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FOREWORD 
Welcome to MATHMOD 2022, the 10th Vienna Conference on Mathematical Modelling 
– a conference as it used to be. ‘A conference as it used to be’ was our guideline for the
MATHMOD Conference Series during Corona times. We had to postpone the 10th MATH-
MOD twice – from February 2021 to February 2022, and then to July 2022, an unusual date
for MATHMOD conference – but we definitely wanted to run the 10th MATHMOD Conference
as a face-to-face event, not running the conference as virtual conference, or as hybrid confer-
ence -  a conference as it used to be.

Since 1994, the MATHMOD Conference Series invites scientists, engineers, and experts to 
present their ideas, methods, applications, and results in the field of mathematical modelling 
and share their experiences in different application domains.  

Like a mathematical model, MATHMOD has constants, parameters, and variables. Constants 
are the frequency – triennial – and the date – February; only the Corona pandemics forced this 
constant to become a parameter for 10th MATHMOD, organized exceptionally after four years 
in July 2022; aim and scope are parameters to be tuned with respect to the recent develop-
ments in mathematical modelling. Parameters reflect the organisation: the first MATHMODs 
were organised under the flag of IMACS (International Association for Mathematics and Com-
puters in Simulation), recent MATHMODs are IFAC (International Federation of Automatic 
Control) co-sponsored conferences with all advantages of IFAC online publications for the 
MATHMOD Proceedings (full contributions). The local organisation team at TU Wien has been 
extended: the Institute of Analysis and Scientific Computing (ASC) has won the Automation 
and Control Institute (ACIN) as partner in the organisation of the conference. In addition, AR-
GESIM, a scientific society ‘outsourced’ from the institutes, developed from local supporter to 
international publication partner ARGESIM Publisher for the MATHMOD Discussion Contribu-
tions or Short Contributions. New constants are other co-sponsorships, as for instance 
MATHMOD is also a EUROSIM (Federation of European Simulation Societies) Conference.  

MATHMOD variables are the participants and the contributions. Successful models have 
output variables, and these are the contributions to the MATHMOD conferences. A classifica-
tion of the contributions in model attribute parameters Full Contributions, Discussion Contribu-
tions, and Student Contributions has proven most appropriate. The success variables are the 
MATHMOD participants, spread over twenty-five countries, some concentrated in specific 
submodels, the very successful MATHMOD Minisymposia, some providing contributions to 
the classic submodels MATHMOD Thematic Sessions and MATHMOD Poster Session, and 
crowned by the MATHMOD Plenary Lectures.  

MATHMOD 2022, the 10th Vienna International Conference on Mathematical Modelling, im-
plements all these developments in a successful conference with about 220 participants and 
about 150 contributions at TU Vienna from July 27 to July 29 – with a tutorial pre-programme 
on July 26, 2022. 

This MATHMOD 2022 Discussion Volume publishes the two-page papers of all accepted 
Discussion Contributions in the online ARGESIM Report 17, ISBN 978-3-901608-95-7, DOI 
10.11128/arep.17, available with open access at the website www.argesim.org/mathmod-
vienna/. The review by an associate editor and by an IPC reviewer resulted in 51 accepted 
Discussion Contributions – a third of all accepted contributions.  
ARGESIM Publisher already took care on publication of short papers, abstract papers, student 
papers, and discussion contributions for previous MATHMOD conferences, but for MATH-
MOD 2018 and MATHMOD 2022 each contribution is assigned an individual DOI number for 
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quick web access and reliable documentation. Thus, along with the publication of the Discus-
sion Contribution Volume, metadata of the contributions are stored in publication databases for 
cross-referencing. ARGESIM Publisher’s DOI numbers for the MATHMOD 2022 Discussion 
Contribution Volume is within the range DOI 10.11128/arep.17.a17nnn, where nnn is the 
submission number of the contribution. 

The MATHMOD 2022 Proceedings publish all accepted Full Contributions in a volume of the 
IFAC-PapersOnLine proceedings series (ISSN 2405-8963) at the ScienceDirect web service 
www.journals.elsevier.com/ifac-papersonline/ (open access, individual contribution DOI). 
Last but not least, MATHMOD 2022 also wants to draw attention to the possibilities of MATH-
MOD Postconference Publications. Following the IFAC copyright regulations with possible 
publication of MATHMOD 2022 contributions in IFAC journals, suitably adapted versions of 
MATHMOD 2022 contributions which contain sufficiently new material may also be submitted 
to MCMDS, the journal Mathematical and Computer Modelling of Dynamical Systems, pub-
lished by Taylor and Francis. Extended contributions with emphasis on simulation may also be 
submitted to SNE Simulation Notes Europe, the scientific journal of EUROSIM published by 
ARGESIM Publisher, Vienna. 
But MATHMOD puts emphasis also on two other very important constants – the socialising 
constant, and the traditional constant. MATHMODs are providing a – hopefully attractive – 
MATHMOD Social Programme, and MATHMODs continue the tradition with connection to 
fine arts. Consequently, MATHMOD 2022 starts with a talk on special views and places in 
Vienna, given by Inge Troch, the founder of MATHMOD. MATHMOD 2022 presents a Social 
Lecture on modelling and simulation Landscape Archaeology, introducing into the techniques 
and methodologies of archaeological prospection. MATHMOD 2022 continues the co-
operation with Vlatko Ceric, professor emeritus for stochastics and modelling at University 
Zagreb, who creates graphics in style of Algorithmic Art for MATHMOD design – the title page 
of these proceedings show design from algorithmic art series Amulets, www.veric.net.  
MATHMOD 2022 celebrates the Viennese Café tradition with the Café Simulation, a 
Viennese-type Café, especially established for MATHMOD near the conference office. And 
finally yet importantly, MATHMOD 2022 continues the tradition the provide conference bags 
produced at a workshop for handicapped people, this time a rucksack-type sport bag with 
‘MATHMOD 2022 Vienna’ embroidery. 

As organizers we want to express our sincere thanks to all of you for your help in making the 
MATHMOD 2022 conference a success – first to the MATHMOD 2022 participants, authors, 
and plenary lecturers. In particular, we appreciate the support of our sponsors and co-spon-
sors. Special thanks go to the members of the International Program Committee, who did a 
great job in organizing the review process. A big thank goes to the organizers of the MATH-
MOD Minisymposia – playing a key role for the success of MATHMOD 2022. 
Moreover, we are proud of the excellent work of all staff members – a big applause to our 
about 20 helping hands for MATHMOD 2022. Finally, we thank the IFAC publication team for 
the excellent cooperation, and the ARGESIM Publisher’s people for support. 

MATHMOD Conference Series – a mathematical model with constants, parameters, and 
variables: we hope the frequency becomes a constant again, and we would be glad to meet 
many variables at 11th MATHMOD in February 2025. 

Felix Breitenecker, Wolfgang Kemmetmüller, Andreas Körner, Andreas Kugi, Inge Troch 
Vienna, July 2022 
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Error estimates for data-driven optimal
control by leveraging results for

autonomous systems ?

Sebastian Peitz ∗ Katharina Bieker ∗∗

∗Department of Computer Science, Paderborn University, Germany
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This work pursues the central task to efficiently solve opti-
mal control problems for complex – and thus, expensive-to-
evaluate – dynamical systems with the help of data-driven
surrogate models. Mathematically speaking, we consider
the following problem over the time horizon p ·∆t:

min
u∈Up

J(y) = min
u∈Up

p−1∑
i=0

P (yi+1)

s.t. yi+1 = Φ(yi, ui), i = 0, 1, 2, . . . ,

(I)

where yi and ui ∈ U are the system state and control at
time instant ti = i∆t. The objective function (for instance,
the distance to some desired trajectory yref) is denoted by
P , and Φ describes the flow of the underlying dynamical
system (e.g., an ordinary or a partial differential equation)
over the time increment ∆t. The solution of (I) yields the
optimal control u∗ and corresponding state y∗.

A substantial challenge that we often face is the fact
that the efficient prediction (and, by extension, control)
of complex dynamical systems is hindered by the fact that
the system dynamics are either very expensive to simulate
or even unknown. Researchers have been investigating
ways to accelerate the solution by using data for decades,
the Proper Orthogonal Decomposition (POD) being an
early and very prominent example (Sirovich, 1987). More
recently, the major advances in data science and machine
learning have lead to a plethora of new possibilities, for
instance artificial neural networks, sparse regression for the
identification of nonlinear dynamics (Brunton et al., 2016),
or numerical approximations of the Koopman operator
(Rowley et al., 2009; Klus et al., 2020), which describes the
linear dynamics of observable functions. These methods
facilitate the efficient simulation and prediction of high-
dimensional spatio-temporal dynamics using measurement
data, without requiring prior system knowledge. For con-
trol systems, a drawback is that the construction of surro-
gate models with inputs is often much more tedious and
also problem-specific and data hungry (Bieker et al., 2020).

The approach we present here to solve (I) via surrogate
models while avoiding the aforementioned issues is based
on modifying the control problem instead of adjusting the
surrogate modeling to the control setting. The resulting

? This research has been funded by the European Union and
the German Federal State of North Rhine-Westphalia within the
EFRE.NRW project “SET CPS”, and by the DFG Priority Pro-
gramme 1962 “Non-smooth and Complementarity-based Distributed
Parameter Systems”.

framework, which we call QuaSiModO, consists of the
following steps (cf. also Figure 1):

(1) Quantization of the the admissible control U (for
instance by replacing the interval U = [umin, umax] by
the bounds V = {umin, umax});

(2) Simulation of the autonomous systems with fixed
inputs (e.g., Φumin/max(y) = Φ(y, umin/max);

(3) Modeling of the individual systems via an arbitrary
“off-the-shelf” surrogate modeling technique;

(4) Optimization using the resulting set of autonomous
surrogate models and relaxation techniques.

This interplay between continuous and integer control
modeling as well as between the full system state and ob-
served quantities (e.g., measurements) allows us to utilize
the best of both worlds, namely

• integer controls for efficient data-driven modeling,
• continuous control inputs for real-time control, and
• existing error bounds for predictive models.

QuaSiModO successively transforms Problem (I) into re-
lated control problems that – as long as the predictive
surrogate model is sufficiently accurate – yield optimal
trajectories y∗ that are close to one another. From (I) to
(II), we quantize the control, meaning that only a finite
set V ⊆ U of inputs is feasible. This allows us to replace
the non-autonomous dynamical system Φ(y, u) by a finite
set of autonomous systems Φuj (y), each corresponding

Fig. 1. The QuaSiModO framework consisting of the
four steps Quantization, Simulation, Modeling and
Optimization (Peitz and Bieker, 2021).

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

ARGESIM Report 17 (ISBN 978-3-901608-95-7), p 1-2, DOI: 10.11128/arep.17.a17012 1



Fig. 2. QuaSiModO applied to various combinations of systems and surrogate models for model predictive control.

to one entry uj ∈ V . While introducing an artificial
drawback from the control perspective (Problem (II) is a
mixed-integer optimal control problem), we can now easily
introduce an equivalent Problem (III) that is based on
surrogate models Φrui(z) for a reduced quantity z = f(y).
Here, the function f is an observable which maps measure-
ments from the state space of the full system to the space
of measurements (which may be of significantly smaller
dimension). As the transformation from (II) to (III) acts
on a set of autonomous systems, we can approximate the
individual systems Φuj from individual measurement data
sets, using whichever method we prefer.

