modeling,
simulation and animation.

AESOP Partner in Austria :

S)

AESOP GmbH, Kénigstrafie 82 Unseld + Partner, Lerchenfelderstr. 44/9
70173 Stuttgart, Germany A-1080 Vienna, Austria
Tel: +49-711-16 359 /0 Tel: +43-1-40 30 371

Fax: +49-711-16 359 /99 Fax: +43 -1-40 30 371 /90

ARGESIM REPORT NO.6

SIMPLE++ Overview

1. Abstract

2. SIMPLE++ the product

2.1
2.2
23
24
25
2.6

3. SIMPLE++ - the range of application and some examples

Design philosophy
Innovative edge
Description
Specifications
Optional products
History

4. AESOP - the vendor of SIMPLE++

5. Unseld + Partner. AESOP Partner in Austria

OBJECT-ORIENTED DISCRETE SIMULATION

1. Abstract

In the past, simulation software lacked user friendliness and functionality and therefore, the
market penetration is still very low despite of the outstanding profitability of using
simulation. SIMPLE++ has been developed to overcome these deficits in an innovative
manner and its success in the market place shows that SIMPLE++ has broken down former

barriers.

AESOP developed SIMPLE++ together with the Fraunhofer Institute for Production and
Automation (IPA) and is based on more than 20 years of experience in developing and
applying simulation software. SIMPLE++ was introduced to the market place in February
1992. Since its introduction, was installed over 200 times in the German speaking market
in the first two years and became one of the market leaders. Since April 1993 the full
English version of SIMPLE++ has been shipped world-wide.

SIMPLE++ stands for SIMulation in Production, Logistics and Engineering design and its
implementation in C++. SIMPLE-++ is the standard software for object oriented, graphical
and integrated modelling, simulation and animation. SIMPLE++ is fully object oriented:
the graphical user-interface, system architecture and implementation all conform to the
demands of object orientation. Very different and complex systems and business processes
can now be modelled accurately and true to life. Subsequently, SIMPLE++ is used in a
wide range of applications in most segments of the economy. With SIMPLE++, you can
simulate entire enterprises, technical systems and business processes. There is now no need
to address each of these areas separately using different and incompatible systems.

A major strength of SIMPLE++ is the significant increase in productivity when building,
changing and maintaining models. The most powerful features of building block, list and
language concepts are provided in a single, powerful, integrated simulation environment.
Features of object-orientation like inheritance, hierarchy, reusable objects or even models
as part of models etc. make SIMPLE++ extremely efficient. These and more features are
described in Section 2 and the intuitive, graphical and object oriented user interface of
SIMPLE++ provides functionality and user-friendliness that overcomes former barriers.

ol) ARGESIM REPORT NO.6

2. SIMPLE++ the product
2.1 Design philosophy

Well engineered software should incorporate proven design fundamentals. SIMPLE++ has
been developed according to the requirements in functionality shown below. Next to each
are listed the key points of the implementation for which further description appears later
in this chapter.

Independence ;
+Individoality ‘
R YRR 1

® Hierarchy

@ Building Block Concept

® SimTALK SIMPLE++
Built-in-Language

Handling
+Produstivity:

Op"en*Afchitectur‘e

@ integrated, graphical
working enviroment

@ individual libraries

® inheritance

® stepwise detailing

SIMPLE++

+Integration

® Standards
® Interfaces
® "Remote Control”

of a model

Quality:
+ Innovation
® <1 bugin 10.000

‘lines of code
@ full object orientation

N

Graphical and intuitive model handling to increase productivity is a key requirement for
the widespread adoption of simulation throughout the economy. In SIMPLE++ this is
achieved with a unique integrated and incremental working environment, individual
libraries (application templates), inheritance and a graphical object interface.

Users should be independent, and so are free to make an infinite range of tailored
Application Objects which serve as templates for efficiently creating models.
Individuality ensures that the simulation model has a lifelike animation and functionality.
This functionality is facilitated by the use of hierarchy, the SIMPLE++ built-in language
SimTALK and other features.

Quality and Innovation must be embedded by design. With SIMPLE++ this is achieved
by the full object orientation and also by the use of industry standards.

OBJECT-ORIENTED DISCRETE SIMULATION

Open Architecture and Integration requires the use of standards and the capability of
exchanging data in real-time and communicating directly with other systems.

2.2 Innovative edge

SIMPLE++ is innovative in three key areas: Software technology, product features and its
range of application.

SIMPLE++ is the software standard for int e ical ject-orient
modelling, simulation and animation. SIMPLE-++ is fully object oriented: Graphical

user interface, system architecture and implementation all comply to the demands of

object orientation. Very different and complex systems and enterprise processes can

now be modelled accurately and true to life. The significant increase of productivity
1ing models is a major strength of SIMPLE++,

Object orientation is 2 modern and productive software technology. Technology per se has
no value unless it has beneficial consequences for product development, the application
and the user. The use of object orientation in developing SIMPLE++ has the following
benefits:

* High development speed and higher quality simultaneously.
Our experience with object orientation shows that our productivity is increased by
factors ranging from 3 to 20. That means that the development team of SIMPLE++ is
significantly more productive compared to teams using traditional techniques. The
volume of the software code is reduced by several factors versus software with the
same functionality but traditional technology. This also leads to a reduction of
software bugs.

* Longer product life cycle and better protection of your investment.
Software using traditional design and implementation methods can quickly reach a
point where complexity is no longer controllable. In SIMPLE++ complexity is limited
only by design.

*+ Change management and enhancements in SIMPLE++ are easily effected by
adding new objects. These communicate with existing objects by defined interfaces.
Thus market requirements can be implemented quickly with a minimum of effort.

ARGESIM REPORT NO.6

These are aspects of a software which cannot be seen easily by looking only at the
functionality. Nevertheless, functionality has high priority. In addition to the innovatory
concept of the total product, SIMPLE++ offers some remarkable features:

a)
b)
c)
d)
e)
f)

Integrated, graphical environment
Hierarchy

Inheritance

Object Concept

Changeability and maintenance
Integration and openness

These features are described in more details below:

b)

When working with traditional simulation software you have first to build your
complete model. Next you are able to run simulation and finally, the simulation file is
used to depict the process (animation). You cannot change the model during
simulation/animation despite this stage being the one at which modelling bugs can
most easily be identified. This means that you are forced by the system to work in a

procedural manner.

The integrated, graphical environment in SIMPLE++ means that all functions
are available at any time and all information about the model is graphically
represented. You can simulate and animate parts of the model during modelling. You
can even execute, test and debug controls without running simulations. This
significantly increases modelling productivity and user acceptance.

Hierarchy

Hierarchy is needed to build lifelike and structured models which resemble the real
world. Entire enterprises, complex distribution centres or even total national railway
networks can be modelled realistically and in any accuracy. Managers and engineers
can understand and examine the model at the appropriate hierarchy level without
loosing the overall view and increases the efficiency of communication

d)

OBJECT-ORIENTED DISCRETE SIMULATION

Hierarchy is created and reduced dynamically by nesting or deleting objects. This
means that models can be detailed or simplified during the planning process at
any time without having had to consider it in advance. The user defines, without

any constraints, the structure and the modularisation in SIMPLE++. Thus you create
ierarc ically without pre-
Inheritance

Inheritance is a very important and productive feature of SIMPLE++. It allows the user
to generate and update models very quickly and securely. In SIMPLE-++ inheritance
can be controlled by the user up to the parameter level. Definitions and changes at
one point will be automatically installed at all other related points. Alternative models
which you need for optimisation are effectively created and updated. Maximum
efficiency and minimum faults are the result. Using inheritance with SIMPLE++ gives
a productivity increase of a factor of 10 or more

Inherited instances of models and classes are not copies - a copy does not maintain a
relation to its origin. In SIMPLE++ the new instance (child object) stays in a user
controlled relationship to the class (parent object) and any aspect of this relationship
can be updated at any time.

To illustrate the efficiency and security of using inheritance consider the change from
traditional production to a just-in-time production, when the entrance buffer of dozens
of machines and resources might become obsolete. In a SIMPLE++ model the
entrance buffer is deleted in the parent unit and all child units are updated immediately
and automatically.

Object Concept

The Object Concept of SIMPLE++ is unique. Any application specific object can be
graphically and interactively created from generic Basic Objects. In this way
specific libraries (templates) containing Basic and Application Objects are constructed.
You can use and update the Application Objects as required and according your needs.
As aresult, you will always work productively and with well structured models.

ARGESIM REPORT NO.6

e) Changeability and Maintenance

The ease and speed of building, modifying and maintaining models is very important.
Since simulation often runs in parallel to the planning of systems, the necessary
information and data required for modelling is frequently unavailable during initial
stages. Having built a first draft of a model, you are invariably faced with having to
make adaptations and changes. Prototyping and the incremental detailing and
adaptation to the final model are well supported by SIMPLE++. Using traditional
software, it’s often the case that even a minor change demands a completely new
implementation or at least, a great deal of effort and time consumption. This problem
was frequently responsible for the lack of acceptance and justification of simulation

projects in the past.

f) Integration and openness

Standards and interfaces of SIMPLE++ make sure that integration and openness
become a reality. The following interfaces are available:

. ASCII Files

. SQL Database

. Inter-Process-Communication

o Graphics

J C and C++

. Operating System

The real-time data exchange during simulation and the full external control of
SIMPLE++ by other programs are important features for integrated solutions.

The full object oriented software technology, the remarkable features described above
along with those described beneath '2.4 Specifications', summarise the functionality of
SIMPLE++ which enables such a wide spectrum of application which are listed in
section 3. Together, these remove the limitations of previously available software and
characterise the innovative edge of SIMPLE++.

OBJECT-ORIENTED DISCRETE SIMULATION

2.3 Description

%

2
SIMPLE+ Objects and Class Library

Graphice Editox

Materialflow Qbjects
— Application Obj

The above picture shows the architecture of SIMPLE++. The elements of the architecture
are described below.

The strength of SIMPLE++ lies in the ease and speed of bulldmg, modlfymg and
mamtauung models. High flexibili : ¢ :

The required connections are implemented as a

sensor-actor-concept At the entrance and exit of an active material flow object is a sensor
which activates a control where the desired actions are defined.

SIMPLE++ is software designed for use in technical application fields. Common
standards of techmical application software are used and supported. For example,
SIMPLE++ is implemented in the language C++ under UNIX and X-Windows/Motif and
is therefore easy to port to other system platforms. SIMPLE++ is currently released on all
popular workstations and on personal computers with SCO-UNIX. The Windows NT
version will be released in the first quarter of 1995.

SIMPLE++ offers a user friendly Graphical User Interface for interactive and integrated
operation. All functions of modelling, simulation and animation are accessible at any time

Sroddln) ARGESIM REPORT NO.6

creating an 'integrated environment'. A 'non-procedural operation' means that you don’t
have to consider simulation flow when building SIMPLE++ models. Additionally,
SIMPLE++ offers "incremental operation” which means that models or their parts can be
detailed or simplified at any time. So if you have to implement changes during a simulation
project, then you can do so immediately without having to change the entire model or build
a new one. The productivity of modelling in this manner is usually greater by a factor of 3
or more. The integrated, non-procedural and incremental environment of SIMPLE++
allows you to work according to your own ideas and the requirements of real life and not
according to procedures enforced by the simulation system. Last but not least, SIMPLE++
provides the capability to build indivi applicati ecific

object.

The Interfaces of SIMPLE++ allow you to exchange data in real-time, communicate with
other programmes or call existing routines. The integration capabilities of SIMPLE++ are
very important when using simulation to, for example, support the daily operation of an
enterprise. In particular the exchange of data in real-time and the full control of SIMPLE++
by other software like MRPII can be highlighted. The following interfaces are available:
ASCII file, Graphics, IPC (Interprocess Communication), SQL Database, C, C++ and
Operating System. These interfaces make SIMPLE++ genuinely open and easy to
integrate.

The Object Template contains both Basic Objects and user-defined Application Objects.
All are visible as icons.

Application Objects are important for productive modelling. Any Application Object is
graphical and interactively built by the user and stored in the Object Template for
subsequent use. Because of the object orientation of SIMPLE++ you don't have to
extensively modify an Application Object to use it for different models or applications.

In the standard configuration, SIMPLE++ provides some powerful sets of Application
Objects. An extraordinary feature of these Application Objects is their “user openness”.
The user can modify the Application Objects because they are open SIMPLE++ models
built from Basic Objects. So even if the Application Objects provided do not match your

10

OBJECT-ORIENTED DISCRETE SIMULATION

requirements, they can be adapted or used as reference objects. These help you to make a
most productive start with SIMPLE++.

The following sets of Application Objects are included in the SIMPLE++ standard
configuration:

SIMPLE++_controls .

SIMPLE++_controls is a set of Application Objects which model standard control
strategies without programming. The following Application Objects are provided in the
application template for interactive use: OR, RANDOM, PERCENT, PRIORITY,
SEQUENCE, ALTERNATING, SET, IF, PARAMETER and VARIO. The Basic Objects
of SIMPLE++ possess a defined standard behaviour when a part enters and leaves them. If
a different behaviour is required, you can use the Application Objects of
SIMPLE++_controls. These are represented by graphical symbols in the template as usual,
and can be used in any model. By using the connector, you define its relationship to the
material flow. The Application Objects can be combined with each other in order to get
additional functionality depending on the chosen combination.

