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1. INTRODUCTION AND MOTIVATION

The automotive industry is currently undergoing major
changes. While mobility concepts and drive technologies
change, vehicle safety remains of utmost importance and
enables new mobility concepts. Currently, the field of ve-
hicle safety systems can be divided into active and passive
systems. Within this definition, active systems prevent a
crash while passive systems mitigate crash consequences
for the occupants. Each system has its intrinsic operat-
ing time, activation logic, and principle of action. With
the constantly increasing development of enhanced sensor
technology for the vehicle’s interior and exterior, this can
be used for predictive safety strategies Grotz et al. (2021).
In addition to improved data availability and increased
interconnection between former separated systems, this
promises holistically coordinating all safety systems. This
approach targets an improved scenario-based occupant
protection. To bring vehicle safety from trigger-based acti-
vation of individual components and actuators to holistic
and comprehensible safety decision-making, a mathemati-
cal description of the environment is the crucial first step
to begin with the interdisciplinary modeling, simulation
and optimization cycle.

In the following, a base scenario is shown and in Section 2
the novel approach of mathematically formulating a driv-
ing scenario, from an occupant perspective, as a bipartite
graph is presented.

In Fig. 1 the driving scenario is depicted, labelling the
vehicle under consideration (ego vehicle) in green. The
other road users and potential accident opponents, referred
to as bullets hereinafter, in black. Figure 1(a), describes
an uncritical driving scene on a two-lane road. Only one
passenger, the driver, occupies the the vehicle. If the car
ahead decelerates, ideally detectable via the taillights, the
ego vehicle needs to react and has different options. If the
time-to-collision (TTC) is greater than the time-to-brake
(TTB), it is still possible to stop before a collision occurs.
However, if the TTC is smaller than the TTB, or if a
rear-end collision with a following vehicle (B2) should be
avoided, a front collision will occur. Since the left lane is
blocked (B3) and there is also an obstacle (O) on the right
side, an evasive maneuver influences the safety strategy.

In the presented scenario, the driver is leaning slightly to
the front left, as depicted in Fig. 1(b), i.e. the driver is
adjusting something on his mirror.

Emergency braking followed by a collision may not be the
ideal safety strategy, as the belt does not well couple the
occupant to the vehicle’s deceleration, hence the perfor-
mance of the airbag is reduced. Since the passenger seat
is not occupied, a collision on the passenger’s right side of
the vehicle, as shown in Fig. 1(c), would help to make the
impact less critical for the occupant by better exploiting
the safety potential of the airbag as the driver is slightly
moved towards the center during the impact.

(a)

(b)

(c)

Fig. 1: Driving scenarios (a)-(c) with ego vehicle (green)
and bullet vehicles (black).

This presented scenario shows how challenging it is to find
the optimized safety strategy which maximizes the benefits
of available safety systems for occupant protection. The
task becomes even more difficult when considering multi-
ple occupants, the driver’s attention status, possible occlu-
sions in the environment, the lack of sensor information,
scenario states such as the TTC or the safety parameters
of the passive safety devices, e.g. seatbelt pretensioner
trigger.
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Fig. 2: Branch of a bipartite graph representing a driving scenario with measured inputs (grey) and uncertainties (red).

2. MODELING

In order to later decide on a safety strategy for the occu-
pant online, calculations has to be simplified. Thus sur-
rogate models need to be derived for some state relation-
ships. The overall model must be able to combine physical
models with data-driven models and expert knowledge and
allow for the implementation of uncertainties and probabil-
ities. The following description is limited to a mathemati-
cal framework without describing the entire mathematical
modeling, which is not the scope of the presented work.

A bipartite graph is used to represent the relationships
of the variables and to meet the needs of the model.
This approach is presented in Gienger (2021) for process
monitoring and fault detection. Figure 2 shows a branch
of the overall model. As a bipartite graph, it represents
how the TTC can be inferred from sensor data of the
environment and the ego vehicle.

The vertices of the graph G = (V,U) can be split in
two groups, where V represents the variable nodes (cir-
cles) and U represents factor nodes (rectangles), such
that every edge conntects between these groups. Vari-
able nodes consist of observable nodes {yRUT, yenv,
yb,{sig,vL,vT}, ue,{a,φ}} and latent variables {Senv, TTC,
B{type,sig,ev,eqm,path,vL,vT}, Epath} which are unknown and
correspond to the states of the system. The red vari-
able nodes describe the sensor uncertainties fs and the
process uncertainties fp resulting from inaccurate sens-
ing and errors in the mathematical model. The factor
nodes ξ1,...,15 represent the functional dependencies be-
tween adjacent variable nodes. This representation of the
system dynamics helps to understand the system structure
and sets the basis for later implementation. The mea-
sured inputs yRUT ∈ {car, pedestrian, truck, etc.} which
describe the road user type under observation, and yenv ∈
{crossing, left/right lane, turn, etc.} describe the current
environment give information about which maneuvers
the observed bullet may potentially execute. The derived
states Btype and Senv contain the probabilities of the
measured inputs. Combined with some evidence yb,sig ∈
{[0, 1]; [0, 1]} representing the status of the turning signals
of the bullet, yb,vL and yb,vT representing the measured
lateral and tangential velocity of the bullet and their states
including the uncertainties B{sig,vL,vT}, an equation of
motion Beqm for the most likely maneuver is selected.
The evaluation of the selected equation Beqm with the
measured velocities results in a predicted path Bpath. This
procedure is similar to the approach presented by Schreier

et al. (2016). For the ego vehicle and its input states ue,a,
describing the acceleration, and ue,φ, describing the steer-
ing angle, a graph is defined leading to a predicted ego
path Epath. This branch is omitted in Fig. 2 for better
readability. Given the two paths, the TTC is calculated
with a process uncertainty fp. So in this branch of the
bipartite graph a TTC is derived from both a probabilistic
model to assume a maneuver of the bullet and a physical
model in forms of the equation of motion.

3. CONCLUSION AND OUTLOOK

The interconnection between active and passive safety sys-
tems in different driving scenarios can offer enormous ben-
efits for the occupant’s safety. A mathematical description
of the traffic environment is mandatory to decide model-
based when and which system should intervene. In this
work, an approach was presented how a complex traffic
scenario can be described mathematically and how the
relationships of different variables can be represented. The
representation as a bipartite graph can combine different
modeling approaches, including probabilities and uncer-
tainties and attaching a decision tree as in Bungartz et al.
(2013) Ch. 3-4. This leads to the goal of finding a holistic
safety strategy that helps to optimally utilize the safety
potentials of the individual components. In further inves-
tigations, the branches of the graph will be extended and
different modeling approaches will be used and tested in a
simulation environment. For state dependencies that either
cannot be physically described or can only be calculated
with great computational effort naturalistic driving- and
crash databases like, e.g. the AMP or GIDAS will be used.
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