In order to mitigate the disadvantages with respect to the
complexity of the control problem, the problem of selecting
an optimal input from V is relaxed by determining the
optimal convex combination of the autonomous systems:

min
α∈([0,1]m)p

Jr(z) = min
α∈([0,1]m)p

p−1∑
i=0

P r(zi+1)

s.t. zi+1 =
m∑
j=1

αi,jΦ
r
uj (zi),

m∑
j=1

αi,j = 1.

(IV)

Problem (IV) is again continuous – with respect to the
input α. For control affine systems, we can directly apply
u∗ =

∑m
j=1 α

∗
ju
j to the real system. For non-affine sys-

tems, we use the sum up rounding algorithm from (Sager
et al., 2012), by which a control corresponding to one of
the quantized inputs is applied to the real system.

Besides the ability to include arbitrary models, an impor-
tant aspect is that existing error bounds for the chosen
surrogate model can easily be included, see (Peitz and
Bieker, 2021) for a detailed description The availability
of error bounds is of particular importance for engineering
systems, where safety is of utmost importance (e.g., for air-
craft or autonomous vehicles). The bounds guarantee the
performance of a controller and – more importantly – will
automatically become stronger with future developments
in the field of data-driven modeling.

We have tested the QuaSiModO framework on a variety
of dynamical systems, observable functions and surrogate
modeling techniques, cf. Figure 2, a detailed description is
given in (Peitz and Bieker, 2021). For instance, we can
control the lift force acting on a cylinder (determined
by the velocity and pressure fields governed by the 2D
Navier–Stokes equations) without any knowledge of the
flow field using the standard LSTM framework included
in TensorFlow, and stabilize the Mackey-Glass equation
using a standard echo state network. This highlights the
flexibility and broad applicability of the method and
the success of the technique in constructing data-driven
feedback controllers.
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Abstract 

In today’s chemical industries commercial software tools employing state-of-the-art models and 

advanced optimization and control algorithms are used at different stages of the project life cycle, 

from early stages performing scale-up and conceptual process design, front-end engineering design 

to retrofitting and optimization studies at the plant commissioning/operation stage. The impact of 

advanced process modeling and simulation, optimization and control is profound and has become 

mainstream in the chemical industries due to the significant economic benefits achieved. These are 

amongst crown achievements of the process systems engineering community in Chemical 

Engineering discipline through research in mathematical programming, modeling, process synthesis 

and design and process control that has been performed in the past decades. Today there are new 

driving forces affecting the bottom line of chemical industries but also universities alike namely 

digitalization, machine learning/Artificial Intelligence (AI), climate change, decarbonization, sector 

coupling through renewable energy, etc. These technologies open up new horizons for industry to 

become more efficient, to decrease CO2 footprint and to develop innovative products and services. 

As model-based engineering becomes more established as enabling technology to address these 

challenges, in this talk we review the critical role of uncertainty and sensitivity analysis methods 

starting from the fundamental theory of Monte Carlo integration to sensitivity analysis using 

variance decomposition methods. Here an important distinction between when a study is about 

uncertainty and when it is about sensitivity analysis will be discussed. A number of applications of 

uncertainty and sensitivity analysis from process systems engineering which employs largely first 

principles/mechanistic models are presented: These examples include a range of engineering 

problems related to model identification/parameter estimation (in process/property modeling) to 

process synthesis and design and optimization. From these experiences, a critical analysis of the 

theory and pitfalls encountered in the application of uncertainty & sensitivity analysis in wider 

process systems engineering is presented. In the second part of the talk, a critical attention is given 

to the need to provide model prediction error (uncertainty quantification) of machine learning as 

well as deep learning/graph neural network models that are becoming popular in this emerging AI 

paradigm. While a wide range of methods for uncertainty assessment for such deep learning models 

are proposed from the larger deep learning community (from ensemble modeling to last layer 

dropout, etc), these methods are mostly pragmatic and heuristics in nature. Therefore the 

importance of benchmarking and critically assessing the quality of uncertainty quantification 

methods should remain an important point of attention. This aspect will be discussed on a study that 

deals property prediction of chemical compounds using graph neural networks.  

Stepping back from these particular examples, and looking ahead at the big picture, we see that 

many engineering decisions relies on computational analysis/calculations that employs a range of 

models some increasingly sophisticated (be it mechanistic, machine learning/deep learning or a 

hybrid combination). In this regard, proper identification and systematic study of potential sources 
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of uncertainty and assessment of their consequences to such decisions will remain relevant and 

important problem. This field is truly fascinating with many scientific and engineering challenges to 

address.  
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1. INTRODUCTION

Let D ⊂ R2 be a non-empty open bounded connected do-
main, ω ( D, and consider the following set of admissible
domains
Oω = {Ω ⊂ U : Ω ⊃ ω, Ω is open, bounded, connected,

and at least of class C0,1} .
Let f ∈ L2(D;R2) be a stationary fluid source function,
which can be interpreted as the force that steers the fluid
at a constant pace—an example of this is a fluid pump and
fluid outlet that act on the fluid at the same rate— and
Ω ∈ Oω. The time-dependent Navier–Stokes equations on
the interval (0, T ) is given by

∂tu− ν∆u + γ(u · ∇)u +∇p = f in Ω× (0, T ),
∇ · u = 0 in Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),
u = u0 in Ω× {0},

(1)

where u and p correspond to the dynamic fluid velocity
and pressure, respectively, and u0 ∈ L2(U ;R2) is the initial
velocity that satisfies ∇ · u0 = 0 in Ω. The parameter
ν > 0 denotes the fluid viscosity. On the other hand, we
call γ ≥ 0 the convection parameter. We also look at the
stationary Navier–Stokes equations

−ν∆v + γ(v · ∇)v +∇q = f in Ω,
∇ · v = 0 in Ω,

v = 0 in ∂Ω,
(2)

where v and q are the equilibrium fluid velocity and
pressure, respectively.
On both equations, if γ = 1 we reduce to the usual
Navier–Stokes equations, while γ = 0 gives us the Stokes
equations.
We focus on the analysis of two shape optimization prob-
lems governed by equations (1) and (2). In particular,
given a static desired velocity uD ∈ L2(ω;R2), we consider
the time-average problem

min
Ω∈Oω

JT (Ω) := ν

T

ˆ T

0
‖u(t)− uD‖2L2(ω;R2×2) dt

subject to (1),

 (3)

? This work is supported by the Japanese Government Ministry
of Education, Culture, Sports, Science and Technology (MEXT)
Scholarship.

and the stationary shape design problem
min

Ω∈Oω
Js(Ω) := ν‖v − uD‖2L2(ω;R2)

subject to (2).

}
(4)

We denote the solutions of (3) and (4) by ΩT and Ωs. Our
goal is to show that

|J∗T − J∗s | ≤ c
(

1
T

+ 1√
T

+ γ

21/2

)
(5)

where J∗T := JT (ΩT ), J∗s := Js(Ωs), and the constant
c := c(u0,uD,f , 1/ν,U) > 0 is independent of T .
Inequality (5) attempts to answer the contention that so-
lutions to dynamic fluid shape design problems are close to
the solution of the equilibrium problem. This assumption
is one of the reasons why majority of shape optimization
problems involving fluid deals with the stationary state
equations rather than the time-dependent case.
Remark 1. Note that when γ = 0, both systems (1) and
(2) can be realized as parabolic and elliptic problems,
respectively, and inequality (5) reduces to the estimate of
Trelat et al. (2018).

Our result is summarized in the following theorem.
Theorem 2. Suppose that f ∈ L2(U ;R2), u0 ∈ H(Ω) ∩
L2(U ;R2), and uD ∈ L2(ω;R2). If J∗T := JT (ΩT ) and
J∗s := Js(Ωs), where ΩT and Ωs are the solutions of (3)
and (4), respectively; then there exists c > 0, independent
of T , such that (5) holds.

As a consequence, we obtain a sense of convergence of
solutions of (3) to a solution of (4). We formalize this
result below.
Corollary 3. Suppose that the assumptions in Theorem 2
hold. Then there exists Ω∗ ∈ Oω, such that ΩT −→

χ Ω∗ as
T → ∞, and that |J∗s − Js(Ω∗)| ≤ 21/2cγ, where c > 0
is the same constant as in Theorem 2. Here, the symbol
−→χ denotes the domain convergence with respect the the
indicator functions in L∞-topology.

2. NUMERICAL REALIZATION

To solve the problem numerically, we rely on a gradient
descent method induced by the identity perturbation op-
erator. For more details, we refer to Delfour and Zolesio
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(2011). We compute the shape derivative of the objec-
tive functions in the sense of Hadamard’s, i.e., the shape
derivative of a given objective function J : Oω → R
in the direction of θ ∈ Θ is denoted and defined as
dJ (Ω)θ = limτ↘0

J (Ωτ )−J (Ω)
τ .

The shape derivative of JT and Js have already been com-
puted (see Kasumba and Kunisch (2012), and Mohammadi
and Pironneau (2010) among others), hence we skip such
step in this exposition. Nevertheless, such derivatives are
given below

dJT (Ω)θ = ν

T

ˆ T

0

[ˆ
∂Ω

(∂nu(t) · ∂nw(t))θ · n dσ

+
ˆ

Ω
∇ · (χω|u(t)− uD|2θ) dx

]
dt,

dJs(Ω)θ = ν

[ˆ
∂Ω

(∂nv · ∂nz)θ · n dσ

+
ˆ

Ω
∇ · (χω|v − uD|2θ) dx

]
,

where w ∈ L∞(I;H(Ω)) ∩ L2(I;V (Ω)) is the time depen-
dent adjoint variable that satisfies the variational problem

V ∗(Ω)〈−∂tw(t),ϕ〉V (Ω) + ν(∇w(t),∇ϕ)Ω

+ γ[((ϕ · ∇)u(t),w(t))Ω − ((u(t) · ∇)w(t),ϕ)Ω]
= 2(u(t)− uD,ϕ)ω ∀ϕ ∈ V (Ω),

and the transversality condition w(T ) = 0, while z ∈ V (Ω)
solves the equation

ν(∇z,∇ϕ)Ω + γ[((ϕ · ∇)v, z)Ω − ((v · ∇)z,ϕ)Ω]
= 2(v − uD,ϕ)ω ∀ϕ ∈ V (Ω).

Note that both derivatives can be expressed with the
Zolesio-Hadamard structure, i.e., we can write

dJ (Ω)θ =
ˆ
∂Ω
∇Jn · θ dσ,

where ∇J is called the shape gradient.These shape gra-
dients will be the basis of our descent directions, i.e., by
choosing θ = −∇Jn in ∂Ω we are assured that

dJ (Ω)θ = −‖θ‖2L2(∂Ω;R2) < 0.
Numerically though, such choice of descent direction may
cause oscillations on the perturbed domains. Because of
that, we shall resort to a traction method that intends
to extend the choice of θ to the whole domain, say for
example by a Robin boundary problem, see Azegami and
Takeuchi (2006).
The variational equations are solved using Galerkin finite
element methods. The stationary Navier–Stokes equations
is solved using Newton’s method, the dynamic Navier–
Stokes equations and the time-dependent adjoint equation
are solved using a Lagrange–Galerkin method based on
characteristics, and the stationary adjoint equation is
solved by the usual Galerkin method.