SIMPLE++_SFS

SIMPLE++_SFS is a set of Application Objects which represent the most frequently used
material flow components of a real material flow system and are more complex than the
SIMPLE++ Basic Objects. The following Application Objects are provided in the
application template: Straight, bend, branches, confluence (local and global).

SIMPLE++_staff

SIMPLE++_staff is a set of Application Objects to model the dispatching of production
staff in an effective and structured manner. The following Application Objects and
functionalities are provided in the application template for interactive use: Staff pool,
qualification profile and priorities, working time model (shifts, pauses etc.), a matrix of
distances and times, description of the working place, staff statistics.

SIMPLE+H_AGV

SIMPLE++_AGYV is a set of Application Objects to quickly and easily model automated
guided vehicle systems (AGV). The following Application Building Blocks are provided
in the application template for interactive use: Vehicle, path, curve, distribution, collection,
intersection, central station, load station, central control and local controls.

11

bl) ARGESIM REPORT NO.6

Special sets of Application Objects like SIMPLE++_ process (chemical industry),
SIMPLE++_shop (Shop Control) etc. are available as optional products (refer to 2.5

Optional products).

Below you can see as a screen shot, an application template to the left-hand side. At the
bottom, you can see the dialogue window in which you can type the parameters of an

Object and in the upper right-hand corner, a new Object is being built.

ebung Debugger Profiler

jekte Bilder Schalter Benutzer-Menue

SIMPLE++

Version 3.0

(¢} 1991-1995 by AESOP GmbH

{e) 1991 by Fraunhofer-IPA

priveilzelt

Ruestzeit:

Erholzeit:

Zykluszeit:

& Stoerung:

Start:

Stop:

Dauer:

l® i Statisti

I~ Gestoert

|konst

|konst T

|kenst

konst ™

Abstand: |

sonst T

k -

| Steuenungen:

E ingang

12

ararag v b

| Abbruch

%

OBJECT-ORIENTED DISCRETE SIMULATION

You can position, parameterise and connect individually designed Application Objects and
Basic Objects and by doing so, you can create a realistic simulation model. You determine
the number, design, function and behaviour of the objects. The objects are represented by

icons in the animation layout .

material flow information flow
movable immovable movable immovable
active passive active passive active passive active passive

With the Basic Objects for material and information flow, the user is able to design any
Application Object. The Material flow Objects can be divided firstly into moveable and
unmoveable and secondly, into active and passive line, conveyor, storage, path, vehicle,
container and part. The Information flow Objects are: Control, generator, lists, displays
and data. The comprehensive capabilities of SIMPLE++ for information processing stem
from the features of the information flow objects, the powerful built-in language
SimTALK and a large number of functions, data types and operators.

Material and informatio: are linked > CNE] a sensor actor concept. A sensor c.g.

at the entrance of a machine (material flow) activates a control (information flow) in order

to control the related process.

A set of standard controls is provided with the SIMPLE++ standard configuration. Special
controls are defined by the built-in Language SimTALK by the Text Editor or in a guided
and graphical manner, without typing the syntax, by the Symbol Editor. Local controls for
Application Objects or global controls for the total model ensure that the information
processing in your simulation model is modular and well structured. Controls can be
executed and tested without running the simulation. The capacity to trace and debug a
model in the integrated environment is one of the most powerful features of the debugger
built into SIMPLE++. Modelling errors can be effectively identified and rectified.

The Simulation can run without animation for systematic experiments which the user can
easily manage. For experimentation, SIMPLE++ models can be pre-loaded with any

13

ARGESIM REPORT NO.6

information and status. A model status can be stored during simulation interactively by the
user or as a programmed event, which may result from a change of status. The status can
be subsequently re-activated at any time. The simulation speed can be adjusted by the user
or the user can 'step’ through each event.

The simulation Manager in SIMPLE++ controls the simulation. It can be pre-set by the
user or programmed during simulation.

During simulation, Model information can be displayed. Single parameters are shown via
digital displays. Multiple parameters are shown concurrently over the time via the analogue
display. SIMPLE++ offers various Statistics over various periods of time - interval,
current and total simulation. These include utilisation, preparation time, wait time, down

time etc..

The Animation runs on-line to the simulation. Selection of the different animation
pictures for each object can be through a change of state or event driven. In this way
changes can be visualised dynamically during simulation. These features are important for
both, presentation purposes and verification. The pictures are defined by the user through
the Graphics Editor or simply copied from a picture template.

By pressing the help-function the On-line Documentation appears on the screen. This
does not render the reference manual obsolete but provides helpful information

immediately and in a relevant context.

14

OBJECT-ORIENTED DISCRETE SIMULATION

2.4 Specifications

Clear specifications will help you make the right decisions. Below are listed the
specifications of SIMPLE++ V.2.3 which was released in March 1994 . You may not fully
appreciate SIMPLE++ until you have seen it but a comparison of features will highlight the
differences between SIMPLE++ and other products.

User interface

object oriented, graphical user interface with window, menu and mouse technique.

all model information is graphically represented and accessible.

application oriented dialogue and plausibility check

user definable dialogue masks

Screen control by ‘Zoom’ and ‘Scroll’

“integrated working environment”: All functions for modelling, simulation and
animation are available all the time

‘Incremental operation’: Detailing or simplifying of the model step by step as requested
‘non-procedural operation’ modelling according to the user’s preference and
independent of the simulation flow

on-line documentation

Modelling

model size not limited

detailing or simplifying of a model at any time

Object Concept with Basic Objects and user definable Application Objects
template with Basic Objects for material and information flow:

Processor, conveyor, line, stock, vehicle, path, container, part,

lists (2D, stack, queue, random), generator, controls, display and
information objects

templates with Application Objects for very productive modelling:
Standard Controls, Staff Pool, Automatic Guided Vehicles etc.

picture template containing various pictures to represent objects

in the animation layout

graphics editor to define and change individual animation pictures per object which are
changed event or state driven during animation

inheritance controlled by the user at parameter level

unlimited model hierarchy and process structures

fixed and free attributes for each object. All attributes can be processed
Material- and information-flow can be modelled independently

15

ARGESIM REPORT NO.6

disruption generator per active object

unlimited independent Random Generators

stochastic distribution of parameters

flexible and powerful information management. More than 50 mathematical, textual and
logical functions.

SimTALK object oriented built-in language for individual controls

interactive test and correction of controls without running the simulation

Debugger to debug controls and support model verification

Information support

Simulation / Animation

animation on-line to simulation

animation switchable on/off

animation speed selectable: step or variable speed

any preloading at the beginning and storing of model status during simulation
control by external systems like MRPII

data exchange during simulation

statistics for total simulation time, intervals and actual runtime:working time,
preparation

time, break down time, blocked, throughput time, capacity load (min/max)
change of model and parameters during simulation/animation

step mode to follow the simulation/animation events

individual collection and presentation of model and simulation values

free definition of the animation layout

event driven and interactive change of the animation pictures

visualisation of hierarchy levels by opening objects

Others:

SIMPLE++ Reference Manual
SIMPLE++ Tutorial

file interface (ASCII)

system interface

graphics interface (PPM and TIF)

16

OBJECT-ORIENTED DISCRETE SIMULATION

Optional products: SIMPLE++ C "C" interface
SIMPLE++_C++ "C++" interface
SIMPLE++ IPC Inter process comm.
SIMPLE++_SQL SQL database
SIMPLE++ _shop Shop Control Model
SIMPLE++ gantt Gantt Charts
SIMPLE++_process Chem. Industry
SIMPLE++ GA Genetic Algorithm

System requirements

Workstations or PC with UNIX and X-Windows/MOTIF, > 16MB memory, 100MB free
disc capacity, floppy, 256 colour graphics and a resolution of > 1024 x 768, mouse and
keyboard. Serial interface for SIMPLE++ security device.

Released Platforms

DECstation5000 / ULTRIX

DECalpha AXP / OSF1

HP9000-4xx and -7xx / HP-UX

IBM RS6000 / AIX

SGI indigo / IRIS

SUN SPARCII / SUN OS and SOLARIS
PC/SCO-ODT

PC/ WIN-NT

17

ARGESIM REPORT NO.6

Important Features of SIMPLE++ which should be benchmarked:

We know of no other simulation software which compares to SIMPLE++. If you have
knowledge of or are seriously considering purchasing a different product, then please use
the form below to conduct a personal evaluation.

® Features ® Benefits SIMPLE** Others
hierarchy reflect reality
structuring
Inheritance efficency

less faults

Integrated, graphical and user acceptance

object oriented enviroment productivity [g Q
: T reuseability

Specllﬁc user-defined application modularity

templates fast modelling Q

User-open application objects adaptable E}
reference objects

Control language with debugger universal and [; Eﬁ
flexible application

incremental modelling fast, actual [:ﬁ Q

Efficient modification and maintenance actual models q

of models low costs

Interfaces integration

open architecture real time data exchange [i Q

Full object oriented technology and innovation speed,

standards security for the future dﬁ Q

18

OBJECT-ORIENTED DISCRETE SIMULATION

2.5 Optional products

The standard configuration of SIMPLE++ contains some sets of Application Objects. They
are SIMPLE++_controls, SIMPLE++_staff, SIMPLE++ SFS and SIMPLE++ AGV.
Details are described in "2.3 Description". In addition and at extra costs the following
options for SIMPLE++ are available:

SIMPLE+_C

"C" Programming Interface for SIMPLE++.

The user is able to define and integrate special C-routines. These user defined routines can
be called up like internal functions (sin, round,...). All basic data types available in ‘C” and
SIMPLE++ can be used. It is not possible to activate the internal methods of the
SIMPLE++ basic building blocks.

Prerequisite: C-compiler, SIMPLE++

SIMPLE++_IPC

Interprocess communication with SIMPLEA++.

SIMPLE++_]JPC allows you to communicate directly with other software systems. The
appropriate SIMPLE++ functions (e.g. start, stop, delete create, data exchange etc.) can be
activated by Remote Procedure Calls (RPC’s). Therefore SIMPLE++ can be controlled
externally. This means that SIMPLE++ can be used as a simulation module in a complex
application system.

Prerequisite: SIMPLE++, TCP/IP connection

SIMPLE++_SQL

SQL-Database Interface for SIMPLE++.

SIMPLE++_SQL allows the direct, bi-directional data exchange with SQL-Databases
during the simulation. For example orders or work schedules can be transferred from an
MRP-system to a SIMPLE++ model and the results of simulation can be transferred back.
The SIMPLE++ library provides an SQL Object block which is used to establish the
communication to an SQL-server on the network. To establish more than one connection at
the same time you can duplicate the SQL Object block. SQL statements and data are sent
from SIMPLE++ to the database. Data from the database are available in SIMPLE++ in
automatically generated lists.

Prerequisite: SIMPLE++, Network.

19

Srodbfin-) ARGESIM REPORT NO.6

SIMPLE++_shop

SIMPLE++_shop is a model structure which enables you to quickly and easily build a
model which corresponds to shop floor organisation. The following Application Objects
are provided in the application template for interactive use: Source, Workstation, Shop
Control, Part. The user puts Workstations in the model and defines the parameters. Lists of
orders, operation plans and resources are prepared for application. An order list or the
Source can be used to load Parts into the system. The data of the order list can be imported
from an MRP system. The Shop Control Object block controls the processing of the Parts
according to the operation plans. All Application Objects are built from Basic Objects and
are open for the user to make individual adaptations.

Prerequisite: SIMPLE++

SIMPLE++_gantt

SIMPLE++ gantt is the software for the graphical presentation and interactive
manipulation of the order operation sequence or the océupation of the resources by using
bar charts and an interactive user interface. The bars can be moved and by double clicking
each one, a window opens to show related data which can be changed. The updated data is
immediately depicted as bar charts and stored in the corresponding file. Input and output
data of the Gantt charts are well structured ASCII files.

Prerequisite: SIMPLE++

SIMPLE++_process

SIMPLE++ _process is a set of Application Objects to model continuous processes in the
chemical industry. The following Application Objects are provided in the application
template for interactive use: Source and Sink, Pipe and Tank, Mixture and Distribution,
Batch Reactor, Continuous Batch Reactor, Container Stock, Resource Management, and
Control. All Application Objects are built from Basic Objects and are open for the user to
make individual adaptations.

Prerequisite: SIMPLE++

SIMPLE+_GA

SIMPLE++ GA is a software that uses "genetic algorithms" for finding optimised
solutions considering different and competing goal functions. For example the optimal
order sequence when the competing goal function of minimum throughput time, minimum
stock capital and maximum resource utilisation are defined. The quality of the calculated
solutions is depicted graphically. The user can stop the calculation process at any time. The
best optimisation result found to a given point in time is available. The goal functions and
constraints of the optimisation are defined by the user dependent on the type of problem

20

OBJECT-ORIENTED DISCRETE SIMULATION

that is to be solved. Input and output data of SIMPLE++ GA are well structured ASCII
files.
Prerequisite: SIMPLE++

2.6 History

SIMPLE++ has been developed by AESOP together with the Fraunhofer Institute for
Production and Automation (IPA) and is based on more than 20 years of experience in
developing and applying simulation software.

SIMPLE++ version 1.0 was released in February 1992. From that date until the release of
SIMPLE++ Version 2.0 in February 1993, the software was installed over 100 times in
Germany. In July 1993 when shipping SIMPLE++ Version V.2.1, AESOP registered more
than 200 installations world-wide. In December 1993, SIMPLE-++ version 2.2 was shipped
and this was followed by SIMPLE++ Version V.2.3 in March 1994. You can expect a
much higher development speed in the future. SIMPLE++ V.3.0 is planned to be released
in the 4th quarter of 1994. Software, reference manual, tutorial and training material for
SIMPLE++ are available both in English and German.

21

ol) ARGESIM REPORT NO.6

3. SIMPLE++ the range of application and some examples

SIMPLE++ is used in the planning of production, logistics and engineering as well as in

the daily operation of enterprises to plan and control processes.

In the planning process, SIMPLE++ is used to dynamically plan systems in production,
logistics and engineering in most segments of the economy. In this application area the
structure, the dimension and the control of systems is optimised by SIMPLE++.
Manufacturing systems, assembly lines, transportation systems, warehouses, picking of
goods, packaging lines, hospitals, railway networks, traffic control, entire factories and
distribution centres etc. are examples where SIMPLE++ is used successfully.

SIMPLE++ is also used for Shop Control and Monitoring in the manufacturing industry.
This is performed by the same model that is built during the planning phase. The focus of
this application is to look ahead at the operations (lifelike forecasting) for next time period
(e.g. next 24 hours or next week) based on plans (e.g. customer orders and worksheets
from a MRP-system) and data available at the time of simulation. The output of the
simulation is a fine tuned operation plan (order schedules, lot sizing, staff dispatching,
throughput times, stock and operation costs etc.) to prepare the staff with better knowledge
with which to tackle the real situation.

The SIMPLE++ simulation model that performs the look ahead and forecasting is also
used as a monitoring system to monitor the events of the operations in the lifelike
SIMPLE++ animation layout. Inter-Process-Communication and real-time data exchange
of SIMPLE++ are prerequisite features for that sort of application.

The following examples of projects carried out by us should show the range of different
applications of SIMPLE++.

22

OBJECT-ORIENTED DISCRETE SIMULATION

Axle Assembly in the Automotive Industry

This example shows the optimisation by simulation by varying layout, capacity and control
strategies of a back axle assembly line at Mercedes Benz in Stuttgart.

The results of changes are shown graphically. Particularly the throughput of two competing
alternatives that ran against each other is monitored. Any other parameter of the model
could be monitored dynamically. The picture shows two alternative layouts for the manual
assembly stations - the throughput is displayed dynamically and on-line to the simulation

and animation.

23

ARGESIM REPORT NO.6

ICE train maintenance

This example shows the maintenance plant for the ICE (Intercity Express) of German
Railways. SIMPLE++ is used to optimise the scheduling of trains for all required
maintenance resources. Bach train costs about £21 million and thus the time for repair and
maintenance should be kept to a minimum. Gantt charts are available to visualise the
maintenance schedules. They can be changed interactively by the user in order to augment
the scheduling and optimisation algorithms with their invaluable experience. The refined
data of the Gantt Charts are used for the next simulation run to check the result of the
changes. The access to their database by using the SQL-Interface of SIMPLE++ allows to
exchange data in real-time.

Based on the current circumstances a realistic look-ahead is given by simulation in order to
tackle the situation better. The outputs of the simulation are fine tuned operation plans and
staff allocation which ensure that all maintenance is done and that the train leaves the

maintenance plant according the time table.

ICE - Betriebswerk

AuBenreinigungsanlage

\—\\\
§§ ;ii ;m,,.‘ s =

Ahsiellglase SUD ST&"‘WM* Fuhrphn wm"gsw

\ Absteligleise NORD

/
N 74

24

OBJECT-ORIENTED DISCRETE SIMULATION

PC Assembly

The total PC assembly (labour, material flow, assembly) at Siemens in Ausburg is
simulated in order to check the feasibility of the production plan generated by an MRP
system. The daily operation is thus supported by using simulation. One result of the
simulation is the list of all produced PC’s during one shift with throughput times and other
information. Different actions can be performed and tested by simulation before the real
shift begins. This is a unique tool to get realistic forecasts and schedules with the
consequence of reliable delivery dates. If quality and costs of products are at comparable
level to competitors, then reliable delivery becomes a critical success factor. This critical

success factor can be controlled by simulation.

- .
£V 2
v O]
|
Fertigung von Personalcomputern
nach Auftragslisten —
Montagelinie 5 Startpunkt
“= | Tower-PC
=4
Rollenbahn "
& i onal
| Monfsgwehmeﬂ Eo:p g =
Nacharbett [L] '_Il] -
" Nacharbeit I " IL“- ______________ :
I | ‘ " [i—.;— l '
Lift [= -—] " 1
Vortest
I =] [T Morttagelinie [startpunkt
Endtest Lift B B |Datensichtgerite

25

2ol) ARGESIM REPORT NO.6

Production Planning in the Manufacturing Industry

The animation layout represents the production of Alco chassis for caravans. The

production plan of one week is simulated very quickly and animated in the attractive and

realistic layout of the plant. The purpose of this simulation is to get the optimal order

sequence, minimum set-up time, optimised costs and the minimum throughput time for the

production programme for one week. The throughput times are decreased significantly by

using SIMPLE++. The picture below shows the animation layout and the parameter sheet

of one machine.

O

Fertigung und Montage

HandschweiBplatz

S

Automat
StumpfschweiBen

Chassis fur Wohnwagen

2O

S colanege

_@ Richtstation
\ ” Trennschere
+ Abkantpresse
- Tz
L. Sortieren
, ! (2

2 “— * Lochstanze
e

j;mﬂrdem

Serienfertigung

Automat
Stwmpfschweiien

S T s s L e A T B A e TS e S e T TR

26

OBJECT-ORIENTED DISCRETE SIMULATION

Packaging in the Pharmaceutical Industry

The packaging area with automated packaging lines, labour, material and information flow
is modelled and simulated to test different production and organisation scenarios. To
achieve “Lean production”. All scenarios are developed and tested using SIMPLE++.
Simulation is performed in the phases of strategic planning (world-wide evaluation of
locations) and of optimisation of the current facilities. Different qualification profiles of
labour and varying shift models are tested to find the optimal production technique of the
future. Even the local costs and specialities are considered to identify the best location for

production world-wide.
LS - -

Personalpool

217:16:00:00.0000

Datum. |02.u3.95 10:01:37

S -

27

srein-) ARGESIM REPORT NO.6

Production and Logistics in the Chemical Industry

Production, logistics and particularly the control strategies are developed, optimised and
tested by using the below SIMPLE++ model at BASF in Ludwigshafen.

The advantages of SIMPLE++ in this application are lifelike animation, the transparent and
modular structure of the controls and the dynamic visualisation of any process parameters.

£blieferung

A

Rohrleitung | Flillstandsverlauf

71 Verlauf
11 Container-Bestand

28

OBJECT-ORIENTED DISCRETE SIMULATION

Distribution Centre

A large distribution centre is modelled in a very detailed way with some levels of hierarchy
by GEILINGER engineering, Switzerland. Simulation was used during the whole
planning and implementation process in order to optimise the system, process and
communication on all technical and organisational levels. SIMPLE++ supported the
decision making process.

To achieve the shortest modelling time for such a complex project, several people worked
in parallel developing different sub-models. Each was tested independently before
incorporation into the overall model. Hierarchy and inheritance had been invaluable
throughout this project.

Distribution Center Carriage / Transporting

High Bay Warehouse

Goods Entry

29

ore&in-) ARGESIM REPORT NO.6

Planning of a new Sorting Storage

The objektive was to simulate the commissioning process to the point of dispatch for a finished parts warehouse
holding 13 commissioning areas on two floors.

The commissioning areas, a sorting area including 105 sorting lines, the combinated final inspection and
packaging area, the service area, dispatch area and a extensive driven transportation system make up the main
components of the model. Another task assigned to simulation was to examine the functionality of the overall
system renouncing 35 sorting lines. Further on, several strategies for the work flow management have been
investigated. A testing was done on the employement of flexibly assignable comissioneers. Their assignment had

to be considered according to the state of the overall system and queues in the particular commissioning areas.

Nachkontrolle

& 3

|
|

30

OBJECT-ORIENTED DISCRETE SIMULATION

4. AESOP - the vendor of SIMPLE++

AESOP is a privately owned company and was founded in May 1990 in order to develop,
produce, market and support simulation software for optimisation. Since that time AESOP
has been growing continuously each year. All investments and growth are financed by the
stock capital and the operating profit without any loan from a bank. Most of the profit is

being reinvested in the company.

The management has many years of experience in developing software - particularly
simulation software - applying simulation software and marketing of information systems.
The staff is highly educated and motivated to keep SIMPLE++ the most attractive
simulation software at the market and to provide first class service to our customers. All

employees participate in the financial success of AESOP.

We tried to draw our activities into one solid building. At the top are the customers and the
market. They are most important and drive our activities in the outlined frame.

Customer and Market

Optimisation by Simulation

At the foundation level is the Fraunhofer-Institute for Production and Automation (IPA).
SIMPLE++ has been developed by AESOP together with the IPA and the mutual co-

31

ARGESIM REPORT NO.6

operation with the IPA is now even closer. The results found in research projects by IPA
can be transferred to commercial products immediately by AESOP. In addition to the
formal co-operation, we are happy to have Professor Dr. Ing. H.J. Warnecke, the president
of all Fraunhofer-Institutes and the former president of IPA, in our advisory board.

Today AESOP and about 20 AESOP-Partners provide consultancy services based on
SIMPLE++ and market the software SIMPLE++ world-wide.

SIMPLE++ is the only product line of AESOP. All resources are focused on it to provide
solutions for "Optimisation by Simulation". We offer SIMPLE++ as a standard simulation
package with application oriented options for the optimisation of systems and business
processes. PROFIT is a modular software system based on SIMPLE++ for the prognosis,
planning and control of production to optimise daily operations. Our solutions should help
our customers to dynamically analyse systems and processes for better and safer decisions
and increased profit. For all the products and solutions we provide first class consultancy,

training and maintenance. "Optimisation by Simulation" is our mission.

32

OBJECT-ORIENTED DISCRETE SIMULATION

5. Unseld + Partner

Since 1991 Unseld + Partner is a Partner of AESOP focusing on Simple++ as
simulation software. Unseld + Partner has become the service company with
the highest turnover of simulationsoftware in Austria.

The occupation of Unseld + Partner include planing and controlling of
production lines and depots.

Together with FhG-IPA innovative project are worked out, for example refined
production planing in steel construction. Furthermore, the themes metal-
working and commissioning are in the centre of interest. Co-operative software
developing companies and institutes work in the area of order volume
optimising in der Fensterproduktion und Einlastungssteuerung in der
Schleifmittelindustrie.

In 1995 following goals will be realised:

1. Construction of a net for demonstration centres for SIMPLE++ and
PROFIT
2. Development of specific SIMPLE++ software modules in order to

determine the optimal strategy for production planing and control bei
complex Fertigungsablaufen
3. Installation of PROFIT at customers in Austria.

In addition to simulation on the industrial sector Unseld + Partner is engaged
in simulation of freight centres and the logistics thereof within the ITF-
Umbrellaproject ,,Logistics and Transportation®

33

ARGESIM REPORT NO.6

Profit from PROFIT

[.A Walls

AESOP Ltd., PTMC, Marsh Lane, Preston, UK
Tel. (44) 01772 200380
fax (44) 01772 200404

Abstract: PROFIT is the commercial realisation of two ESPRIT supported
projects. It is an integrated simulation based system for planning, controlling and
monitoring production. The core of any application is an accurate, company
specific model of the production process, constructed using the object oriented
simulation tool, SIMPLE-++.

T&D Automotive have recently commissioned a new factory, to Supply In the
correct Line Sequence (SILS) car bumpers to the adjacent Vauxhall Motors
factory. PROFIT was chosen to provide the complete solution for all information
processing between Vauxhall, the group-wide MRP and the shop floor PLCs. It
will schedule, monitor, control and trace the production flow and processes at
T&D Automotive. A special focus was put on the integration of shop floor
personnel in the planning and control of the factory. A key concept of PROFIT is
that of "user openness" through which it is possible to involve people and to
integrate T&D Automotive in the design and construction of their own solution.
This paper provides an insight into this first implementation of PROFIT in the
UK.

1. Background

PROFIT is the commercial realisation of the system initially developed during two
projects receiving funding from the EC under the ESPRIT programme. It is an integrated
simulation based system for planning, controlling and monitoring production. The core
of any PROFIT application is an accurate, company specific model of the production
process, constructed using the object oriented simulation tool, SIMPLE++.

This paper introduces PROFIT and the research from which it was developed. It then
goes on to discuss the first implementation of PROFIT in the UK, at the factory of T&D
Automotive.

1.1 ESPRIT - Shop Control / Real-I-CIM

Shop Control (ESPRIT project 5478) had as its objective the development of a suite of
standard modules that would allow companies to quickly install and configure complete
manufacturing and control systems. Its success was such that a follow-on project called
Real-time Interactive CIM (Real-I-CIM) was commissioned (ESPRIT project 8865).

34

OBJECT-ORIENTED DISCRETE SIMULATION

1.2 Partners and Pilots

The PROFIT product arising from these ESPRIT projects is a modular system with
individual components developed by AESOP GmbH, DiCONSULT GmbH, Fraunhofer-
Institut fiir Produktionstechnik und Automatisierung (FhG-IPA), Instituto de Engenharia
de Sistemas e Computadores (INESC) and TECHNOTRON.

Pilot sites for the initial implementations were established at ARJAL, an automotive
component supplier, and GROWELA a shoe factory. In both cases the results were
positive. The current Real-I-CIM project features a pilot application at the BMW factory
in Lohhof.