2.1 Numerical Implementation

For simplicity, we choose f = 1
10 (y3,−x3), the desired

function is the solution of the Stokes equations with ν =
1/5 in a domain enclosed in a circle that satisfies x2 +
y2 = 4, and the domain ω ⊂ R2 is the set {(x, y)R2 : x2 +
y2 ≤ 1}. The shape optimization problems are then solved

with parameter values ν = γ = 1, and with the initial
velocity u = 0.
To illustrate the convergence of the solutions of the time-
dependent problems, we have Figure 1. Figure 1(A) shows
that the boundary of the solutions ∂ΩT,h becomes closer
to the boundary Ωs,h as the terminal time T gets bigger.
Figure 1(B) shows the log-log plot of the gap |JT − Js|
versus the terminal time T . In the same figure, we plotted
the plots of O(T−1) and O(T−1/2). Coincidental with
the theoretical result, for lower values of T the order of
convergence nearly follows O(T−1/2), while we observe a
convergence that is similar with O(T−1) for higher values
of T .
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Fig. 1. Illustration of how the boundary of the shape
solution of the time-dependent problem (3) converges
to the boundary of the solution of the equilibrium
problem (4) as T gets larger (A); log-log plots of
|JT,×−Js,×|, O(T−1), and O(T−1/2)(B); trend of the
Hausdorff distance between the solutions of (3) and
(4) (C).

Lastly, we quantified the convergence of the boundaries
by virtue of the Hausdorff distance. We observe in Figure
1(C) that the Hausdorff distance indeed gets smaller as
the value of x, which is such that T = 2x, increases.
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1. INTRODUCTION

Shape Memory Alloys (SMAs) are a class of smart ma-
terials which exhibit different thermo-mechanical prop-
erties than conventional metals. When SMA material is
heated, transformations in the crystal lattice structure are
induced, which generate a macroscopic change in shape
on the order of 4-8%. This effect can be exploited for the
development of novel actuators that react to an external
thermal input with a mechanical deformation (Ballew and
Seelecke (2019)). In most applications, SMA material is
shaped as a thin wire. In this way, the thermal activation
can be simply induced via an electric current, thus result-
ing in a mechatronic tendon-like actuator.

Despite their remarkable benefits such as compactness,
lightweight, and high energy density, SMA materials are
characterized by a highly nonlinear response, which is
mainly due to a load-, temperature-, and rate-dependent
hysteresis. Accurate modeling and compensation of such
hysteresis is fundamental for the development of high-
performance SMA applications. The goal of this work is
to provide an accurate and numerically efficient model,
which can be used to perform accurate simulations, model-
based design optimization, and control of complex struc-
tures driven by polycrystalline SMAs. Our approach is
based on a reformulation of the physics-based Müller-
Achenbach-Seelecke (MAS) model for polycrystalline SMA
wires (Rizzello et al. (2019)) within the hybrid dynamical
framework proposed by Goebel et al. (2012). In this way,
we are able to significantly reduce the numerical com-
plexity and computation time, without losing numerical
accuracy and physical interpretability. In future research,
the model will be used for hybrid control of SMA systems.

2. SHAPE MEMORY ALLOY MODEL

In the scientific literature, there are plenty mathemati-
cal models which describe the behavior of SMA material
(Khandelwal and Buravalla (2009)). Due to the different
approaches pursued, we can classify them in numerical and
analytical/physics-based models. The former are the most
computationally efficient ones, but are not suitable for pre-
dicting material response to change of external conditions

(e.g., load stress, external temperature, structure which
is coupled with the SMA). The latter, instead, have a
highly sophisticated and detailed description but, in turn,
are characterized by strong nonlinearities and require high
simulation time.

With the aim to obtaining fast and accurate predictions, in
this work we propose a novel physics-based model for one-
dimensional polycrystalline SMA wires. To provide mean-
ingful simulation results, the model needs to reproduce as
many physical effects as possible. A valuable baseline is
offered by the mesoscopic MAS model for polycrystalline
SMA material presented by Rizzello et al. (2019). Such
a model is based on a novel bookkeping algorithm that
reproduces the time evolution of smooth hysteresis loops,
as well as inner loops, while maintaining all physical in-
formation of the basic single-crystal MAS model (Ballew
and Seelecke (2019)). Despite those advantages, the model
is affected by slow simulation time due to strong nonlin-
earities and numerical stiffness of the resulting ODEs.

3. HYBRID DYNAMICAL MODEL

Using the work of Rizzello et al. (2019) as starting point,
in this section we summarize the theoretical reformulation
which permits to overcome the aforementioned numerical
limitations. A potential way to improve the physical model
implementation consists of eliminating the stiff dynamics
of phase transformations, and substitute it with instan-
taneous hybrid transitions. This approach is similar to
what already exploited in a previous work on single-crystal
SMA model (Mandolino et al. (2021)), which will now be
generalized to more challenging polycrystalline SMAs. The
adopted hybrid framework for the SMA model implemen-
tation is based on the hybrid theory of Goebel et al. (2012).

A generic stress-strain hysteresis of a superelastic poly-
crystalline SMA wire is shown in Fig. 1(a). The material
produces different pathways (or branches) depending on
the entity of a mechanical load applied. By observing this
behavior, we can determine three operating modes, each
one with well-defined physical interpretations:

(1) AM: Austenite to Martensite (or Loading) branch;
(2) MA: Martensite to Austenite (or Unloading) branch;
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Fig. 1. Example of a qualitative stress-strain hysteresis of
polycrystalline SMA wire (a) and the corresponding
hybrid automaton with modes and edges (b).

(3) M: Full Martensite branch.

The finite state machine which defines the transition logic
between those modes is sketched in Fig. 1(b). A hypo-
thetical operating sequence of the model is as follows. A
superelastic SMA wire starts in a full austenitic condition
(mode AM). When subject to an increasing mechani-
cal load, the amount of austenitic crystal lattice reduces
while the martensitic one increases. If the load exceeds
a certain threshold (dictated by material specifics and
external inputs), the SMA wire transforms completely into
martensite (mode M). When the material works below the
load threshold and, at the same time, the mechanical load
is decreased, the system changes gradually from martensite
to austenite (mode MA). Minor hysteresis loops, which
appear when performing partial loading and unloading, are
handled by the same AM and MA modes, by considering
a novel properly computed unloading branch, see Rizzello
et al. (2019) for details. Note that such minor hysteresis
loops are not shown in Fig. 1(a), for the ease of clarity.

The finite state machine in Fig. 1(b) can be represented
through a generic hybrid system defined as follows:

H :

{
ẋ = f(x, u) (x, u) ∈ C
x+ ∈ G(x) (x, u) ∈ D . (1)

The states x := [ε T q]
ᵀ ∈ X, X := R≥0 × R≥0 ×

{AM, MA, M}, correspond to the SMA strain, tempera-
ture, and operative mode. The inputs u := [v J TE ]

ᵀ ∈ U,
U := R × R≥0 × R≥0, represent wire speed, input power,
and environmental temperature, respectively. The output
is simply y := F ∈ Y, Y := R≥0, i.e., the SMA force. Sets
f and C describe the continuous-time subset of the system
by the respective differential equations and state con-
straints, while G and D describe the discrete-time subset
by difference equations or inclusions and jump constraints.
The state-space form of the hybrid SMA model is:

ε̇ = v l−1
0

Ṫ = [J − λAs(T − TE) + L̇
x
(i)

M

](ΩρV cV − LT )−1

F = πr20(ε− εTx(i)M )[E−1
M x

(i)
M + E−1

A (1− x(i)M )]−1

(2)

A detailed description of f ,G, C, andD, as well as variable

x
(i)
M associated to mode (i), is omitted for conciseness.

4. SIMULATION RESULTS

In this section, the behavior of the polycrystalline MAS
model from Rizzello et al. (2019) will be compared with the

Fig. 2. Hysteresis results for different internal loops at
different strain rate: 10−4s1 (left) and 10−2s1 (right)

new hybrid one, as well as with experimental stress-strain
curves. All simulations are performed in Matlab/Simulink
environment. Experimental data and model parameters of
a superelastic SMA wire are derived from Rizzello et al.
(2019). Due to its nonlinearities, the MAS model requires
a stiff solver (i.e., ode15s). On the other hand, thanks
to its simpler structure, the hybrid reformulation can be
also integrated with simpler non-stiff solver (i.e., ode45 ).
Different unloading paths are tested, corresponding to
two strain rates of 10−4 s−1 and 10−2 s−1, respectively.
Simulations results, shown in Fig. 2, demonstrate how the
two implementations are practically equivalent in terms
of numerical results. An experimental rate-dependency of
the hysteresis is also observed, which is well reproduced
by both models. The total simulation time of the hybrid
model, however, is almost 5.6 times smaller than the one
of the MAS, i.e., 36.82 s vs. 206.64 s.

5. CONCLUSION

In this paper, a novel physics-based hybrid model for
polycrystalline SMA wires is developed and tested. It takes
advantage of the hybrid modeling theory to significantly
minimize the model complexity, thus allowing to reducing
the simulation time without losing accuracy. Future re-
search will focus on using the hybrid polycrystalline model
to describe complex SMA systems, as well as on developing
hybrid control laws for hysteresis compensation.
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Abstract: 

Using the i-Tree software, this paper provides an overview of the ecosystem services of urban trees in 

Berlin. The purpose of this study is to determine the feasibility of research studies concerning the 

ecosystem services of Berlin's urban trees based on the Berlin Geoportal. The purpose of this paper is to 

show how public cadastral data can be used to assess ecosystem services provided by trees. The modeling 

of the data is done by the software i-Tree. The paper focuses on defining the requirements for data 

provision and illustrates the process of data preparation using the Berlin tree cadastre as an example. In 

addition, an approach to fill in incomplete data sets using linear regression was made. The results of the 

analysis should highlight which further information on urban trees would be necessary to improve the 

informative value of future studies and, based on this, to improve the structure of the tree population and 

to enable the continuous provision of benefits by urban trees.  

Keywords: i-Tree, urban trees, regression analysis, GIS, ecosystem services, feasibility study 

1. INTRODUCTION

Ecosystem services refer to the benefits provided by urban 

trees, meadows and parks, among others. Several studies also 

indicate that urban trees improve air quality (Manes, et al., 

2012; Soares, et al., 2011; Wang, et al., 2018).  

The objective of this work shall be to identify and assess the 

ecosystem services provided by Berlin's urban trees and 

urban tree species. This study aims to determine the 

feasibility of research studies concerning the ecosystem 

services of Berlin's urban trees based exclusively on open 

data from the Berlin Geoportal. The study does not draw on 

additional forestry knowledge and is carried out without the 

assistance of public authorities. Only freely accessible urban 

tree data is used. This paper aims to highlight what further 

information on urban trees would be necessary to improve the 

results of future studies. 

2. DATA AND METHODOLOGY

In order to get a more detailed overview of the street trees in 

Berlin, the tree data of the geoportal will be processed so that 

they can be analysed with the software i-Tree. Special 

attention will be paid to relevant parameters needed in i-Tree, 

which cannot be derived from the Geoportal database.  

2.1 Description of the data from Berlin Geoportal 

The data source for Berlin's street and plant tree inventory in 

the Geoportal is the tree cadastre of the Berlin (Geoportal 

Berlin, 2018). More than 900,000 active trees and their data 

are recorded in the Berlin tree register.  

For the further evaluation of the data in i-Tree, the trunk 

circumference is the most relevant. In total, the database was 

able to provide 559,903 values for this category. Another 

relevant value for the subsequent evaluation is the height of 

the tree. Here the database was able to output 362,793 values.  

Only 266,663 values provided information about Berlin's tree 

canopy. This means that less than half of the total tree 

population allows a statement about the tree crown.  

2.2 Definition of the data requirements in iTree 

i-Tree has been developed and configured for the USA and

its domestic tree species. Nevertheless, the tool is used in

European and Asian studies as well (Scholz, et al., 2016;

Wang, et al., 2018; Moser, et al., 2017).

The only mandatory values required for an evaluation are the

tree species and the trunk diameter. The values for size,

health and thinning of the tree crown are also recommended

by i-Tree (USDA Forest Service, 2021). However, these

values are only available for some of the trees in Berlin. i-

Tree will thus fall back on comparative values and

interpolations. Furthermore, it is recommended to specify the

tree height. This value is available for some of the trees. For
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the remaining trees, the height is estimated using the 

algorithm described in 2.3. 

2.3 Adaptation and optimisation of the data set 

The data set of the Berlin tree cadastre cannot be fed into i-

Tree without adjustments. To achieve better results, some 

incomplete data points are supplemented by estimated values. 

This method is used for the tree height. This step is taken 

because out of the total 565,363 entries in the tree cadastre, 

about 36% do not have a value for tree height.  

The following table summarises the missing entries in the 

data set necessary for our investigations. 

Table 1.  characteristics of the tree cadastre dataset 

Data set  

total 

Height 

missing 

Art 

Botanically  

absent 

Trunk  

circumference  

missing 

565.363 203.010 1.198 5.932 

 

For the used dataset, an attempt is made to determine the 

characteristic of tree height, which is missing for some trees, 

by means of the regression.  

To evaluate the quality of the regression, the coefficient of 

determination R2 was determined with the value 0.578. Thus, 

57.8% of the variability of the tree height can be described by 

the independent variables tree species and trunk 

circumference (Lange & Bender, 2007).  

i-Tree does not recognise some of the tree species from the 

tree cadastre dataset. Therefore, out of 475,856 trees, only 

361,690 are taken over by i-Tree. To reduce the size of this 

gap, the tree species not recognised by i-Tree were extracted 

and a tree of the same genus with similar average height and 

diameter values was chosen as an alternative designation. 

This heuristic allowed 34,700 additional trees to be 

recognised when imported in i-Tree. 

 

3 COMPARISON AND RESULTS 

3.1 Ecosystem services of the tree species 

In total, urban trees in Berlin sequestered 3,916 tonnes of 

carbon per year. The Littleleaf Linden stands out the most. 

Table 2 shows the 5 most important tree species of Berlin 

sorted by total number of trees in relation to carbon 

sequestration and oxygen production. Additionally, Wych 

Elm is listed as having the best values in the areas of carbon 

sequestration and oxygen production.  

Table 2: Comparison of ecosystem services of tree species 

Tree species 
Numb 

Trees 

Carbon 

bond [t] 

per 

tree 

Oxygen 

[t] 

per 

tree 

Littleleaf 
Linden 

56.678 658,79 0,0116 1.756,76 0,0310 

Norway Maple 54.422 550,30 0,0101 1.476,47 0,0271 

English Oak 28.304 342,31 0,0121 912,82 0,0323 
Horse Chestnut 17.381 280,53 0,0161 748,07 0,0430 

Bigleaf Linden 17.176 224,22 0,0131 597,93 0,0348 

Wych Elm 1.473 31,13 0,0211 83,01 0,0564 

 

The Wych Elm has a small share of 0.4 % of the total tree 

population in Berlin. If the values of carbon sequestration per 

tree of the three trees listed first is compared, the low value 

per tree is striking. Trees that are not so frequently 

represented sometimes have a higher carbon sequestration. 

 

4. CONCLUSION   

In this study, the individual ecosystem services of Berlin's 

urban trees were examined and evaluated. It was found that 

the services can only compensate for a small part of the 

resulting emissions. Nevertheless, qualitative services, such 

as shade and the associated reduction of the temperature in 

the city, as well as the beautification of the cityscape and the 

resulting improvement in the subjective quality of life, speak 

in favour of optimising and expanding the tree population in 

Berlin. The type of tree is significantly responsible for the 

quality of the ecosystem service provided by a tree. Berlin 

should therefore take tree species and their benefits into 

account when designing the future tree landscape and the 

planting of new trees. In addition, the improvement and 

detailing of the existing data of the Berlin tree cadastre 

should be fundamental for further investigations. The 

improved data basis can provide political decision-makers 

with important information to improve the structure of the 

tree population and to enable a continuous benefit 

endowment of urban trees. 
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Abstract: This work is concerned with learning the dynamics of technical systems from data
within a sparse Bayesian framework. The approach employs a basis representation of the
unknown dynamics function, similar to the sparse identification of nonlinear dynamics (SINDy)
approach, which is combined with a Bayesian procedure for parameter estimation. We propose
to use the recently introduced neuronized priors as a unified approach to enforce sparsity in a
dynamical systems context, and illustrate the method with an academic example.

Keywords: Uncertainty, dynamic systems, parameter estimation, parameter identification,
probabilistic simulation.

1. INTRODUCTION

Learning the dynamics of a system from data is receiv-
ing considerable attention at present. Here, we focus on
autonomous systems of the form

ẋ(t) = f(x(t)), x(0) = x0, (1)

where x(t) ∈ Rn, f : Rn → Rn, t ∈ (0, T ] and ẋ =
dx/dt. One particularly popular paradigm, the sparse
identification of nonlinear dynamics (SINDy) Brunton
et al. (2016a), represents the unkonwn dynamics f as a
linear combination of library basis functions as

fi(x) ≈ Θ(x)ξi, (2)

where ξi ∈ Rp, i = 1, . . . , n are the parameters to be
identified and Θ represents the library of basis functions.
For notational convenience, all parameter vectors are col-
lected in a matrix as Ξ = [ξ1 · · · ξn]. Popular choices of
basis functions are polynomials or splines, which are able
to accurately approximate large classes of functions. In
the original paper Brunton et al. (2016a), regression with
iterative thresholding was used to estimate the parameters
from data of ẋ(t). Since then, extensions in many differ-
ent directions have been proposed. Control scenarios were
addressed in Brunton et al. (2016b), whereas uncertainty
was included through a Bayesian extension in Fuentes
et al. (2021). Another Bayesian approach, also including
noisy observations of the state directly, was introduced
in Galioto and Gorodetsky (2020), which contained the
original SINDy approach as a special case. Also, there exist
deep learning based approaches, such as Goyal and Benner
(2021) to learn the model as a black box. In contrast,

? The authors acknowledge internal funding by the faculty of me-
chanical engineering at Technische Universität Braunschweig.

we aim for a white-box model for which a bases library
approach is better suited.

Despite these contributions, several challenges remain. En-
forcing sparsity in a Bayesian framework is challenging and
may require to work with complicated prior formulations.
Also, jointly handling all sources of uncertainty goes be-
yond the linear regression setting and the computational
complexity will grow quickly. Here, we report and extend
on our work pre-published in Ram et al. (2021).

2. BAYESIAN SYSTEM IDENTIFICATION

In this section we present our approach to estimate the
unknown parameters Ξ, while simultaneously accounting
for observation, process and model uncertainty. Therefore,
we apply a suitable approximation method in time, an
explicit Runge Kutta method for the sake of simplicity,
which yields

xi+1 = xi + Ψh(Θ(xi)Ξ), x0 = x0, (3)

where i = 0, . . . ,m − 1, xi ≈ x(ti) and Ψh specifies the
discrete Runge Kutta time propagator on the time grid
with uniform grid size h. Then, we introduce the stochastic
state space model

xi+1 = xi + Ψh(Θ(xi)Ξ) + ηi, (4)

yj = xj + εj , (5)

where j = 1, . . . , k indicates the observation time. Note
that the considered example employs the full state, which
is why we employ an observation of the full state in (5).
However, the method can easily be extended to cover more
general state-to-observation maps. Also, the process and
observation noise are assumed to be distributed as ηi ∼
N (0, σ2

ηI) and εj ∼ N (0, σ2
εI), respectively. This setting

is close to the one considered in Galioto and Gorodetsky
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Fig. 1. Posterior histograms of ξi and true values (red
stars).

(2020), where the joint distribution p(Ξ,X), with X
collecting all states xi into a matrix, was inferred with
a Kalman-type filter. Because we are mainly interested in
the marginal distribution

p(Ξ) =

∫
p(Ξ,X) dX, (6)

we pursue a different path and focus on updating the
parameters directly. We employ an ensemble of N states,
propagated in time according to p(xi+1|xi) and base
inference on the average Likelihood

L̂(Y|Ξ) =
1

N

N∑
i=1

k∏
j=1

1√
(2π)kσ2

ε

exp

(
−
|yj − x

(i)
j |2

2σ2
ε

)
,

(7)
which ensures robustness against process noise, see also
Conrad et al. (2017). We then update the posterior distri-
bution with Bayes’ law as

p(Ξ|Y) ∝ L̂(Y|Ξ)p(Ξ), (8)

which we sample with Markov Chain Monte Carlo meth-
ods. In addition to employing the average Likelihood,
another original contribution is the use of a generalized
formulation of sparsity priors given as

ξi = T (αi − α0)wi, (9)

where wi ∼ N (0, τw), αi ∼ N (0, 1) and T is an activation
function from neural network methods, which motivates
the name neuronized prior, see Shin and Liu (2021).
Through different choices for T we can recover various
priors, such as Lasso, Horseshoe and Spike and Slab priors.
The case of spike and slab prior is of particular interest,
because it allows to obtain zero inclusion probabilities of
individual basis functions in the library and hence, model
selection can be carried out as well.

3. NUMERICAL EXAMPLE

Here, we present an application to estimate the coefficients
of the first equation of the Lorenz system

ẋ1 = c1(x2 − x1),

ẋ2 = 28x1 − x1x3 − x2,
ẋ3 = x1x2 − 2.67x3.

(10)

First, c1 is set to a value of 10, and data yj is simulated

by propagating the initial state [x01, x
0
2, x

0
3]> = [−8, 8, 27]>

using MATLAB’s ODE23 solver. Observation noise with
σε = 0.01 is added to generate the data. A total simulation
time of 1.5 units, with h = 10−4 is considered.

For the above application, a basis library Θ = [x1, x2,
x3, x1x2, x1x3, x2x3] is employed, and corresponding

coefficients ξ1, ξ2, . . . , ξ6 are to be estimated. The standard
deviation of the process noise ση is calibrated with an
empirical Bayes approach, as outlined in Conrad et al.
(2017), which leads to ση = 256 in the current case.

To obtain the posterior given by (8), an Affine Invariant
Ensemble MCMC sampler (AIES) is employed. To facili-
tate straightforward model selection, the ReLu activation
function T (αi − α0) = max(0, αi − α0) is chosen. With
the help of a grid search, the neuronised prior’s hyper-
parameters α0 and τw are assigned values -0.25 and 0.1,
respectively. A burn-in of 50% is considered and 75% of
the AIES walkers are discarded as bad chains.

The resulting posterior histograms for the first two coeffi-
cients are plotted in Figure 1. It can be seen that the poste-
riors for both the coefficients are centered around their true
values denoted by red stars. Also, the resulting posteriors
for the coefficients ξ3, ξ4, . . . , ξ6 yield P (ξi = 0) > 0.5.
Hence, a median model selection would remove those ξi
for which P (ξi = 0) > 0.5 and successfully recover the
original Lorenz system. The histograms for the coefficients
ξ3, ξ4, . . . , ξ6 haven’t been presented here as they resemble
concentrated spikes at zero, with negligible spread.