2. PROFIT

SIMPLE++

The discrete event simulation system SIMPLE++ forms the heart of any PROFIT
installation. SIMPLE++ is to our knowledge unique in being the only fully object
oriented, graphical and interactive simulation system commercially available. An
accurate customised model of the factory is used for on-line monitoring and scheduling
and off-line capacity planning. The object oriented nature of SIMPLE-++ means that very
complex systems can be modelled in an incremental and hierarchical way. A library of
re-usable application specific objects ensures that the model can be built rapidly and, just
as importantly, it can be easily modified and maintained.

PROFIT Characteristics

Figure 1 illustrates the modular architecture of PROFIT. The key features of PROFIT

are:

. "user openness", which for a CIM system means the maximum involvement of the
customer in the design phase and flexibility for the customer to make future
changes and adaptations to the system themselves;

. excellent system ergonomics through the use of object oriented modelling
techniques, benefiting users both on the shop floor and in the planning department;
. modularity based on a comprehensive set of CIM functions such as management

information tools, scheduling, exception handling, monitoring, maintenance, DCE
software administration, personnel management, quality management, traceability,
shop floor data acquisition, shop floor control etc.;

. connectivity to legacy systems, especially MRP, PPC, CAP, SCADA etc.;

35

Seldfine) ARGESIM REPORT NO.6

. fast design and implementation of a customer specific solution through highly
productive object oriented modelling techniques, client server data integration and
open architectures.

3. T&D Automotive - Requirements for the PPC system

3.1 Scenario

The T&D Automotive factory makes plastic car bumpers, having the capability to produce
up to 2500 bumpers per day. Its main customer is the Vauxhall Motors plant situated next
to the factory. T&D Automotive are contracted to supply bumpers in the correct line
sequence (SILS) in a just in time manner. An order for a bumper pair of a particular colour
and build-level arrives approximately once per minute through an electronic data link.
These orders are received some three hours before they have to be delivered to the
Vauxhall Motors line-side.

There is a multitude of variants possible. Each bumper can be one of 13 basic colours
(with special order colours also possible); in addition each bumper can have head lamp
washer jets, fog-lamps, two grille options, and can be for a saloon or estate car variant. It
would be impractical to keep this number of variants in stock, yet three hours is insufficient
time in which to make a bumper from scratch. The solution is to produce intermediate
stocks of unpainted bumpers and painted bumpers, and only to proceed to the final
assembly on receipt of an order from Vauxhall. A central requirement of the Production
Planning and Control (PPC) System is to minimise the size of these intermediate stocks

while ensuring that parts are always available to fulfil orders.

3.2 First make a bumper

The manufacturing process is as follows: the bumpers are injection moulded, loaded onto
pallets and transported by overhead monorail to the unpainted bumper store. From there
they are called-off under the direction of the planning and control system to be painted.
The painting process consists of a plasma surface treatment followed by a two stage paint
application, which is performed by robots. The painted bumpers are then held in store until
the corresponding order appears on the call-off list, following which they are brought to the
assembly areas (one each for front and rear bumpers). Once assembled to the appropriate
level they are loaded on trolleys and shipped to the Vauxhall Motors line-side by electric

vehicle.

36

OBJECT-ORIENTED DISCRETE SIMULATION

3.3 Simulation

In the pre-production planning phase the designers of the factory and its various systems
required simulation in order to prove that the different sub-systems would work together as
planned and to investigate the operation of the factory in various contingency scenarios in
which the production capability is impaired in some way.

Once the factory is operational, the simulation model continues to be of importance. At
any time the model can be automatically initialised with the current work in progress and
plant status, and a simulation run performed to investigate the future behaviour of the plant.
In addition, the simulation model developed is re-used to provide the graphical front end
for monitoring and, in an adapted form, forms the basis of the scheduling function.

3.4 Monitoring

A crucial aspect of operating such a factory is to have a detailed and up-to-the-minute
knowledge of the work in progress and the status of various resources. This plant
monitoring role also had to be integrated with the other management functions such as
scheduling. Access to this monitoring function was required at various strategic locations
around the factory.

An additional requirement was to construct an archive containing a record for each
bumper produced in which the conditions at each stage of the process are recorded. This
database formed part of the quality assurance system, giving complete traceability on
individual parts.

3.5 Scheduling

The scheduling of bumpers through the plant centres on the minimisation of set-up (at
injection moulding and at paint) while ensuring that sufficient intermediate stocks are
available to fulfil orders. Should a bumper be scrapped at the final assembly stage where it
has been allocated to a particular customer order, the scheduling system must expedite its
replacement so that the fundamental SILS requirement can be met.

3.6 Flexibility

The entire planning and control system required sufficient flexibility to be re-configured
easily to accommodate production route changes and product additions and changes.
Examples of modifications that are likely in the future include the addition of further
moulding machines to produce bumpers for different car types and the supply of unfinished
bumpers and spare parts to other manufacturers and resellers.

37

ARGESIM REPORT NO.6

4, The Team

The team formed to address the requirements of T&D Automotive, outlined above,
consisted of the Fraunhofer IPA, DiCONSULT GmbH and AESOP, with AESOP (UK)
Ltd. as the prime contractor.

4.1 Fraunhofer IPA

The Fraunhofer IPA have established themselves as one of the leading consultancy and
applied research organisations in the area of factory planning, control and optimisation.
Their experience of simulation and its application in on-line systems, is extensive. It was
here that the predecessors of SIMPLE++ were devised and developed to the point where
their commercial potential was evident, leading to the establishment of AESOP GmbH.

4.2 AESOP

AESOP GmbH was formed in 1989 to develop and exploit the simulation activity of
FhG-IPA. AESOP (UK) Ltd was formed in 1994 to market and support SIMPLE++ and
integrated simulation based systems in the UK and Ireland.

4.3 DiCONSULT

DiCONSULT, who are based near Munich, specialise in Shop Floor Production Planning
and Control Systems. Their expertise lies in the acquisition and communication of
production information from and to the shop floor. They use their own rugged industrial
terminal system to act as the interface between people and machines on the shop floor and

the higher level planning and control system.

5. The Solution
5.1 General Overview

The principal objective of the Manufacturing Planning and Control system at T&D
Automotive is to control and enable the production of the bumpers. To achieve this a
bumper pair (front and rear) meeting stringent quality requirements must be available for
assembly at Vauxhall Motors just as the car to which they are to be fitted reaches the
attachment station on the assembly line. To ensure that this objective was met, the entire
T&D Automotive factory was first simulated using SIMPLE++, to identify potential
bottlenecks and appropriate operating regimes.

38

OBJECT-ORIENTED DISCRETE SIMULATION

The implementation consisted of the following modules:

. scheduling and forecasting system

. monitoring system

. traceability archive system

. shop floor control system

. interface to the machines, shop floor and planning personnel.

5.2 Off-line simulation

The first stage in implementing the production control system was to simulate the entire
T&D Automotive factory so that its various operating modes could be validated. The
simulation model, built using SIMPLE++, showed that part of the automatic transport
system within the factory was incapable of achieving the required throughput with the
parameters as specified. It is worth noting that due to the complex interaction of carriers
competing for access to track sections and the rules governing how transport orders are
allocated to carriers, it is impossible to predict the detailed behaviour of such a system
using static design calculations. By experimenting with the model it was possible to show
the implications of various suggested modifications to the system, helping to ensure that
the final configuration met the requirements of T&D Automotive.

5.3 Scheduling and forecasting system

The use of simulation as the basis of a planning and scheduling system is rapidly gaining
acceptance as the approach of choice in many manufacturing situations (see for example
[1]). The scheduling and forecasting system plans the production of the required
bumpers. It provides the information required to oversee production and to make
decisions in the case of contingencies. In the normal working mode the primary route of
material flow from the delivery at Vauxhall Motors back through the system to the
injection moulding section is automatically scheduled and controlled. Orders are received
through EDI link direct from the Vauxhall motors plant. Three different time horizons are
used in planning the production at the T&D plant. These are: a three-week rolling
forecast of anticipated production; firm orders for three shifts ahead (whose sequence is
only about 80% correct); a 3 hour call-off signal, updated every 50 seconds, of actual
bumper pairs required at line-side.

Scheduling optimises batch sizes at the injection moulding and paint plant while meeting
the various competing system constraints (such as limited storage space for partially
complete bumpers). Additionally, the SIMPLE++ system will incorporate human
decisions for certain well defined contingencies and exceptions. The planning system also
forecasts the use of material, future bottlenecks and implications of human decisions.

39

ARGESIM REPORT NO.6

5.4 Monitoring

The monitoring sub-system presents to the customer information about the exact status of
his plant and of the orders flowing through it. This information was presented through a
graphical display derived from the simulation model of the factory. Colour encoded icons
represented the production status of the various resources in the system. Each resource
icon could in turn be opened to present further information about the production history
for that resource and the work currently in progress there. A third, more detailed, level of
information was available to the user by directly accessing the databases associated with
the machines, orders and produced parts. Access to this data was made available through
a GUI employing data filters for selectivity.

5.5 Low Level Control & Data Acquisition

Information about the status of each machine in the factory and information about the
bumpers themselves as they move through their production process, were captured by
dedicated industrial terminals from DiCONSULT. Data was acquired direct from the
machine PLCs, through bar-code readers, through manual input and through direct digital
signal inputs. In this way the high level production planning and control system can
access up-to-date information about the exact status of the factory, presenting this to the
operators and management through a graphical display. The planning system uses the
information about resource availability and inventory at various production stages to
produce a viable schedule. This schedule information and the consequent direct control
of the various machines and transport systems were relayed to the shop-floor through the
same DiCONSULT terminals.

The system has been designed in such a way that it is fault tolerant. Should the planning
computer or the connecting network go off-line, the factory can continue to operate under
the direct control of the terminals until the fault is rectified.

5.6 Operating Modes

The normal operating mode for the T&D Automotive factory is where all the resources
are available and customer orders are coming into the system by EDI. In this situation the
entire planning process is fully automatic, and the factory can deliver all bumpers
required in the correct sequence. In addition various contingency scenarios were
identified in which the ability of the factory to produce bumpers was impaired. Typical
contingencies are due to machine failure (e.g. where one of the two moulding machines
breaks down), or where raw materials are in short supply. In the former case the planning
system was able to predict the time at which orders would fail to be fulfilled allowing the
customer to be forewarned of potential problems. In the latter case the planning system

40

OBJECT-ORIENTED DISCRETE SIMULATION

recognised when such a raw material shortfall was likely and suggested to the production
manager the best product mix in order to maximise the time before orders could not be
fulfilled.

6. Implementation

The project to design and successfully implement the production Planning and Control
System for the T&D Automotive factory was characterised by a number of key elements.
6.1 Time Scales

The time scales for the project were extremely compressed, with only some seven months
from the inaugural project meeting to having a fully functional planning and control
system. It is the author's contention that this was only made possible through the use of
the modular object oriented software that forms PROFIT.

6.2 Customer Participation

An essential success factor in the implementation of the planning and control system was
the close working relationship established with the customer. The key person responsible
for the system implementation, the computer services manager, was seconded to AESOP
for the duration of the contract. This enabled him to be involved in the day-to-day
decision making process and to learn the details of the system's inner workings. This last
point means that not only do T&D have the skills necessary to run their plant, they also
have the ability to react to changing market situations by updating and modifying the
system themselves - a rare feature in a planning and control system.

In addition a series of regular (approximately monthly) workshops where held at the
factory site, which key personnel from T&D Automotive (including the Operations
Director, Technical Director and the Technical Manager) and the AESOP consortium
attended. These workshops were invaluable in reaching a rapid consensus on the various
technical issues that arose during the project.

6.3 Functional Design Specification

The Functional Design Specification (FDS) was a detailed document defined and agreed
during the early workshop sessions. It set out the functionality of the planning and
control system - what it would do, what inputs were expected, what contingencies were
considered, what the outputs were to be and the specification of the interfaces to the
machinery supplied by T&D and other third party suppliers.

41

ARGESIM REPORT NO.6

Although a mutually agreed version of the FDS was used as the formal basis of the
implementation, the document itself continued to evolve as more detail was added. In this
way the FDS also served as the basis for the technical documentation of the system.

6.4 Liaison with 3rd Party Suppliers

The equipment specified for the individual production steps can all, to some extent, stand
alone. For an integrated factory the planning and control system acts as the bridge
between these islands of automation. The interface to all the machinery therefore is a
crucial aspect of the planning and control system. In an ideal world these would all be
specified at the procurement phase; unfortunately for various reasons much of the
equipment had already been purchased (without too much consideration of interface
capabilities). Consequently, the need to have timely and effective communication with
these suppliers was critical. The experience of this project was that this best achieved
through face-to-face meetings at which the technical issues were quickly resolved.

6.5 Maintenance & Upgrading

AESOP's philosophy in implementing a production planning and control system is to give
the customer the necessary skills to allow him to implement changes to the system
himself (with recourse to AESOP should this be needed).

Routine system upgrades are performed remotely through ISDN routing giving access to
the T&D Automotive computers from team member sites is Germany and the UK.

7. Where Do We Go From Here ?

The Production Planning and Control System implemented at T&D Automotive is a
success in at least two ways. T&D have a flexible solution to their operational
requirement, which because of the nature of PROFIT was implemented within tight time
scales, while at the same time being of lower cost than any of the "conventional” solutions
proposed for the factory. Secondly, the project has demonstrated how the results of
ESPRIT funded research projects can be effectively commercialised.

In terms of the implementation of the system some important points can be discerned. In
particular it is difficult to understate the importance of developing a Functional Design
Specification, of the type described above, in a project of this nature.