We shall investigate the performance of the method with
different, more complex, examples in the future.
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1. INTRODUCTION

Cardiac arrhythmias arise from an abnormality in the
rhythm of the human heart. Among them, ventricular
tachycardia (VT), which manifests with a fast heart rate,
is one of the most life threatening rhythm disorders. VT
may be classified as hemodynamically stable or unstable,
depending on the capability of the heart to effectively
pump blood in the circulatory system. In the former
case antiarrhythmic drugs are generally employed, while
in the latter case cardioversion is needed. According to
the specific pathogenesis, the stability of the VT remains
the same or changes over time. Moreover, it may also
degenerate towards ventricular fibrillation (VF), a life-
threatening condition in which the ventricular activity is
fully disorganized and chaotic, leading to heart failure.

In the clinical framework, these pathological scenarios can
be hardly ever fully investigated and predicted for all
patients. For this reason, biophysically detailed compu-
tational heart models could be used to provide a deeper
understanding of the hemodynamic response to VT and
to characterize the electromechanical substrate leading to
dangerous arrhythmias.

Electrophysiological simulations are well-established for
scar-related VT identification and treatment on human
ventricles (Arevalo et al. (2016); Prakosa et al. (2018)).
On the contrary, patient-specific electromechanical models
coupled with closed-loop cardiovascular circulation have
been just recently used to enhance our knowledge on VT
(Salvador et al. (2021)). Indeed, the physiological processes
that couple mechanical and electrical activity of the human
heart, known as mechano-electric feedbacks (MEFs), are
relevant and not fully elucidated (Kohl et al. (2013);
Colli Franzone et al. (2017); Keldermann et al. (2010)).
Moreover, the identification of the hemodynamic nature
of the VT has significant clinical implications.

In this study we analyze the impact of different modeling
choices for the left ventricle (LV) myocardial deforma-
tion and the recruitment of nonselective stretch-activated
channels (SACs) by combining electrophysiology, mechan-
ics and hemodynamics in several numerical simulations.
Furthermore, we also show that our computational model
reproduces both hemodynamically stable and hemody-
namically unstable VT.

Fig. 1. Zygote LV with an idealized distribution of scars,
grey zones and non-remodeled regions over the my-
ocardium.

2. MATHEMATICAL MODELS AND METHODS

We consider the LV processed from the Zygote 3D heart
model endowed with a fiber architecture generated by
means of the Bayer-Blake-Plank-Trayanova algorithm and
an idealized distribution of ischemic regions (Fig. 1). For
cardiac electrophysiology, we employ the monodomain
equation coupled with the ten Tusscher-Panfilov ionic
model. In particular, we consider the monodomain equa-
tion with several degrees of complexity in MEFs math-
ematical modeling to assess similarities and differences
in the outcomes of the numerical simulations during VT.
We use a biophysically detailed and anatomically accurate
active stress model to describe the active force generation
mechanisms. The passive mechanical behavior of the my-
ocardium is modeled through the Guccione constitutive
law. We consider the interaction with the pericardium
by means of spring-damper boundary conditions at the
epicardium of the LV, while we prescribe energy-consistent
boundary conditions at the base of the LV to model the
interaction with the part of the heart beyond the artificial
ventricular base. Regarding blood circulation, we rely on
a 0D closed-loop model, consisting of a compartmental
description of the cardiac chambers, systemic and pul-
monary, arterial and venous circulatory networks, based
on an electrical analogy. The different compartments are
modeled as RLC (resistance, inductance, capacitance) cir-
cuits, while cardiac valves are described as diodes (Regaz-
zoni et al. (2022)).
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Fig. 2. Coupled effects of electrophysiology, mechanics
and hemodynamics for a numerical simulation with
geometric MEFs and SACs. The extra stimuli in the
upper right part of the LV, which is driven by SACs,
activate the LV electrophysiologically and mechani-
cally. This has a direct impact on both pressure and
volume transients, which in turn have an effect on the
electromechanical behavior of the LV.

We adopt a segregated-intergrid-staggered scheme to nu-
merically discretize this 3D-0D coupled problem (Regaz-
zoni et al. (2022)). Indeed, the core models are solved
sequentially by employing different space and time reso-
lutions according to the specific requirements of electro-
physiology, activation and mechanics.

3. DISCUSSION

We studied the effects of geometric and physiological
MEFs on a realistic LV geometry endowed with an ideal-
ized distribution of infarct and peri-infarct zones. We per-
formed numerical simulations of cardiac electromechanics
coupled with closed-loop cardiovascular circulation under
VT (Fig. 2).

First, we saw that if a VT is triggered by a certain
stimulation protocol and by neglecting all MEFs, the
very same pacing protocol induces a VT for all possible
combinations of MEFs that we considered. Moreover, our
electromechanical framework allows for the hemodynamic
classification of the VT, which can be either stable or
unstable, and permits to capture mechanically relevant
indications under VT, such as the incomplete relaxation
of sarcomeres.

With respect to electrophysiological simulations, we ob-
served several differences on the morphology of the VT
by combining electrophysiology, activation, mechanics and
hemodynamics. In particular, geometric MEFs do not af-
fect wave stability and may alter the VT basis cycle length,
along with its exit site. On the other hand, the recruitment
of SACs may generate extra stimuli, which may change
wave stability. These extra stimuli are driven by myocar-
dial contraction and are induced by changes in the action
potential duration or its resting value. We conclude that
both geometric and physiological MEFs define important
contributions in electromechanical models, especially when
numerical simulations under arrhythmia are carried out.
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1. INTRODUCTION

Musculoskeletal simulations are widely used to increase our 

insight in healthy and pathological movements (Kainz et al., 

2019; Buehler et al., 2021). Typically, a generic 

musculoskeletal model is scaled to a participant and 

afterwards employed to calculate joint angles and estimate 

musculoskeletal loadings (Delp et al., 2007). This approach, 

however, neglects subject-specific musculoskeletal geometry 

(Kainz, Wesseling and Jonkers, 2021).  

At the femur the neck-shaft angle (NSA) and femoral 

anteversion angle (AVA) are the most important anatomical 

features (Bobroff et al., 1999). Recently, two bone-

deformation tools have been developed which enable to 

modify the anatomical features of the femur (Modenese, 

Barzan and Carty, 2021; Veerkamp et al., 2021). Modifying 

the NSA and AVA affect hip joint contact forces (Kainz et 

al., 2020). Furthermore, personalizing the AVA has been 

shown to increase the accuracy of hip joint contact force 

calculations (Modenese, Barzan and Carty, 2021). 

The impact of personalized femoral geometry on muscle 

activations and forces has not been assessed yet and therefore 

was the aim of the current study. We hypothesized that 

modifying the femoral geometry will alter muscle activations 

and forces. Furthermore, we assumed that a personalized 

femoral geometry would improve the agreement between the 

muscle activations obtained from the simulations and the 

experimentally measured electromyography (EMG) signals.  

2. METHODS

We collected and analysed data of one typically developing 

boy (age: 8 years; height: 137 cm; weight: 40 kg). Three-

dimensional motion capture data (10 cameras, Vicon Motion 

Systems, Oxford, UK and three force plates, Kistler 

Instruments AG, Switzerland) and EMG data of lower limb 

muscles (16-channel, menios GmbH, Ratingen, Germany) 

were collected during one static trial and several walking 

trials. Additionally, we collected magnetic resonance images 

(Siemens, Magnetom Sola, 1,5T) of both femurs using a T1-

weighted 3D gradient echo sequence with a resolution of 0.7 

x 0.7 x 0.7 mm. 

Magnetic resonance images (MRI) of each femur were 

segmented using 3D Slicer (slicer.org) and used to calculate 

the subject-specific NSA and AVA based on a previously 

developed Matlab script (Kainz et al., 2020). 

For the musculoskeletal simulations, we first used the torsion 

tool (Veerkamp et al., 2021) to create the following nine 

models: 

• Ref: Model based on the NSA and AVA obtained

from the MRI images

• NSA-20,-10,+10,+20: Ref models with altered NSA

from -20 to +20 degrees

• AVA-20,-10,+10,+20: Ref models with altered

AVA from -20 to +20 degrees

Afterwards, we scaled each model to the anthropometry of 

our participant based on the location of surface markers and 

estimated joint centres (Kainz et al., 2017). 

Joint kinematics, joint kinetics, muscle activations, muscle 

forces and joint contact forces were calculated for each model 

using OpenSim 4.1 (Delp et al., 2007). Muscle activations 

and forces were estimated using static optimization, while 

minimizing the sum of squared muscle activations.  

We compared muscle activations and forces of the 

gastrocnemius medialis, soleus, rectus femoris and gluteus 

medius muscles between the different models. Furthermore, 

we compared the EMG data with the activations from the 

simulations and quantified how much hip, knee and ankle 

joint contact forces differ between models. 

Fig. 1. EMG data and muscle activations from models with 

altered NSA. 

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

ARGESIM Report 17 (ISBN 978-3-901608-95-7), p 15-16, DOI: 10.11128/arep.17.a17042 15



 

 

     

 

3. RESULTS 

Altering the NSA and AVA had an impact on the activations 

and forces of all our analysed muscles (Fig. 1 and 2). 

Activations from our simulations showed a reasonable 

agreement with the EMG data (Fig. 1). Both, altering the 

NSA and AVA had a big impact on hip and knee joint 

contact forces and a minor impact on ankle joint contact 

forces (Fig. 3). The AVA had a larger impact on joint contact 

forces compared to the NSA. Due to the page limit, only 

figures for the altered NSA are shown in this abstract. 

 
Fig. 2. Muscle forces from models with altered NSA. 

 

 

Fig. 3. Joint contact forces from models with altered NSA. 

4. DISCUSSION 

In agreement with our hypothesis, we showed that altering 

the femoral geometry affects muscle activations and forces 

from all analysed muscles. Although modifying the NSA and 

AVA did not change the moment arms of the gastrocnemius 

and soleus muscles, it had an impact on these muscles due to 

the global optimization used to estimate muscle forces. This 

also explains why altering the femoral geometry influences 

the knee and ankle joint contact forces, additionally to the hip 

joint contact forces. 

We assumed that the personalized geometry will improve the 

agreement between EMG and muscle activation from the 

simulations. From our primary results based on one 

participant (Fig. 1), we cannot confirm this assumption. 

Several factors influence the estimation of muscle forces 

additionally to the bony geometry. Our models included 

generic muscle properties (e.g. maximum isometric muscle 

forces), which might not present the muscles of our 

participant and influences our results (Kainz et al., 2018). 

Furthermore, different optimization approaches will likely 

lead to a different distribution of muscle forces (Wesseling et 

al., 2015).  

In conclusion, this is the first study, which showed that the 

femoral geometry affects muscle and joint contact forces at 

all joints. More comprehensive studies are needed to evaluate 

if the personalized femoral geometry can improve the 

accuracy of muscle force calculations in musculoskeletal 

simulations.  
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Abstract:
Green roofs are a sustainable solution to manage water runoff from rain events in urban areas.
Modeling hydrological phenomena of green roofs over long period is challenging because of the
difficulties to both characterize the soil parameters and to take into account the dynamics of the
vegetation and the meteorological variables. The water retention capacity is represented by the
Van Genuchten - Mualem model implemented in Hydrus-1D©. For the calibration of the model,
global sensitivity analysis is exploited to quantify the effects of parameter uncertainties on the
water retention capacity. The results of this study highlight the most influential parameters on
the water retention capacity and lead to an efficient reduction of the parameter uncertainties.

Keywords: Calibration, global sensitivity analysis, green roof, Van Genuchten - Mualem model

1. INTRODUCTION

In the last decade, soil imperviousness has been one of
the main urban issues in the Northeast of France. In case
of strong rain events, runoff can lead to the discharge
of high volume of water and can cause water system
saturation. Among all urban-water regulation systems,
Green Roofs (GR) can be used to store and delay the
release of rainwater to sewers [Li and Badcock Jr (2014)].
GR are also considered as a sustainable solution that offers
benefits such as building insulation, urban heat island
cooling during summer and air pollution control.

2. GREEN ROOF HYDROLOGICAL MODELLING

The hydrological performances of GR are directly linked
to the outflow of a GR which is mainly related to the water
content inside the layers. In order to investigate these
performances, the water content needs to be measured and
simulated.
Real data have been collected on an in-situ experimental
GR installed in Tomblaine, North-East of France. A period
of one year has been chosen from January to December
2020 which represents different hydrological phenomena
shown in black in Figure 2.
Few models exist to describe the hydrological behavior of
soil and can be adapted for GR characteristics such as
soil parameters of the different layers, dimension, type of
vegetation, etc. In this study, the dynamic of the water
content is described by two elements. The first element
describes the hydrological infiltration throughout unsatu-
rated porous media and depends on soil parameters. The
second element represents the water extracted from the
soil due to the vegetation and the weather conditions.
All these models and equations are implemented in
Hydrus-1D© software to simulate hydrological behav-

ior [Simunek et al. (2008)]. This software allows the set up
of the GR structure, boundary conditions, meteorological
data, soil and vegetation parameters in order to reproduce
the GR real configuration and can be used as a gray box
model with:

• 1 input: rainfall;
• 1 output: Volumetric Water Content VWC;
• 6 soil parameters: θs, θr, n, Ks, α and l;
• 5 meteorological variables;
• 4 vegetation parameters: crop height CropH, leaf

index area LAI, Albedo and root depth RootD.

The aim of this study is to improve the calibration of
this model to get closer to the behavior of the real GR.
The challenge is that some of the model parameters,
such as the soil or vegetation parameters, are complex
to determine as they are difficult to measure accurately
through experiments. All the parameter uncertainties are
propagated through the simulation of water content and
can be analysed to help the calibration. Methods of Global
Sensitivity Analysis (GSA) can be applied to quantify the
parameter uncertainty impact on the model output. These
methods are described in [Hégo et al. (2021)] and will not
be detailed here.
In this study, the effects of vegetation and soil parameters
are simultaneously analysed in order to provide informa-
tion to calibrate this new configuration of the GR model.
The uncertainties of the parameters θs, α, n, CropH, LAI
and RootD will be analysed. The other parameters are not
considered uncertain.

3. MODEL CALIBRATION

Global sensitivity analysis allows to quantify parameter
influence on the output model. The least influential param-
eters are set to their nominal values. This allows to reduce
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the number of parameters to estimate. The study can then
be focused on the most influential parameters. The idea
is to iteratively reduce the initial interval of variations
of the most influential parameters, in order to converge
to the optimal value. For this purpose, the normalized
root mean square deviation between the simulated and
measured output is used as objective function to minimize.

The proposed calibration approach can be summarized
with these steps:

1. Application of GSA with a large uncertainty interval
defined by domain experts;

2. Computation of the error between measured data
and the simulated model output generated during the
GSA;

3. Reduction of the interval according GSA results and
error analysis;

4. Exploration of parameter combinations to find the
optimal one.

GSA approach allows to obtain sensitivity index dynamics
over time and to point out influence evolution. First-order
Si and total sensitivity STi

indices are represented at the
top of Figure 1. Si represents the influence of only one
parameter and STi

represents the influence of a parameter
and all its interaction. It is worth noting that first-order
and total indices are not equal for the parameters α, n and
LAI. Higher-order indices are non-zero that means there
is influence of interaction between parameters. Sensitivity
indices of these three parameter interactions (second-order
Si,q) are represented at the bottom of Figure 1.

To calibrate the influential parameters α, n and LAI,
an objective function is defined. The normalized root
mean square deviation (nRMSD) is defined as the quality
criteria.

nRMSD =

√(∑T
t=1(ysim(t)− yobs(t))2

)
/T

ymax
obs − ymin

obs

where ysim and yobs denote respectively the simulated and
observed output and t = 1, ..., T .
The objective is to find the parameter combinations which
minimize nRMSD during periods of interest. These pe-
riods of interest are defined following sensitivity index
dynamics and correspond to wet period (e.g. 0 to 2000 h),
drying period (e.g. 3560 to 4045 h) and when it rains dur-
ing drying periods (e.g. 2800 h). The nRMSD is computed
for each period and each model evaluation (generated for
GSA). The optimal parameter combination is presented in
red on Figure 2. The absolute error between the simulated
and measured VWC is plotted at the bottom of the figure.

4. DISCUSSIONS AND PERSPECTIVES

In this paper, a calibration approach based on GSA is
applied to a GR model in order to reproduce a real con-
figuration. GSA highlights the influence of the parameter
uncertainties over time on the model output (Figure 1).
The uncertainty interval of the model parameter have been
reduced and nominal values have been proposed to repro-
duce the specific green roof configuration. The simulated
data for nominal values are close to the observed data,
however some errors are persistent (Figure 2). These dif-
ferences can be caused by several reasons. For instance, the

Fig. 1. Sensitivity indices applied to quantify parameter
effects on VWC. At the top, total index with solid
line and first-order index with dashed line and at the
bottom, second-order index.
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Fig. 2. Comparison of the simulated (red) and measured
(black) VWC, absolute error (orange) between the
simulated and measured VWC and rainfall (blue).

assumption of constant vegetation parameters could have
impacted the simulated soil drying. The time-variations of
vegetation parameters can be investigated but raise diffi-
culties for sample generation. Moreover, these differences
can also highlight the limits of the models and Hydrus-
1D©. All green roof phenomena may not be exactly re-
producible by simulation.
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Abstract: The quality of molecular dynamics (MD) simulations critically depends on the
employed potential energy model. Accurate uncertainty quantification (UQ) of these models
could increase trust in MD simulation predictions and promote progress in the field of active
learning of neural network (NN) potentials. Bayesian methods promise reliable uncertainty
estimates, but the high computational cost of training via classical Markov Chain Monte Carlo
(MCMC) schemes has prevented their application to deep NN potentials. In this work, we
propose stochastic gradient MCMC methods as a computationally efficient option for Bayesian
UQ of MD potentials. The stochastic gradient Langevin dynamics method yields promising
results for a tabulated coarse-grained water model and could thus be a feasible approach for
NN potentials. Additionally, we illustrate the inherent limit of Bayesian UQ imposed by the
functional form of the employed model.

Keywords: Bayesian inference, Uncertainty Quantification, Molecular dynamics

1. INTRODUCTION

Molecular dynamics (MD) simulations are the computa-
tional backbone of fields such as soft-matter physics and
material science. The quality of MD simulations criti-
cally depends on the employed potential energy model
defining particle interactions. Potentials are parametrized
to match data from experiments (Thaler and Zavadlav
(2021)) or high fidelity simulations. Given that experimen-
tal data and high fidelity simulations are expensive and
only sparsely available, potentials are regularly applied
outside the training domain. Hence, uncertainty quantifi-
cation (UQ) of MD simulations is important to assess the
trustworthiness of predictions (Zavadlav et al. (2019)).
An intriguing application of UQ in MD is active learning
(Zhang et al. (2019)) of neural network (NN) potentials
(Behler and Parrinello (2007)) from density functional
theory (DFT) data. Active learning promises to minimize
the number of expensive DFT simulations by quantifying
the uncertainty of input states and iteratively augmenting
the training data set only with states for which the NN
potential is most uncertain. However, the efficiency of
active learning hinges on the quality of UQ estimates. The
common approach to UQ using NN ensembles (Hansen
and Salamon (1990)) was found to be only marginally
more informative than random selection of states (Kahle
and Zipoli (2021)). While Bayesian NNs appear to yield
more reliable uncertainty estimates, the high computa-
tional training cost of classical Markov Chain Monte Carlo
(MCMC) schemes have prevented the application to real-
world problems so far (Kahle and Zipoli (2021)).
In this work, we propose stochastic gradient MCMC meth-

ods (SG-MCMC) as a computationally efficient option for
Bayesian UQ of MD potentials. Results for a tabulated
coarse-grained (CG) model of water showcase reasonable
uncertainty predictions.

2. METHODS

Bayesian UQ is centered around Bayes’ theorem. The
aim is to compute the posterior distribution p(θ|D,M)
of model parameters θ for a given data set D and model
M. MCMC is the gold-standard for approximating the
posterior, which requires at least one evaluation of the like-
lihood p(D|θ,M) and the prior p(θ|M) for each update
of θ. As computing the likelihood requires evaluation of
the model for each data point in D, training on large data
sets with expensive models (e.g. NN potentials) quickly
becomes infeasible. By contrast, SG-MCMC schemes eval-
uate the likelihood p(θ|D̃,M) (and its gradient) only on

a mini-batch D̃ ⊂ D, allowing many updates of θ per
pass over D - analogous to stochastic gradient descent in
maximum likelihood estimation. In the simplest case of the
stochastic gradient Langevin dynamics method (Welling
and Teh (2011)), learning rates λn at step n are required to
converge to 0 such that generated samples of θ are asymp-
totically unbiased, e.g. via a polynomial step size decay
λn = a(n+1)−γ , with decay rate γ and initial learning rate
a . Hence, the increased computational efficiency comes at
the cost of generating a biased estimate of p(θ|D,M) for
a finite number of update steps.
To assess the quality of uncertainty estimates from SG-
MCMC schemes, we learn a single-site CG water model
parametrized by the control points of a cubic spline via
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Fig. 1. Mean and credible interval of the predicted radial
(RDF, a) and angular distribution function (ADF, b),
together with the atomistic ground truth.

force-matching (Noid et al. (2008)). The ground-truth data
consisting of 105 de-correlated states are obtained from
a simulation of 905 water molecules in a cubic box of
side length 3 nm with the atomistic SPC/FW (Wu et al.
(2006)) water model at a temperature T = 300 K. We
choose a uniform prior and assume a Gaussian likelihood
with identity covariance matrix, where the variance σ2

is treated as a learnable model parameter. The spline
control points are initialized to the corresponding values
of the potential of mean force (Reith et al. (2003)) and
σ to 200 kJ / (mol nm). We approximate the posterior
distribution via the stochastic gradient Langevin dynamics
method (Welling and Teh (2011)) with the polynomial
learning rate schedule (a = 10−8, γ = 0.33). We train
for 5 epochs with a mini-batch size of 5 and generate 1000
MCMC samples after the learning rate is reduced below
α = 6 · 10−10.