The future looks secure for simulation based Production Planning and Control Systems
and in particular PROFIT. The final word should go to T&D Automotive's computer

services manager:

42

OBJECT-ORIENTED DISCRETE SIMULATION

"PROFIT has provided T&D Automotive with a rnanufacﬁm'ng system that gives us three
main advantages in a highly competitive automotive market.

Firstly, it is a complete manufacturing solution, with all parts of a traditionally disjointed
system seamlessly integrated. The hierarchical nature of the installation, gives flexibility
allowing changes to be accommodated easily and very quickly. However of almost
greater importance it gives us easy access to the critical data being collected and
processed on site.

Secondly, the ability of the whole manufacturing operation to run in a truly lean manner,
with minimal stocks of all components held, directly reduces our costs to the customer
ensuring that we maintain our competitiveness within the marketplace.

Thirdly, it provides a greater understanding of the major benefits that simulation can
provide. This will allow us to plan the expansion of the current site , or the development
of any new sites for new customers, with the confidence that we have gained from this
installation. Using SIMPLE++ as the simulation tool has one major advantage over other
conventional simulation systems in that the final simulation is not discarded but provides
a core element of the implemented PROFIT system. This of course means that people are
more inclined to invest the time in simulation knowing that it will directly benefit the end
result.

I believe that the future of modermn manufacturing systems is in complete integrated
solutions, with simulation providing core functionality. No other system that I reviewed
before finding PROFIT came close to the functionality that it has provided us.".

8. References

[1] "New Ways of Planning Production in the Process Industries", B-D Becker and S
Nestler,FhG-IPA, 1995

43

ARGESIM REPORT NO.6

SIMPLE ++

simple

EFile Environment Pebugger Profiler

SIMPLE++

Windows NT

Vermon 3.0

(€] 1991-1995 by AESOP GebH
{c] 1991 by Fraunholer-iPA

K EUROSIM 95

The Graphic User Interface of SIMPLE++ \
After starting SIMPLE++, a class library containing the basic objects will

be displaied (unless otherwise specified) and, as an example, the following screen
appears:

Elle Environment Debugger Profiler
SIMPLE++

Window: NI

MNoName.mod

Version 3.0

fe) 19911935 by AESOF GmbH
[e] 1991 by Fraunholer-1PA

class library with the name of the
last model

EUROSIM"95 ‘—/

OBJECT-ORIENTED DISCRETE SIMULATION

/ Opening Objects or Models \

A model is opened by double clicking on the desired object
in the library with the left mouse button.

=] NoName.maod ~| <= Framel
File Objects Extra -> Madel Objects Pictures Switch User-Menu

/ Using Menus | \

Framel

menu bar ————————

menu items \

To activate a menu click on the desired menu title with the left mouse button. A list of
menu items will appear. To select one of these items also click on it with the left mouse
button.

Alternatively you could press the "Alt" - key and the underlined letter of the menu title

simultaneously. This will also open the menu. One of these items can be activated by
wﬁng the underlined letter. Please note that these letters are casesensitive. /
EUROSIM 95

45

ARGESIM REPORT NO.6

/ The File and the Environment Menus \

simple

{8 Environment Debugger Profiler
SIMPLE++

Windows NT
Version 3.0

| P GmhH
Create directory ... |1
Delete directory ...

Delete filc ...
Exdt

Configuration ... [
Printer ...
£ Seed Values rsion 3.0

= =]
| File JUWNTTUTIIN Debugger Profiler

simple

J Animation

IMPLE++

fc 1931-1995 by AESOP GmbH
fc) 1531 by Fraunhofer-IPA

EUROSIM'95

/ The Debugger and Profiler Menus

simple

Flle Environment JEETTEIEE Profiter

ignore breakpoints
v Intersctive stopping
v Stop on errors

==

(6] 1991-1995 by AL Breakpoints st

Start ol contrals

R o] s
BRI 1 Method{s) with errors method calls

= simple [+
File Environment Debugger Bl |
Active
SIMPL

Windows |

Verzion 3.0

[c] 1951.1935 by AESOFP GmbH
[e] 1991 by Fraunholer-IPA

EUROSIM'95

46

OBJECT-ORIENTED DISCRETE SIMULATION

/ What is Simulation? \

Simulation is defined by the German Institute of Engineers (Directive 3633) as:

Simulation is the depiction of a dynamic process in a model to gain knowledge

that can be transferred to the real system.

modeling simulation
abstraction model
ﬁ experiments

formal
results

transfer
interpretation

\ EUROSIM'95 .__/

Lol

/ Simulation and the User \

What is the focus
of the study ?

i real mod simulation What hqs to be

@
transfer form:l
interpretation

What does
\ this mean? /
EUROSIM 95

47

ARGESIM REPORT NO.6

Application Areas for Simulation

Simulation is used for the development and
examination of

+ environmental systems
« biological systems

» vehicles and aeroplanes
» manufacturing systems
« robot systems

» business processes

» chemical processes

» transportation systems

e etc.

EUROSIM'95 _——/

Overview: Modelling with SIMPLE++ \

« Principles of modelling processes

» The class library

« Example: building a model with SIMPLE++

EUROSIM'95 ____/

48

OBJECT-ORIENTED DISCRETE SIMULATION

Modelling Steps \

application
objects

basic objects * Step 2

EUROSIM 95 ——/

Opening an Existing Model \

Clicking on the Open... menu item in the SIMPLE++ main window
an existing model can be opened.

Note: if a class library is already opened, this must be closed

first.

= simple n
Fie
e SIMPLE++

Windows NT

Veszon 3.0

P GmbH
Create directory ... [
Delete directory ...

Delete file ...
Exit

+ Stepl:
Open the model named Transp.mod in your

\ training directory. /
EUROSIM95

49

>redlia.) ARGESIM REPORT NO.6

/ The Class Library \

basic objects

specific application objects
built from basic objects

EUROSIM'95 ———/

transp.mod

b & bed e

ur‘.'le Objects Extra | File RUNEEEY Extra -

[T r Duplicate '
[oerve |
Show Origin

L Show Structure

/ Menus of the Class Library (1) \

B Show Inheritance

EUROSIM’95

50

OBJECT-ORIENTED DISCRETE SIMULATION

EUROSIM'95 —/

/ Modelling with SIMPLE++

+ Creating a modell using pre-defined

application objects

] & :
= Aolutinn

Meodel Opjects Piclores Switch Userbenu

51

List of products

box

shaft

EUROSIM 95 ———/

ARGESIM REPORT NO.6

/ Copying an Empty Network \

+ Step2:
Copy an empty network into an
empty area of the library by clicking
on the frame object then pressing
the "shift" key and the left mouse
button simultaneously and dragging
the network to an empty field.

Remark:

The creation of an empty network is always
the first step in creating a new model. The
empty frame offered in the class library

cannot be opened.
EUROSIM 95 ——/

R
=
g
El
4]
=
(4]
2
(4]
)
(=1
=
W
+

transp.mod Step 3: ¢
=P :I,Imlo\.‘a‘rr;;rel:m_:l.:lunqmranE Open the copy of the empty network
File by double clicking on the network
i ' symbol in the library with the left
mouse button.

‘| Framel
Model Objects Fictures Switch User-Menu

52

OBJECT-ORIENTED DISCRETE SIMULATION

The Frame Menu (1) \

: Framel E‘EE;
Mode!

Enlarge [x2)
Original size
Reduce (2]

Overview window
Unconnected objects
Pictures ...

Rename ...
Interaction ...

Print ...

Back
Close

g] - 4]

s HE SRS St |

T T P ——rt
bl

b;
b
F
1
[&}
|

EUROSIM'95

The Frame Menu (2) \

$ Framel EE:_-{
Objects

Open

Open Class ...
Open Origin ...
Show Class
Show Origin

Show Structure
Show Inheritance

e

e

Bename ...
Print ...
Statistics
Connect

e e el

;
|
3
;
|
,_
|

BOETE

EUROSIM 95 ‘——/

53

ARGESIM REPORT NO.6

/ The Frame Menu (3) \

= Framel =
Pictures
Ver, mirror : |
Hor. mirror
Tum
Reset
Enlarge (<2
Original slze
Reduce p<2]

Inherit position

\ EUROSIM’95 ___/

/ The Frame Menu (4) \

: JFramel

Model Objects Pictures ESiNlL]

Aeset

i[
@izl o

v Show object names

v Show predecessors

+ Show successor

+ Show animation points
v Show object borders

+ Show connections

¥ Show comments

f
f
L_
i

E
¢]
mn

K EUROSIM'95 ___/

54

OBJECT-ORIENTED DISCRETE SIMULATION

The Frame Menu (5) \

: Framel
Model Objects Pictures Switch -

Configuration

EUROSIM’95 _—/

/

Eg User-Menu

v Show abject names
Show predecessors
Show auccessor
Show animation points

+ Show ohject borders

v Show connections
Show comments

v Show grid

Enlarge objects
v Autom, connect

¥ Maodify structure

Configuration | \

+ Step 4:
Before starting to model, toggle the
options below the menu Switch as shown
in the picture.

Note:

The automatic connection of building blocks is possible
if there is an obvious connection between those
building blocks.

EUROSIM 95

55

ARGESIM REPORT NO.6

/ Inserting Objects into the Frame \

ransp.mod -+ Place application objects in the frame. Arrange

B sming Lt eyschulunay :;u-t" - - . .
“E‘i;“ the application objects according to the model
: shown previously so that they touch each other.

e
| Framel

Model Objects Pictures Switch UserMenu

 When inserting an object the
cursor becomes a double cross.
EUROSIM’95

/ To leave the INSERT Mode \

As long as an object in the library is, an instance of this
object will be placed in the frame each time you click
the left mouse button within the model window.

You can deselect INSERT mode by:

« Clicking the right mouse button in the frame
* Clicking on an empty field in the class library (left mouse button)
« Clicking on the arrow in the menu bar of the class library

(left mouse button)

transpmod 'EE

EUROSIM'95 ——-—/

56

OBJECT-ORIENTED DISCRETE SIMULATION

/ Connecting Objects \

graphical, interactive with the connector tool
ibili

automatically while inserting building blocks
(if the Switch - Autom. connect is on)

3 ibilit

automatically after inserting the building blocks
frame-menu: Objects - connect

K EUROSIM"95 ————/

/ Interactive Connection of Objects(1) \

Frame1

Model Objects Pictures Switch User-Menu

After clicking on the class object
the building block pointer changes
to a double cross.

Application objects are connected manually by first selecting the Connector

tool in the class library, then clicking on the starting building block and then on
K the goal building block of the desired connection. /
EUROSIM"95

57

ARGESIM REPORT NO.6

f

Interactive Connection of Objects(2)

After selecting the starting object in the model, the object is opened and, in the example
below, the following picture appears, displaying the entrances and exits and the
subelements of the building block. This picture only appears if the building block has
more than one unconnected exit. If there is only one unconnected exit the connection

is unambigous and will be automatically closed.

\

exit 1 After opening the

L starting building

AY/ / block the cursor
7~ becomes a square

EXIT_V

symbol.

entrance ~Nb —=

e —1[2
EXIT H ™ exit2

ENTR

EUROSIM"95 ‘——/

/

Click on the desired exit of the
object.

The starting object will be closed
and the goal object can be opened
by clicking once on its icon with the
left mouse button.
Entrance

Interactive Connection of Objects(3)

\

Exit2

Exit 1

entrances and exits which are already
connected, are indicated by filled
triangles.

EUROSIM"95 ——/

58

OBJECT-ORIENTED DISCRETE SIMULATION

/

Interactive Connection of Objects (4) \

Ni

The connection is established by clicking on an entrance of the goal
building block. The goal building block will be closed automatically.
This process may be repeated until all the entrances and exits of the

model are connected.
EUROSIM 95 ——J

/

_

Automatic Connection of Objects \

frame1.frame1 frame1.frame2

The automatic connection of building blocks is done, when the
entrance and the exit of the building blocks being inserted are
close together. The circular catch window has a 3 pixel radius.

EUROSIM 95 —/

59

ARGESIM REPORT NO.6

/ Changing the Names of the Stations \

= Sdutinn [=1=]

Model Opjeets PMolwres Jwich Usecbicns

+ Identify the work stations
and the sink with names of
your choice by opening them

and changing the station name

in the NwData-object.

EUROSIM 95 —/

/ Building the Working Plan (1) \

B .Solution.Prod_Plan 1=

Model Objects Pictures
Switch User-Menu

+ Open the shop control (SC)

and then the list inside named
WorkingPlan by double clicking
on the objects with the left
mouse button.

o | .Solution.Prod_Plan.WorkingPlan BB

b
DI

60

OBJECT-ORIENTED DISCRETE SIMULATION

Building the Working Plan (2) \

+ Build the working plan using the machine names you have choseg.

)
Eille Edit Format Extra
T R T

.Solution.Prod_Plan.WorkingPlan

manufacturing sequence

Be sure that the last work station is a drain. Otherwise the parts

will not be deleted!
EUROSIM 95 ————/

Placing the EventController in the Model

transp.mod L_E (] Solution
Model Opjects Piotures Switch Userbens

]

= > e O A s — " S s s L3

+ Place an EventController in the model and open it by doub

clicking on it with the left mouse button.
EUROSIM"95 —-/

61

ARGESIM REPORT NO.6

/ Starting the Simulation with the EventController \

Solution.EventController E

= N

wax - Speed - min ({_ Step 6:

8] 2] e iR L
1. Click on the Reset button to bring
Datec - e the model into a defined state.
End.
: _ 2. Click on the Init button to initializg
Statiatics. E:_____ Sl thC model.