3. RESULTS

We evaluate the quality of the learned potential based
on predicted observables by reference to the atomistic
ground-truth. The mean predicted radial distribution
function (RDF) deviates from the atomistic reference (Fig.
1 a), which is in line with tabulated 2-body potentials
parametrized via maximum likelihood estimation (Scherer
and Andrienko (2018)). The deviation results from the fact
that the 2-body tabulated potential is a weak approxima-
tion to the distinct 3-body properties of water (Scherer and
Andrienko (2018)). Importantly, the credible interval con-
tains most of the ground truth RDF such that the extent
of the deviation can be anticipated by practitioners. By
contrast, the mean predicted angular distribution function
(ADF) fails to reproduce the atomistic reference, but the
narrow credible interval suggests high confidence in the

incorrect prediction (Fig. 1 b).
Note that this UQ failure is not caused by a sub-optimal
approximation of the true p(θ|D,M) from the SG-MCMC
scheme, but rather stems from the (implicit) condition-
ing of Bayes’ theorem on the model M: By definition,
p(θ|D,M) describes the posterior probability of all possi-
ble parameters θ ofM. Effects that cannot be captured by
any θ cannot be represented in the uncertainty prediction.
In this particular example, the ADF is predominantly
determined by 3-body forces which cannot be represented
by θ in a 2-body potential. Hence, interpretation of results
from Bayesian UQ critically depends on the employedM.

4. CONCLUSION

Our results suggest that SG-MCMC methods could pro-
mote the application of UQ in MD simulations by reducing
the computational burden of full-batch MCMC methods.
However, further studies including investigation of the
merits of more advanced SG-MCMC schemes, the number
of necessary MCMC samples for reliable UQ results, as
well as applying Bayesian UQ to highly expressive models
such as NN potentials are required before obtained uncer-
tainty estimates can be trusted in practice.
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Introduction: This paper shows that a tree-like network
with damage can be modeled as the product of a fractional-
order (FO) nominal plant and a FO multiplicative distur-
bance, which is well structured and completely character-
ized by the damage amount at each damaged component.
Such way of modeling brings insight about that damaged
network’s behavior and helps us design robust controllers
under uncertain damages and identify the damage.

We study the network in Fig. 1, motivated by a viscoelastic
model from Heymans and Bauwens (1994) and also studied
in Goodwine (2014); Leyden (2018); Mayes (2012). Con-
sidering only integer-order calculus, that system can only
be modeled by an infinite continued fraction. Existing lit-
erature, e.g., Goodwine (2014), shows that, if FO calculus
is allowed, then the undamaged version of that system is
exactly half order which has a concise representation. This
paper shows that for such a damaged network, its transfer
function can still be written in a structured way.

f
x1,1

k1,1

b1,1

x2,1

x2,2

k2,1

b2,1

k2,2

b2,2

x3,1

x3,2

x3,3

x3,4

k3,1

b3,1

x4,1

x4,2

· · ·

· · ·
· · ·

· · ·

· · ·
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......

f

Fig. 1. The tree model.

It can be shown that the transfer function G̃(s) from the
input force, f , to the distance between x1,1 and xlast of
such model satisfies the recurrence formula given by

G̃(s) =
1

1

1

k̃
+ G̃U (s)

+
1

1

b̃s
+ G̃L(s)

. (1)

Moving one generation deeper, the transfer function from
the input force to the distance between x2,1 and xlast is

⋆ The partial support of the US NSF Award CMMI 1826079 is
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f
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G̃L(s)

xlast

f

Fig. 2. An illustration about recurrence formula, Eq. (1).

G̃U (s); similarly, G̃L(s) is that between x2,2 and xlast.
The spring constant connecting x1,1 to x2,1 is denoted by

k̃, and b̃ denotes the damper constant connecting x1,1 to
x2,2. Fig. 2 illustrates the meaning of above elements.

We call the tree model undamaged when all spring and
all damper constants are same, that is kg,n = k and
bg,n = b for all g = 1, 2, . . . and n = 1, 2, . . . , 2g−1. For each
damage case, we assume that there is either only one spring
or only one damper having a constant different from its
corresponding undamaged value. We further assume that
the damaged spring (damper) constant kd (bd) is defined
by a factor of ϵ, i.e., kd = ϵk or bd = ϵb, where ϵ is called
the damage amount and 0 < ϵ < 1.

As shown in Goodwine (2014) and as is well-known, for the
undamaged case, the transfer function from the input force
f(t) to the relative distance between x1,1(t) and xlast(t) for
the undamaged tree is given by

G∞(s) =
X1,1(s)−Xlast(s)

F (s)
=

1√
kbs

. (2)

Eq. (1) can be viewed as a mapping from (G̃U (s), G̃L(s))

to G̃(s), which builds up the tree generation by generation
regardless of whether the model is undamaged or damaged.

The existing literature outlined above shows that the
undamaged tree’s transfer function G∞(s) in Eq. (2)

can be obtained by replacing (G̃(s), G̃U (s), G̃L(s), k̃, b̃)
with (G∞(s), G∞(s), G∞(s), k, b) in Eq. (1), i.e., the
undamaged transfer function between x1,1 and xlast is the
same as the one between x2,1 and xlast, and also the one
between x2,2 and xlast.

In a similar manner and using self-similarity, every damage
case can also be computed by using Eq. (1) repeatedly.
However, repeatedly applying the above process will result
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Fig. 3. Half-order ZP locus when the damage occurs at the
first generation and ϵ ∈ [0, 1]. When ϵ = 1, all half-

order ZP are at −
√

k/b. (For this plot, k = 2 and
b = 1.) Left: l = k1,1. Right: l = b1,1.

in a very complicated transfer function. In fact, both

transfer functions G̃U (s) and G̃L(s) have the same formula
as Eq. (1) due to the self-similarity. Therefore, with
integer-order calculus, the transfer function for the entire
tree is a complicated infinite continued fraction.

Main Result: The main result of this work is that the
damaged tree’s transfer function can be written as

Gl(s) = G∞(s)∆l(s),

where the disturbance ∆l(s) is well structured and can
be determined completely by the damage amount ϵ of a
damaged component l. Those two features are the key
points which make such way of modeling useful in different
applications. See Ni (2021) for a complete analysis.

Claim: For each damage case outlined above, its damaged
transfer function Gl(s) from the input force to the relative
distance between x1,1 and xlast can be modeled as a FO
nominal plant with a FO multiplicative disturbance,

Gl(s) = G∞(s)∆l(s), (3)

where G∞(s) is the undamaged transfer function defined
by Eq. (2). Moreover, ∆(s) is structured as

∆l(s) =
N(s)

D(s)
=

∏2g
j=1(s

1
2 + zj)∏2g

j=1(s
1
2 + pj)

(4)

where g denotes the g-th generation at which the damaged
component l locates, and −zj and −pj are called as half-

order zeros and poles. In addition, z1 is fixed at
√
k/b

regardless of the damage location or amount ϵ.

Claim: ∆l(s) Depends on ϵ only at each l.

When the damage happens at the first generation, the
relation between ∆l(s) and ϵ can be expressed in closed-
form. Fig. 3 shows the locus for those half-order zeros and
poles when the damage happens at the first generation,
and when the damage amount ϵ varies from 1 (no damage)
to 0 (complete damage).

For all the other damage locations deeper into the network
than the first generation, the relation between ∆l(s) and
ϵ cannot be easily expressed in a closed form. However,we
can still obtain those locus by using a nonlinear equation
solver. Fig. 4 shows the locus for those half-order zeros and
poles, which are built up numerically, when the damage
happens at the second generation with damage ϵ ∈ [0, 1].

Since it is possible to get this kind of locus for each
damaged component, ∆l(s) clearly has only one degree
of freedom, namely ϵ, at each damaged component l. That
is, as long as either one pole or one zero (other than −z1
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Fig. 4. Half-order ZP locus when the damage occurs at the
second generation, and ϵ ∈ [1, 0]. When ϵ = 1, all half-

order zeros and poles are at −
√
k/b. (For this plot,

k = 2 and b = 1.) Upper left: l = k2,1. Upper right:
l = k2,2. Lower left: l = b2,1. Lower right: l = b2,2.

which always stays at −
√
k/b) is known, all the other

zeros and poles can be determined through ϵ, thus ∆l(s)
is determined thereby.

Utility of These Results: Because the disturbance
∆l(s) is completely determined by the damage amount ϵ
of a damaged component l, we can use the above result
to identify a damage tree network’s damage amount ϵ.
Specifically, we can formulate that damage identification
problem as an optimization problem. For instance, when
a damage occurs at k2,1, given a frequency domain mea-
surement ∆k2,1

(s), we can identify its damage amount ϵ
by solving the following optimization problem,

min
ϵ

∑ ∥∆̃k2,1(s)−∆k2,1(s)∥
∥∆k2,1

(s)∥

where ∆̃k2,1
(s) =

∏4
j=1(s

1
2 + zj)∏4

j=1(s
1
2 + pj)

and zj = zj(ϵ), pj = pj(ϵ) for all j = 1, . . . , 4. The
functions zj(ϵ) and pj(ϵ) are already known by fitting the
ZP locus as shown in Fig. 4. We have successfully identified
the damage amount ϵ by using fmincon() to solve the
above optimization problem.

Applications:

(1) Providing insights about how damage affects the
network.

(2) Robust control.
(3) Identification of samage for a damaged network.
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1. INTRODUCTION

In industrialized countries, cardiovascular diseases are the
primary cause of mortality and morbidity. Due to the
complex multiphysics nature of cardiovascular function,
the optimal treatment remains challenging. In the recent
years, personalized computer models of electrophysiology
(EP) became an important tool to predict intervention
outcomes or to improve therapy stratification and plan-
ning. Problems of cardiac electromechanics (EM) are even
more challenging. Beside the deformation of the heart,
also the bi-directional interaction with the systemic and
pulmonary vascular system plays a major role in EM simu-
lations. A fully coupled fluid-structure interaction problem
would yield the most detailed insights but is computation-
ally expensive. Simpler lumped models of the circulatory
system are able to predict physiological behaviors at a
much lower computational cost. In this work, we discuss
the coupling of a 3D bi-ventricular model with the closed-
loop 0D CircAdapt model and we show its ability to pre-
dict physiological behaviors under experimental standard
protocols.

2. METHODS

Fig. 1. (A) Bi-ventricular model setup and (B) activation
sequence induced by five fasciles used for EP.

2.1 3D Electromechanical PDE Model

The tissue is modeled as a nearly incompressible, hypere-
lastic, orthotropic material with a nonlinear stress-strain
relation using Cauchy’s equation of motion

ρ0ü−∇ · FS(u) = 0 in Ω0 × (0, T ) (1)

? The project received funding fom the European Union’s Horizon
2020 research and innovation programme and the Austrian Science
Fund (FWF).

for a final time T > 0, where F denotes the deformation
gradient, S is the second Piola-Kirchhoff stress tensor, ρ0
is the tissue density and Ω0 denotes the reference configu-
ration. Normal stress boundary conditions are applied at
the endocardium

FS(u)N = −p J F−>N on Γ0,endo × (0, T ) (2)

with pressure p, outer normal vector N of the reference
enodicardial surface Γ0,endo and the Jacobian determinant
J = detF. Appropriate spring type boundary conditions
are imposed at the remaining boundary of the geometry,
see Fig. 1(A).

Passive and active tissue properties are simulated by
decomposing the total stress S into a passive Sp and active
Sa part, i.e. S = Sp + Sa. The passive stress is modeled
by the constitutive equation

Sp = 2
∂Ψ(C)

∂C

with the right Cauchy-Green strain tensor C = F>F and
the strain-energy function Ψ which is given by

Ψ(C) =
κ

2

(
log J

)2
+
a

2

(
exp(Q)− 1

)
. (3)

The first term in (3) penalizes local volume changes scaled
by the bulk modulus κ � 0 kPa and the second term
models a Fung-type material with a scaling factor a > 0
and Q according to Usyk et al. (2000).