] backwards

3. Start the simulation by clicking
the Start button

- /

EUROSIM"95 —/

/ Inheritance (1) \

The difference between class and instance

class: each model/object in the class library. A class passes
all its characteristics to its instance.

instance: specimen (child) of the class (parents) , e.g. the inserted
object Bend is the instance of the object Bend in the class library.
Building block Bend in library: class
Inserted building block Bend : instance

Important: if changes of properties are to effect all specimens
they must be changed for the class.

K EUROSIM'95 _/

62

OBJECT-ORIENTED DISCRETE SIMULATION

/ Inheritance (2) \

Difference between Duplicate(=Copy) and Derive

Duplicate Derive, Insert

@
inheritance
class

inheritance
library model

\ EUROSIM 95

2

S

=
Subclass 1

/ Inheritance (3) \

Situation after the change of a property

Duplicate Derive

d
& & &

library model

\ EUROSIM'95 —./

63

el) ARGESIM REPORT NO.6

/

Basic Objects -> Application Objects

« Comparison of the different generations of simulation

systems

« Derivation and description of the basic objects

in SIMPLE++

* The default behaviour of the SIMPLE++ - building blocks

~

EUROSIM'95 —-—/

Generations of Simulation Systems

attributes

-> SIMPLE++

2. genération: parametrical modelling
+ simplified modelling

K -> SIMULAP, DOSIMIS 111, etc.

/ / 3. generation: object oriented modeling

+ objects closely match the reality
+ predefined basic building blocks
+ user specific modelling by change of

and flexible control strategies
+ graphical object oriented user surface

- only simple control strategies from a catalog
- user control strategies have to be programmed

1. generation: linguistic modelling

+ general modelling

+ flexible use

- knowledge in programming necessary
-> SIMAN, SLAM, GPSS, SIMULA, etc.

EUROSIM’95

~

OBJECT-ORIENTED DISCRETE SIMULATION

/ Application Range and User-Friendliness of \
Modelling Languages (1)
k user-friendliness

[

disadvantage: low user-friendliness

1. generation

advantage: hig!; application range application r;ge
K EUROSIM'95 ———/

Application Range and User-Friendliness of \
Modelling Languages (2)
A user-friendliness
2. generation
advantage:
higher
friendin 1. generation

application rrnge

disadvantage: lower application range

K EUROSIM 95 ————/

65

ARGESIM REPORT NO.6

/ Application Range and User-Friendliness of \
Modelling Languages (3)

‘ user-friendliness

SIMPLE++ with specific applications objects
advant: high user-friendli

b

SIMPLE++ with basic objects
advantage: high application range

1. generation

applimTion range

K EUROSIM’95 ——/

/ Structure of the Basic Objects \

material flow objects information flow objects
movable immovable
tive | pas . Siv e | passive]
* Transporter * Container » SingleProc * Track * Attributes * Method * TableFile
« Entitiy « ParallelProc | » Warchouse » Generator | » StackFile
« SerialProc * QueueFile
« Line » CardFile
= SQL-interface
« Filelnterface

Additional Service Objects: Plotter, Gauge, Dialog, Text,
Connector, EventController

K EUROSIM'95 ——/

66

OBJECT-ORIENTED DISCRETE SIMULATION

-~

—

l material flow objects I

e.g.:
* machines

* means of transport
« pallets

* tools

« products

- etc.

-> physical elements
->related with a lot of time effort
-> cannot be copied without effort

\oactual object of investigation

Information and Material Flow Objects

Basic Objects

«14:1’/

I information flow objects I

e.g.:
* rules

« new information
* data

. etc.

-> elements

-> transferable in a very short time
->can be copied

-> should only be considered as

facilitating the correct material flow
EUROSIM 95 —/

/ Movable and Stationary Material Flow Objects

-~ ©

e.g.:

« fork-lift truck
» pallets

* tools

« products

* etc.

-> change their position

->reside in other material flow
elements

-> can be generated and deleted

Material flow objects

/

r
L@i‘%

stationary

e.g.:

* machines

« storage

» aisles

« roller conveyor
* etc.

~>do not change their position
-> do not reside in other material flow
elements

EUROSIM'95 e’

67

S+odbiin,) ARGESIM REPORT NO.6

/ Movable Units (MU) \

active passive

==

« fork-lift truck
: « pallet « product
: :‘\GVS-VChICIC' . « lattice boxe * worker
* 'Pick and Place' machines . ¢aqe « to0l
* mono-rails * etc. * means of production

* worker

all movable elements WITH all movable elements WITHOUT drive
drive components components
K EUROSIM'95 _—/

/ Stationary Material Flow Objects \

active passive

all elements provided WITH all elements WITHOUT drive
drive components components

« roller conveyor * aisles

* belt conveyor » storage rack
* lathe) * halls

« assembly work station .etc

* etc. .

\ EUROSIM'95 —/

68

OBJECT-ORIENTED DISCRETE SIMULATION

/ Serial and Parallel Stationary Objects (1) \

a single processor may a serial processor may

process/contain exactly process/contain > I MU at
one MU at a time a time.These MUs cannot

overtake each other.

—_ @] direction of material flow @ @ @ .

a parallel processor may
process/contain 2 I MU ata

time. These MUs can overtake
each other.

& EUROSIM’95 ——/

'
eee
!

/ Serial and Parallel Stationary Objects (2) \

stationary

\

active passive

serial parallel
EE | 0N

» parallel drilling station < roller conveyor » warehouse lanes * mono rail track
» production facility » belt conveyor » parallel tracks * AGV-track

» Power&Free

« chains

\ EUROSIM'95 —

69

ARGESIM REPORT NO.6

/ Information Flow Objects \

e.g.:
* data

* data files
* records

. etc.

information flow objects

e.g.:

* computer

« control

« switchboard
- etc.

-> change their location

-> contain information flow
elements

-> can be generated, deleted and

copied

-> do not change their location

-> accept movable information flow
elements

-> cannot be generated and deleted

EUROSIM'95 ———/

information flow objects

movable

-
.-
e
e

active

3

There are no objects provided for
active movable information flow
elements in SIMPLE++, thus there
are no known application fields.

Movable Information Flow Objects \

In SIMPLE++, data are visible as contents
of lists or customized attributes of building
blocks.

EUROSIM 95 ——/

70

OBJECT-ORIENTED DISCRETE SIMULATION

/ Stationary Information Flow Objects \

stationary

— T~

active passive

« user defined control

all control methods defined by all data buffers which synchronise
the user (mail box) or store (plans)
the data transfer.

* operational material flow control « mai
* AGVS-roadway control . &ﬂbﬁﬁns
» AGVS-dispatching rules * time table

\wtc. * etc.
EUROSIM 95

s ™~

stationary

passive

one dimensional two dimensional

* StackFile (LIFO) « TableFile (3D.Ii
* QueueFile (FIFO) TableFile (ist)
* CardFile (free choice)

k EUROSIM 95 —/

71

ARGESIM REPORT NO.6

- N

Names of the Basic Objects (1)

Frame E Warehouse
WA SingleProc
| ParallelProc
ool SerialProc
E Line Connector
. 7.k R® EventController

K EUROSIM"95 —————/

/ Names of the Basic Objects (2) \

StackFile (LIFO)

@ QueueFile (FIFO)
CardFile

Generator

Method

Comment

TableFile Display
NwData Plotter
Filelnterface i Dialog

EUROSIM 95 ——J

72

OBJECT-ORIENTED DISCRETE SIMULATION

/ Basic Material Flow Objects (1) \

SingleProc

immovable cannot change its place during a simulation run

active takes in an MU and tries to pass it on the
successor after the processing time

capacity = 1 only one MU can stay in the SingleProc

place oriented the length of an MU is disregarded

possible application machine with capacity one,
segment of a conveyor, buffer, etc.

\ EUROSIM 95 __—/

/ Basic Material Flow Objects (2) \

ParallelProc

immovable cannot change its place during a simulation run

active takes in an MU and fries to pass it on the
successor after the processing time

capacity =n more than one MU can stay in the ParallelProc
at the same time. It's possible to set a different
processing time for each MU. An MU can
over-take another one.

place oriented the length of an MU is disregarded

possible application machine with capacity > 1, etec.
& EUROSIM'95 ‘____/

73

Srolia-) ARGESIM REPORT NO.6

/ Basic Material Flow Objects (3) \

SerialProc
immovable cannot change its place during a simulation run
active
capacity =n the number of parallel lines can be defined.
An MU cannot over-take another one in the
same line.
place oriented the length of an MU is disregarded
jamable/un- user defined setting

K possible application conveyor, buffer, etc. /
EUROSIM"95

/ Basic Material Flow Objects (4) \

[
Line
immovable cannot change its place during a simulation run
active
capacity the length of the line can be freely defined.
An MU cannot over-take another one.
length oriented the length of an MU is regarded, i.e. the max.
number of MUs on a line depends on the length
of the line and the length of the MUs.
accumulating user defined setting
possible application conveyor bend with segments of different
lengths, etc.

K EUROSIM'95 ————/

74

OBJECT-ORIENTED DISCRETE SIMULATION

/ Basic Material Flow Objects (5) \
Track
immovable
passive used to realise a track of an active MU
(e.g. a transporter).
capacity the length of the track can be freely defined.
An active MU cannot over-take another one.
length oriented
possible application AGV-track, etc.

.

EUROSIM'95 ———J

/

Warehouse
immovable
passive
capacity
place oriented

possible application

-

Basic Material Flow Objects (6) \

stores passive MUs (e.g. a container)
the storage capacity could be freely defined in
a x/y-matrix

aisle, shelf,, etc.

EUROSIM'95 ——/

75

ARGESIM REPORT NO.6

/ Basic Material Flow Objects (7) \

Entity

movable moves during a simulation run. An entity’s location
can be an immovable basic building block,a
transporter or a container. The length of an entity
can be freely defined.

passive an entity has no own drive

capacity=0 cannot hold another part

possible application parts to be produced or transported, etc.

\ EUROSIM'95 ———/

/ Basic Material Flow Objects (8) \

Container
movable
passive

capacity=n the capacity of a container can be freely
defined as a x/y-matrix.

place oriented

possible application pallet, box, etc.

& EUROSIM"95 ————/

76

OBJECT-ORIENTED DISCRETE SIMULATION

/ Basic Material Flow Objects (9) \

Transporter

movable

active the transporter has its own drive. The velocity
is freely definable

capacity=n the capacity of a transporter can be freely

defined as a x/y-matrix.

place oriented

possible application AGYV, EOM, fork lifting truck, etc.

EUROSIM 95 ———/

/ The Application Objects SingleProc \

material flow objects
movab immovable

e e e T
= R
-SingleProc| -
+ ParallelProc .
* SerialProc
* Line

« transpotter

Characteristics:
» active material flow object
* capacity: 1

* icon: E =0

L®
K EUROSIM 95 ——/

77

%e& s) ARGESIM REPORT NO.6

/ The Dialog Window of the SingleProc \

\ EUROSIM'95 e —"

/ Name Scope \

class library

« All objects having a common
parent element in the model

l ; FS i):/ P hierarchy (this means that they
are included in the same object)
M| N OUT M constitute a name scope.
AN

« Within a name scope, the names have to be unique.

« But is possible to use the same names in different name scopes.

& EUROSIM'95 _—/

78

OBJECT-ORIENTED DISCRETE SIMULATION

/ Renaming Objects in the Library \

Duplicate

Show Origin
Lr Show Structure
B Show Inheritance

Objects placed in the library can

be renamed by selecting the

object and then clicking on the >
menu item Rename.

/ Renaming already Inserted Objects \

Framel

Open

Open Class ...
Open Origin ...
Show Class
Show Origin
Show Structure
Show Inheritance

Already inserted objects can be renamed by selecting the object

& and clicking on the menu item Rername in the model Objects menu. /
EUROSIM 95

79

Soln) ARGESIM REPORT NO.6

/ Opening the Picture Editor \

Duplicate 1

_
Show Origin _
Show Structure

Show Inheritance

The picture editor is opened by

first clicking on the desired

object and then selecting >
the menu item Pictures....

-

EUROSIM 95

/ The Picture Editor \
show preceeding show next picture

. icture name
picture P

Library icon File Edit Coloufs Extra
in original size ; : D ipis

Current colour

Reference point

Tool bar A

for drawing
pictures and
placing animation|
points

—— il =
colour bar drawing area /
EUROSIM'95

80

OBJECT-ORIENTED DISCRETE SIMULATION

Pictures \

* One ore more icons for each* object in the class library can be defined.

* Each icon gets a number from the system and can be named by the user. The icon names
for one object must be unique.

+ The number of icons is unlimited.
+ The maximum size of an icon is 999x999 pixels.

* Each object has an icon numbered with 0 and named Default . This is the icon the object
is shown in the library. Therefore it has a maximum size of 40x40 pixels.

* Icons require a lot of memory. Therefore they are associated with the class and not with
the instances of the class. Consequently, if the icons of an instance of a class are
changed, the icons of all instances of the class, including the parent class, are changed
too.

* with the exception of the objects with fixed icons - EventControiler, Comment,
Connector and NwData :

\ EUROSIM 95 ———/

/ The Menus of the Picture Editor (1) \

Frame

K EUROSIM'95 _—/

81

ARGESIM REPORT NO.6

/ The Menus of the Picture Editor (2) \

=

\ EUROSIM 95 —————/

/ The Menus of the Picture Editor (3) \

\ EUROSIM 95 ————-J

82

OBJECT-ORIENTED DISCRETE SIMULATION

/

The Menus of the Picture Editor (4) \

EUROSIM 95 ————J

The Drawing Tool Bar \

Drawing mode Animation mode

L

-

ey N free-hand N / Z__ . :
(inactive at Wind%ws NT) i fay points free-hand points
polyline fl‘/\ circle /\/\ polyline
| filled relating
rectangles '\L___l rectangle animation points
to submodel
Y % &/
set /7
reference point erase erase

EUROSIM'95 —/

83

ARGESIM REPORT NO.6

/ Symbols and Animation Points \

To visualise the MUs, which are moving through the logical components of the
model, animation points have to be placed in the picture of the symbolic level.
Correct animation requires an assignment of these animation points to the
logical level.

symbol

animation points

& EUROSIM 95 —J

/ Animation Points \

Animation points are 'attachment points', where the picture of a MU
is clipped to during a simulation run.

ﬁ reference point

of the MU

symbol

animation points

/ reference point
of the MU

“-... animation point of
\ y the basic ¢lement /
EUROSIM 95

84

OBJECT-ORIENTED DISCRETE SIMULATION

/ Default Material Flow Behaviour at a Divergence Point (1)\

(N
-+ Create a model
according to the
following picture:
\— J

+ Start the simulation and
observe the transfer
behaviour at the divergence
point.

K EUROSIM 95 ————/

/ Default Material Flow Behaviour at a Divergence Point (2)\

If no user control is specified, the departing entities are transferred
to the succeeding building blocks in the sequence in which these were
connected to the divergence point

SUCC(1)
divergence point /{
Q SUCC(2)

Thereby Simple models can be constructed without developing
special control rules.

\ EUROSIM 95 -——/

SUCC(n)

85

ARGESIM REPORT NO.6

/ Exercise \

+ Delete one connector, start \
the simulation again and
describe the transfer
behaviour.

Py

WS5 L—i

<l

\ EUROSIM 95 ——/

WS6
-
® |

/ Default Material Flow Behaviour at a Divergence Point (3)\

SUCC(1)

] CcC2
/ SUCC(Q2)

Divergeréc point & SUCC(3)

Tn SIMPLE ++ the departing entities are transferred alternately
to the successors which still exist.
\ EUROSIM'95 ___—/

86

OBJECT-ORIENTED DISCRETE SIMULATION

/ Default Material Flow Behaviour at a Convergence Point\

PRED(1)
PRE \
D(2) \
conjunction

In SIMPLE ++ entities are transferred to the successor
following the FIFO-rule (first come, first served).
K EUROSIM'95 —/

/ Continuous vs. Discrete Movement \

Jjump

S A L
3 processing time

@ittt e N e

Jjump

~Y

discrete, event-oriented motion

continous, real motion

Note: On current digital computers, only discretised simulation is possible. The larger

the jump in time, the more calculation time is available for simulation.
\ EUROSIM'95 ___J

87

ARGESIM REPORT NO.6

/ Internal Realisation of the Push-Block Concept (1) \

Movement required!

But: The successor is full, so no
movement is possible.

I e

ikl

Al

E

Blocking action!

A2 creates a blocking list (FIFO-
rule) and places Al in the Queue;
i.e. A2 records the move request
from Al.

EUROSIM 95

block list

of A2 /

/ Internal Realisation of the Push-Block Concept (2) \

A location becomes available in A2:
A2 passes an Entity on and is no

longer full.
--n---..uu---..u---.---u..->
End of blocking
(1) A2 creates exit events for all
entities on the blocking list. (2)
The EventController activates
Al.
(3) Al can unload the Entity.
(3) -
Q’ -+
. P

M

88

-Al | block list
- of A2

block list
of A2

EUROSIM 95 ——J

OBIECT-ORIENTED DISCRETE SIMULATION

/ The Sensor-Actor Concept (part 1) \

The basic material flow elements (SingleProc, ParallelProc, ...)
have an Entrance- and an Exit-Control.

A method specified as an entrance or exit control will be activated,
whenever a MU wants to enter or leave that material flow element.

v

entrance-sensor exit-sensor

\ 4 g A J 1 - et i /
EUROSIM’95

/ The Sensor-Actor Concept \
The Entrance Control

'

entrance-sensor
\ctivation:
» the entrance control is activated when the MU succesfully enters the building block
Important:

+ when the entrance control is activated, the MU has already moved onto that building
block, i.e. the change of the processing time within the entrance contro! does not
affect the present MU.

* the entrance control does overwrite the default behaviour of the building block

« the entrance control can be activated only once for each entering MU

K EUROSIM'95 ——/

89

%ol) ARGESIM REPORT NO.6

/ The Sensor-Actor Concept \
The Exit Control

exit-sensor

conveyor

ivation:
- the exit control is activated whenever an MU wants to leave its location
Important:

« the exit control overwrites the dafault behaviour of the building block, i.e. the MU
will not be moved to the successor automatically
« the exit control may be activated more than once by a singie MU.
Reason: If the MU is blocked and cannot leave
its location, the exit control will

be activated a second time when the MU
\ becomes operational again. /
EUROSIM 95

/ Construction of a Method (Control) \

Method

Inhwnt sowce

name e : To insert the method code
5 make sure that the Inherit
source check box is
inactivated

method body

start the execution
manually

close window,

compile and compile (translate) changes are not /
close method accepted
EUROSIM"95

90

OBJECT-ORIENTED DISCRETE SIMULATION

/

model:

The Application Object Drain (1) \

Drain symbol:

Exercise:
1. open the pre-defined building block Term
2. insert the basic object SingleProc
s 3 insert the basic object Method
= 4. connect the model entrance with the SingleProc (manually)
g s rename the the building block
<6 draw a separate picture for the model
7. define an animation point
8.

assign the animation point to the SingleProc /
EUROSIM"95

new

The Application Object Drain (2) \

define the control method Dispatch as the exit
control of the user-defined building block D.

a. open the dialog window of the SingleProc
b.

C.

enter the name of the exit control method

close the dialog window by clicking on the OK-button

|
|

EUROSIM 95

91

ARGESIM REPORT NO.6

/ The Application Object Drain (3) \

10. define the exit control method
a. open the window of the Dispatch method
with a double click.

b. switch off the Inherit source-button
c. enter the method the code shown below
d. close the window with the OK-button
x Dispatch [Inherit source
2
is
do
D.cont.delete;
end;

\ [OR] | Apply | Cancel
EUROSIM"95 —oom—o—m—o—”

/ Flow Control Structures - Conditional Branch \

The conditional branch is used to make the execution of command
sequences depending on a certain condition.

— command Z; command X_‘
GO @ sequence 1 @ sequence 2 @

If the condition is fulfilled (TRUE), then command sequence 1 is executed,
otherwise command sequence 2 is executed, if an else branch is specified.

The else -branch is optional.

+ Build a model with a method using the conditional check,
e.g.:

is

do
if @.Name="box"
then @.move{WS1);
else @.move(WS2);

end;
end; / /
EUROSIM 95

92

OBJECT-ORIENTED DISCRETE SIMULATION

/ Flow Control Structures \
Flow control structures are used to control the sequence of

commands executed in the information flow language SimTalk.

SimTalk offers three different flow control structures:

ONE or SEVERAL commands which are
placed and executed in sequence.

sequence
conditional tes
Different sequences of commands are
executed depending on the result of the
conditional test.

If the termination condition evaluates to
FALSE, the command sequence is

L *@ executed and the termination condition is
! y1 evaluated again.
K EUROSIM’95 —/

loop

/ How to create Addresses? \

Object addresses - overview

« relative address
+ absolute address

¢ anonymous names

* navigating
- through the model hierarchy
- through the logical network

\ EUROSIM 95 ———/

93

ARGESIM REPORT NO.6

/ Relative Address \

class library

A relative address is always relative to the
name scope, i.e. the hierarchical level of the
model where it is used (as opposed to an
absolute address stating with the class library).
In the example below, SIMPLE++ searches
the name scope of method M for an object
with the name 4P.

+ Insert the following lines into the method Method .F. W.M:
is
do
print AP;
end;

~+ Click Apply and Start and watch the result in the

\ standard output. /
EUROSIM'95

/ Absolute Address \
absolute address model hierarchy

class library

L P S M IN ouUT M

"construction pyramiq"

0 B BF [FIECEE
vV
2 | F] S

| class library |

EUROSIM'95 ——/

94

OBJECT-ORIENTED DISCRETE SIMULATION

The Anonymous Name cont \

I Cont returns the address of the MU being loaded on an object. I

+ * Build the model shown below (WS and WS1 have to be SingleProcs).
« Insert M as the exit control of WS.
= Start the simulation and watch the animation and the standard output.

WSI1

EUROSIM'95

/ The Anonymous Name @ \

@ is the address of the movable unit which
triggered the current event.

+ * Build the model described below.
« Start the simulation, watch the standard output
and the animation.

Hint:
Do not forget to insert the method
M in WS as the exit control!

WS1

EUROSIM'95

95

ARGESIM REPORT NO.6

/ The Anonymous Name MU(n) (1) \

MU(n) returns the address of the n-th MU in a stationary
material flow object (e.g. SingleProc, ParallelProc,...).
(The MUs are arranged in the departure order).

+ « Change the latest model to the model shown
below.
« Start the simulation and watch the animation
and the standard output.

WS1

/ The Anonymous Name current \

Icurrent is a pointer to the location of the current method. I

+ Insert the following lines in a method, click
Apply and Start and watch the stardand output:

is
do

print current;
end;

K EUROSIM 95 ———/

96

OBJECT-ORIENTED DISCRETE SIMULATION

/ Further Anonymous Names \

In the navigating chapter you've got to know some more anonymous names:

* location
* pred(n)
* succ(n)
* root

-+ Think of an example for each construct. Make sure that you
are able to use them in the right way.

K EUROSIM’95 oo

/ Navigating through the Logical Networks \

(—'— * Insert the following lines in the method \
building block. F. W. M.

is
do

print AP.succ(1);

print AP suce(l).suce(1);

print AP.pred(1);

print OUT.pred(1).pred(1);

print OUT .suce(1).succ(1).suce(2);
end;

* Click on 4pply and Start and watch
the result in the standard output. /

.

From a given object you can move through the
logical network. With ... sucg(n) you access
the n-th successor and with ... pred(n) the

n-th predecessor.
EUROSIM"95 ——/

97

ARGESIM REPORT NO.6

-~

N

Customised Attributes \

Customised attributes can be defined for all material flow objects and lists.
The customised attributes can be used to store information like part type,
part routing, order number, etc.

To insert a customised attribute, open the data dialog box of the basic
objects and move the scroll bar to the bottom. The field Cust. attributes
will appear. After clicking the insers-button a new window is displayed
in which you can insert the name, type and value of the customised
attribute.

The number of attributes is not limited.

A customised attribute consists of a name, a data type and a value.

EUROSIM 95 ——/

/

Accessing the Value of a Customised Attribute (1) \

+ Create the following test model

layout testmod CustAtir

order:string="AA"

1 copy an empty model in the library
2 open the model

3. insert a basic object Method

4. insert a basic object SingleProc
5
6

familiar

rename the basic object to SP
insert a customised attribute for SP

Cust. attributes

new

7. close the dialog window with the OK-button /
EUROSIM'95

98 |

OBJECT-ORIENTED DISCRETE SIMULATION

/ Accessing the Value of a Customised Attribute (2) \

familiar

0 o0

10.

insert an instance of the building block NwData
open the dialog window with a double click and fill it out

close the window with the OK-button

EUROSIM'95 —/

/ Accessing the Value of a Customised Attribute (3) \

familiar

11.

12.
13.

14.

enter the following method code and click on the Apply-button

]

is
do

print SP.article;
SP.article := "COFFEE*;
print SP.article;
print Order;

Order := "BB";

print Order;

end;

[OR][Apply | [Cancel]

click on the Start-button and watch the standard output
(the window from which Simple++ was started)
open the SP-dialog window and look for the value of the

customised attribute
close the model
EUROSIM 95

99

ARGESIM REPORT NO.6

N

Customised attributes consist of 2 name, a data type and a value.

SIMPLE++ offers a range of different data types:
« boolean: truth value; can be "TRUE" or "FALSE"

* integer:
e real:
* string.

* object:

Data Types \

whole number, e.g. 1, 127, -3566

floating point number, e.g. 3.141, -382.777

string of characters or numbers; e.g. "This is text",
"123-ABC"

address of a model element (absolute address),

e.g. FW.AP
EUROSIM'95 __/

K

Boolean Operators \

The following operators can be used with the data type boolean:

operator example

+ AND TRUE AND FALSE. Always FALSE if one of the operands
is FALSE.

« OR TRUE OR FALSE. Always TRUE if one of the operands is
TRUE.

+ NOT NOT TRUE is FALSE. Reverses the value of the boolean
operator .

. = FALSE = FALSE. TRUE if the operands are equal.

. /= FALSE /= TRUE. TRUE if the operands are not equal.

* bool_to_num: conversion operator, e.g. bool_to_num (FALSE) returns 0.

* bool_to_str: conversion operator, .. bool_to_str (FALSE) returns "FALSE".

EUROSIM"95 ————/

100

OBJECT-ORIENTED DISCRETE SIMULATION

/ Integer Operators \
+ addition

- subtraction integer
* multiplication

/" integer division .
' modulo operator > Integer

/ division ——» real
= equal
= notequal
> greater than
< lessthan boolean
= greater than or equal

= less than or equal

num_to_bool, num_to_string: type conversion operator

+ Perform different experiments with the conversion operators.

EUROSIM’95 ‘__./

_

/ REAL Operators \

+ addition

- subtraction

* multiplication
/ division

= equal

/= notequal

> greater than

< lessthan
= greater than or equal
= less than or equal

num_to_bool, num_to_string: type conversion operators

+ Perform different experiments with the REAL operators.

\ EUROSIM'95 ——_—/

101

ARGESIM REPORT NO.6

/ STRING Operators \

+ concatenation ~————— string

= equal

/= not equal " boolean

toLower

toUpper

copy :

incl string

omit

strlen

pos > integer

sprint .

P object
num_to_bool, num_to_string: type conversion operators
Perform different experiments with the STRING operators.

i]

/ The Basic Object TableFile \
2D list (1)

WorkingPlan: *

1 2 3 columns
1| al a2 X
2 bl b2 2
-3 [_cl c2 | dram 5
41 dl d2 | dram y

Specific fields are accessed via an index, e.g.

read entry: WorkingPlan(2, 3]; >c2

mn
row

colu

write entry: WorkingPlan(3, 4] := "drain";

k assigmcnt /
EUROSIM 95

102

OBJECT-ORIENTED DISCRETE SIMULATION

/ The Basic Object TableFile \
2D list (2)

In addition to the system defined index (integer), the user can define
indices for both the columns and the rows, e.g.:

WorkingPlan:

1 2
[-
/A/, stationl | station2 column index
1| box source drill
shaft source lathe

row index

K example: print WorkingPlan["station2", "shaft"] ->lathe /
EUROSIM'95

(The Basic Object CardFile, StackFile, QueueFile \

® QueueFile QF.push("lathe™);
il QF.pop; X
Iro QF.top; &

® StackFile SF.push("lathe");
j_—___[j SF.pop;)
LIFO SF .top;)

® CardFile CF.insert(2, "lathe");

CF.cutRow(d); 7 X '

l”” || " CF.read(4); 'S W]
\ free access
EUROSIM’95

103

ARGESIM REPORT NO.6

Searching a 1D-list

each list has an internal cursor which points to the current field
of the list.

the list can be searched automatically. The result of the

search can be used in boolean expression to determin whether a
certain value was found or not.

the search starts at the current cursor position and continues
until the value is found or the end of the list is reached.

if the correct value is found, the internal cursor points to the
field containing this value and the boolean result TRUE is returned. If
a search is unsuccessful, the cursor position is unchanged.

if you want to search the complete list, the cursor must be

set to the first field of the list prior to searching.

commands (e.g.):

CF.Cursor :==1; i =
print CF find("lathe"); gg]lll

13 _—/
EUROSIM'95

Searching a 2D-list

. example:
TF.CursorX :=1;
TF.CursorY =1;
print TF find("lathe_old");
print TF.CursorY; N _{RUE
print TF.CursorX; 5
2
columns
r X
] drill mill
S grind check
— | SEW lathe old
| Tathe_new

104

\

EUROSIM 95 4——-/

OBJECT-ORIENTED DISCRETE SIMULATION

/ Results / Statistics \

« statitstics of immovable units

» statistics of movable units

* activate / inactivate statistics

* reset statistics
eventcontroller
methods

» accessing separate statistic values

* write statistic values to the hard disc

\ EUROSIM95 ——J

Special Items \

. Reset method

. Init method

. EndSim method

. saving objects

. printing a model and model elements
. the basic object Display

. the basic object Plotter

. the SIMPLE++ debugger

. ASCll-interface of SIMPLE++

K EUROSIM'95 —/

105

ARGESIM REPORT NO.6

N

Standard Interfaces of SIMPLE++

. ASCIll-interface

. File-interface
open, close, write, writeln, readin

. interface to the operating system
example: system("Is"); -> UNIX
system("dir"); -> WindowsNT
. Icon-interface (PPM-format) ‘
. Exchange of data and icons via clipboard

(WindowsNT only!)

EUROSIM"95 ————/

/

Basic Objects Libraries of SIMPLE++

included in Development Licence:

« SIMPLE++_control standard strategies
» SIMPLE++_personal staff :
» SIMPLE++_conveyor steady transportation system
« SIMPLE++_AGV automatic guided vehicles
optional templates:
« SIMPLE++_EOM electrical overhead monorail
« SIMPLE++_HBW high bay warehouse
» SIMPLE++_process chemical industry
* SIMPLE++_shop shop floor control
optional products:
« SIMPLE++_C C programming interface
« SIMPLE++_SQL database interface
+ SIMPLE++_Gantt Gantt chart visualization tool
« SIMPLE++_RPC remote process communication
« SIMPLE++_GA genetic algorithm
» SIMPLE++_DDE dynamic data exchange

(WindowsNT only!)

EUROSIM"95

106

\

OBJECT-ORIENTED DISCRETE SIMULATION

/ Procedure to carry out a Simulation Study (1) \

1. Problem definition and aim of study

2. Analysis of the system

3. Collecting the necessary data

4. Building the model

5. Implemententation and testing

6. Validation of the model

7. Simulation runs: planning and carrying out
8. Evaluation of the results

9. Change and optimisation of the system

k EUROSIM 95 ———/

/ Procedure to carry out a Simulation Study (2) \

1. Problem definition and aim of study

Exercise: Demand definition by formulating
a question sheet

Example: What is the expected throughput of
the facility?

Are the buffers right dimensioned?
Which dispatch is meaningful?

What is the optimal number of
employed workers?

k EUROSIM 95 —/

107

ARGESIM REPORT NO.6

/ Procedure to carry out a Simulation Study (3) \

2. Analysis of the system (1)

Exercise: Describe the system to be simulated
Outline of the system vs. environment
Example:
raw storage »1 manufacturing > dispatch

N

\

arget (simulated) system

EUROSIM'95 _—/

finished storage

/ Procedure to carry out a Simulation Study (4) \

2. Analysis of the system (2)

Exercise: Analysing the elements of the system
Determine the attributes of the elements
Example:
—] resource S » Processing time
« Capacity
« Availability

* etc.

EUROSIM 95 ——/

108

OBJECT-ORIENTED DISCRETE SIMULATION

/ Procedure to carry out a Simulation Study (5) \

2. Analysis of the system (3)
Exercise: Determine the structure of the system

Mutual interface specification of the
system elements

Example:

~ - I:

\

1
gl

\ EUROSIM 95

/ Procedure to carry out a Simulation Study (6) \

2. Analysis of the system (4)

Exercise: Analysing the dispatch and process
~ rules

Determine this rules affecting the entities
and the facility

Example:

[

20% | resource2l

-t
- resourcel
resource22

80%

K EUROSIM 95

109

%ol) ARGESIM REPORT NO.6

/ Procedure to carry out a Simulation Study (7) \

2. Analysis of the system (5)

Exercise: Defining the required application
objects

Is it possible to use pre-defined
application objects?

Example:

\pplica

\ tion object
EUROSIM'95 oo —"

/ Tuning Tips for Simulation Runs \

« Switch off the animation
« Switch off the interactive stopping
» Close the EventController
« Activate the fast index access (TableFile)
+ Animation activated: - hide grid
- hide connectors
- hide object names
- use pictures in original size
- as few animation points as possible

- as few animation events as possible (animation line)

\ EUROSIM’95 ———/

110

OBJECT-ORIENTED DISCRETE SIMULATION

/

-

How to model with SIMPLE++ \

* [dentify the system elements
* Encapsulate these elements to application objects
» Is it possible to use pre-defined application objects?
* Design the application objects on paper
- define the interfaces
- determine the structure of the building blocks
) - formulate the controls in spoken language
* Design the application objects
* Test the objects one by one
* Build up the complete model and test it

EUROSIM'95 ___/

/

_

1. System definition/goals

2. Design

Doing Simulation Studies (1) \

Compile a description of the real system and fix the borders of it.
Keep asking questions until the functionality of single elements and
the general behaviour of the overal system are clear.

Formulate the goals of the simulation study.

This is a very important step as the goals determine the necessary
level of detail for modelling and thereby the effort which is necessary.

Make a list of all elements of the system to be modelled. Evaluate
which elements have a similar or identical functionality.

From that a list of building blocks to be modelled can be created.
Try to think of already existing objects which may be used.

Specify and design the remaining objects on paper. Define and
describe explicitely the interfaces for material and information flow.

If necessary specify Reset and Init methods. /
EUROSIM"95

111

ARGESIM REPORT NO.6

/ Doing Simulation Studies (2) \

3. Data

Make sure that the data necessary for the simulation of the real
system are available or are captured if necessary.

This often causes considerable effort and may be a longer process.
A competent and skilled contact person who is responsible for
organising the data is important.

4. Implementation

According to the design, the building blocks are created in Simple++.
The model is then built using these building blocks. However, the
model may also be structured into several hierarchical levels.

Do not forget the documentation for the model.

\ EUROSIM 95 -—/

/ Doing Simulation Studies (3) \

3. Verification

This step is to make sure that the single building blocks have the
correct functionality and behave according to the specification.
The single objects of the model usually are tested on their own,

in conjunction with further building blocks and in the entire model.
Verify that all parameters are set to correct values,

6. Validation

Check that the model corresponds to the planned or to the existing
system. Develop estimates for important results and check if the
simulation results are in a corresponding range. Discuss the model,
the behaviour of the model and the results with an expert.

7. Plan for simulation experiments

Make a plan for the number of simulation runs, the variation of
parameters, variation of random distributions, etc.

\ EUROSIM’95 -_—/

112

OBJECT-ORIENTED DISCRETE SIMULATION

/ Doing Simulation Studies (4) \

8. Simulation experiments

Perform the necessary simulation runs and collect the results.

9. Evaluation of results
The results gained by the experiments are evaluated in this step
and are documented.

10. Variation, Optimisation

Check if the goals as specified in step 1 are reached by the experiments.
If necessary, adjust the model and perform further simulation runs
until you reach an optimum result.

Simulation studies usually are an evolution process. A first design will often
be revised a few times where new findings or results will lead to modifications

in earlier steps of the entire process. Repeated loops will thereby lead from
Qairly rough first draft to a final detailed model. /
EUROSIM’95

/ Why Simulation of Manufacturing Systems? \

A manufacturing system consists of a variable number of interacting
elements. The interactions consist of parallel and serial processes
which exchange information and material. The complex nature

of modern production systems means that with only a few elements
the number of factors which need to be considered is so vast that
rational and exact planning with conventional planning tools is
impossible.

To obtain measures for optimisation of the facility during the
planning phase, some techniques are necessary to model the
interaction of the physical and logical elements of each system
precisely, i.e. in its full complexity.

\ EUROSIM 95 ———-/

113

o) ARGESIM REPORT NO.6

4 N

The Aim of Manufacturing Processes

The aim of all manufacturing processes should be the
profitability of the entire system.

The profitability can be achieved by different aims:

+ minimum lead time

+ maximum production facilities utilization
 minimum work-in-progress and stock

« minimum energy consumption

. etc.

These criteria may be emphasised differently for individual processes
in the system.

K EUROSIM"95 ———/

/ Simulation and Profitability \

One precondition for economic flexibility is planning that takes
into consideration dynamic situations at present and in the future.

'

The possibility to perform experiments during the planning stages
makes simulation an ideal tool for optimising manufacturing

processes.

\ EUROSIM’95 ——J

114

OBJECT-ORIENTED DISCRETE SIMULATION

/ The Necessity of Adapting a Manufacturing System \
to Changing Conditions

A manufacturing system has to be adapted
to changing conditions which are permanent,
short-term and a long-term.

New conditions arise through, e.g.:

* increasing variety of products
« shorter cycles of innovation
* personnel costs
« changes of
- workingtime
- energy costs
- environmental regulations
- rates of exchange
- etc.

| The effects of these changing conditions on the system can only
be assessed completely by simulation.

EUROSIM"95 ——

f Significant Changes \

V23->V3.0

* new interpreter -> increase of speed and performance
¢ better memory management (lists)

* event debugger

e profiler

* modelling with SimTALK commands

* battery-powered vehicles with charge-monitoring

« front/rear-control of material flow elements

\ EUROSIM’95 ——_-—/

115

FO

b

Unseld + Partner

Business- and Marketing Consulting Simulation!

What we can offer our customers !

Unseld + Partner :

focuses on simulation topics only and provides efficient industrial simulation
experience, gained in many industrial projects

consists of a group of highly educated simulation experts representing the highest
concentration of such know-how in Austria

offers simulation expertise in industrial projects, while being receptive for sophisticated
new strategies in freight centres and intercompany logistics, tackling especially
multimodal aspects.

provides advice on EU-programs (conceming railways, IT and Telematics) to leading
members of Austrian industrial organisations and government bodies

is a completely independent Austrian company

has co-operation contracts and contacts with many prominent international research
and university institutes

Of course state-of-the-art simulation software technology for instance
SIMPLE++ and VISIO are used and professional project management
skills are provided.

=>» Without Simulation no Innovation €=

Unseld + Partner Business- and Marketing Consulting Simulation!
A-1080 Vienna LerchenfelderstraRe 44/9 phone +43-1-4030371-0* fax +43-1-4030371-90

	Leere Seite
	Leere Seite
	AR04_Didaktik.pdf
	Leere Seite
	Leere Seite

	AR05_FuzzySystems.pdf
	ar_5
	report_5[1].1
	report_5[1].2

	ar_9