Active stress Sa is assumed to be orthotropic with full
contractile force along myocyte fiber direction f0 plus 40 %
contractile force in sheet direction s0, i.e.

Sa = Sa(f0 ·Cf0)−1f0 ⊗ f0 + 0.4Sa(s0 ·Cs0)−1s0 ⊗ s0

with a simplified phenomenological length dependent ac-
tive stress transient Sa, see Niederer et al. (2011).

The EP, which serves as a trigger for the active stress
generation, was modeled by a recently developed reaction-
Eikonal approach which combines a standard reaction-
diffusion model based on the monodomain equation with
an Eikonal model, see Neic et al. (2017).

2.2 0D CircAdapt ODE Model

The CircAdapt model, see Arts et al. (2005), is a lumped
0D model enabling real-time simulations of the entire
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cardiovascular system by concatenating modules (tubes,
valves, chambers, . . .) yielding a system of 26 ordinary
differential equations. A detailed description of the model
and the underlying equations can be found in Augustin
et al. (2021).

2.3 0D-3D Coupling and Numerical Framework

To couple the ODE with the PDE model, the 0D cavities
in the CircAdapt model are replaced by the 3D models
discussed in Sec. 2.1. Furthermore, the pressure p within
the cavities is introduced as an additional unknown and
a supplementary equation enforcing the equality of the
cavity volume is added in order to close the formulation.
The resulting nonlinear saddle point problem reads

K(u, t) +G(p, t) = 0
V PDE(u, t)− V ODE(p, t) = 0

(4)

where V PDE is the cavity volume of the PDE model, V ODE

is the cavity volume predicted by the CircAdapt model and
K and G are operators realizing (1) and (2), respectively.

The saddle point problem (4) is linearized by applying a
Newton scheme and solved within the Cardiac Arrhythmia
Research Package (CARP) framework, see Vigmond et al.
(2008), using a finite element approach.

3. RESULTS

To demonstrate the predictive power of the coupled model,
physiological experiments such as altering loading condi-
tions and contractility are performed with a bi-ventricular
PDE model. Therefore, 20 heart beats with tuned model
parameters are simulated to arrive a stable limit cycle
which matches measured baseline conditions. The response
of the model to changes in (A) systemic afterload, (B)
left aterial preload and (C) left ventricular contractility
are probed by changing (A) the systemic resistance, (B)
the cross sectional area of the pulmonary vein and (C)
the peak active stress, respectively. The response of the
coupled model on the pressure-volume diagram is depicted
in Fig. 2 (acute response) and Fig. 3 (limit cycle response).

baseline

afterload ↑
afterload ↓

baseline

preload ↑
preload ↓

baseline

contractility ↑
contractility ↓

Fig. 2. Acute response to changes in (A) afterload, (B)
preload and (C) contractility.

4. DISCUSSION

The coupled model is capable to reproduce the expected
physiological behaviors in the left ventricular pressure-
volume diagram, see Fig. 2 and Fig. 3. Altering afterload
is reflected in pivoting the slope of the arterial elastance

baseline

afterload ↑
afterload ↓

baseline

contractility ↑
contractility ↓

baseline

preload ↑
preload ↓

Fig. 3. Limit cycle response to changes in (A) afterload,
(B) preload and (C) contractility.

curve Ea. Only marginal affects are observed in the acute
case, Fig. 2(A), but significant changes are witnessed after
stabilization to a limit cycle, Fig. 3(A). Changing preload
conditions increased/decreased the stroke volume (SV) of
the left ventricle due to the Frank-Starling mechanism
and shifted Ea according to the changed end-diastolic
volume. The slope of the end-systolic pressure volume
relation Ees remains the same as under baseline conditions,
see Fig. 2(B) and Fig. 3(B). Altering contractility in-
creased/decreased the SV and Ees (sampled by perturbing
afterload) is steepened/flattened as expected. In the acute
response, Fig. 2(C), Ea was affected but after stabilization
Ea was the same for all states, see Fig. 3(C).
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Stefan Knöß ∗ Bernhard Grotz ∗

∗ ZF Friedrichshafen AG, Safe Mobility Systems, 88046
Friedrichshafen, Germany (e-mail: {florian.bechler, fabian.neininger,

stefan.knoess, bernhard.grotz}@zf.com)
∗∗ Institute of Engineering and Computational Mechanics,

University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
(e-mail: joerg.fehr@itm.uni-stuttgart.de)

1. INTRODUCTION AND MOTIVATION

The automotive industry is currently undergoing major
changes. While mobility concepts and drive technologies
change, vehicle safety remains of utmost importance and
enables new mobility concepts. Currently, the field of ve-
hicle safety systems can be divided into active and passive
systems. Within this definition, active systems prevent a
crash while passive systems mitigate crash consequences
for the occupants. Each system has its intrinsic operat-
ing time, activation logic, and principle of action. With
the constantly increasing development of enhanced sensor
technology for the vehicle’s interior and exterior, this can
be used for predictive safety strategies Grotz et al. (2021).
In addition to improved data availability and increased
interconnection between former separated systems, this
promises holistically coordinating all safety systems. This
approach targets an improved scenario-based occupant
protection. To bring vehicle safety from trigger-based acti-
vation of individual components and actuators to holistic
and comprehensible safety decision-making, a mathemati-
cal description of the environment is the crucial first step
to begin with the interdisciplinary modeling, simulation
and optimization cycle.

In the following, a base scenario is shown and in Section 2
the novel approach of mathematically formulating a driv-
ing scenario, from an occupant perspective, as a bipartite
graph is presented.

In Fig. 1 the driving scenario is depicted, labelling the
vehicle under consideration (ego vehicle) in green. The
other road users and potential accident opponents, referred
to as bullets hereinafter, in black. Figure 1(a), describes
an uncritical driving scene on a two-lane road. Only one
passenger, the driver, occupies the the vehicle. If the car
ahead decelerates, ideally detectable via the taillights, the
ego vehicle needs to react and has different options. If the
time-to-collision (TTC) is greater than the time-to-brake
(TTB), it is still possible to stop before a collision occurs.
However, if the TTC is smaller than the TTB, or if a
rear-end collision with a following vehicle (B2) should be
avoided, a front collision will occur. Since the left lane is
blocked (B3) and there is also an obstacle (O) on the right
side, an evasive maneuver influences the safety strategy.

In the presented scenario, the driver is leaning slightly to
the front left, as depicted in Fig. 1(b), i.e. the driver is
adjusting something on his mirror.

Emergency braking followed by a collision may not be the
ideal safety strategy, as the belt does not well couple the
occupant to the vehicle’s deceleration, hence the perfor-
mance of the airbag is reduced. Since the passenger seat
is not occupied, a collision on the passenger’s right side of
the vehicle, as shown in Fig. 1(c), would help to make the
impact less critical for the occupant by better exploiting
the safety potential of the airbag as the driver is slightly
moved towards the center during the impact.

(a)

(b)

(c)

Fig. 1: Driving scenarios (a)-(c) with ego vehicle (green)
and bullet vehicles (black).

This presented scenario shows how challenging it is to find
the optimized safety strategy which maximizes the benefits
of available safety systems for occupant protection. The
task becomes even more difficult when considering multi-
ple occupants, the driver’s attention status, possible occlu-
sions in the environment, the lack of sensor information,
scenario states such as the TTC or the safety parameters
of the passive safety devices, e.g. seatbelt pretensioner
trigger.
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Fig. 2: Branch of a bipartite graph representing a driving scenario with measured inputs (grey) and uncertainties (red).

2. MODELING

In order to later decide on a safety strategy for the occu-
pant online, calculations has to be simplified. Thus sur-
rogate models need to be derived for some state relation-
ships. The overall model must be able to combine physical
models with data-driven models and expert knowledge and
allow for the implementation of uncertainties and probabil-
ities. The following description is limited to a mathemati-
cal framework without describing the entire mathematical
modeling, which is not the scope of the presented work.

A bipartite graph is used to represent the relationships
of the variables and to meet the needs of the model.
This approach is presented in Gienger (2021) for process
monitoring and fault detection. Figure 2 shows a branch
of the overall model. As a bipartite graph, it represents
how the TTC can be inferred from sensor data of the
environment and the ego vehicle.

The vertices of the graph G = (V,U) can be split in
two groups, where V represents the variable nodes (cir-
cles) and U represents factor nodes (rectangles), such
that every edge conntects between these groups. Vari-
able nodes consist of observable nodes {yRUT, yenv,
yb,{sig,vL,vT}, ue,{a,φ}} and latent variables {Senv, TTC,
B{type,sig,ev,eqm,path,vL,vT}, Epath} which are unknown and
correspond to the states of the system. The red vari-
able nodes describe the sensor uncertainties fs and the
process uncertainties fp resulting from inaccurate sens-
ing and errors in the mathematical model. The factor
nodes ξ1,...,15 represent the functional dependencies be-
tween adjacent variable nodes. This representation of the
system dynamics helps to understand the system structure
and sets the basis for later implementation. The mea-
sured inputs yRUT ∈ {car, pedestrian, truck, etc.} which
describe the road user type under observation, and yenv ∈
{crossing, left/right lane, turn, etc.} describe the current
environment give information about which maneuvers
the observed bullet may potentially execute. The derived
states Btype and Senv contain the probabilities of the
measured inputs. Combined with some evidence yb,sig ∈
{[0, 1]; [0, 1]} representing the status of the turning signals
of the bullet, yb,vL and yb,vT representing the measured
lateral and tangential velocity of the bullet and their states
including the uncertainties B{sig,vL,vT}, an equation of
motion Beqm for the most likely maneuver is selected.
The evaluation of the selected equation Beqm with the
measured velocities results in a predicted path Bpath. This
procedure is similar to the approach presented by Schreier

et al. (2016). For the ego vehicle and its input states ue,a,
describing the acceleration, and ue,φ, describing the steer-
ing angle, a graph is defined leading to a predicted ego
path Epath. This branch is omitted in Fig. 2 for better
readability. Given the two paths, the TTC is calculated
with a process uncertainty fp. So in this branch of the
bipartite graph a TTC is derived from both a probabilistic
model to assume a maneuver of the bullet and a physical
model in forms of the equation of motion.

3. CONCLUSION AND OUTLOOK

The interconnection between active and passive safety sys-
tems in different driving scenarios can offer enormous ben-
efits for the occupant’s safety. A mathematical description
of the traffic environment is mandatory to decide model-
based when and which system should intervene. In this
work, an approach was presented how a complex traffic
scenario can be described mathematically and how the
relationships of different variables can be represented. The
representation as a bipartite graph can combine different
modeling approaches, including probabilities and uncer-
tainties and attaching a decision tree as in Bungartz et al.
(2013) Ch. 3-4. This leads to the goal of finding a holistic
safety strategy that helps to optimally utilize the safety
potentials of the individual components. In further inves-
tigations, the branches of the graph will be extended and
different modeling approaches will be used and tested in a
simulation environment. For state dependencies that either
cannot be physically described or can only be calculated
with great computational effort naturalistic driving- and
crash databases like, e.g. the AMP or GIDAS will be used.
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Abstract: We propose a non-intrusive method, based on Artificial Neural Networks (ANNs),
that builds reduced-order models (ROMs) approximating the dynamics of 3D cardiac elec-
tromechanics. Our Machine Learning method allows for real-time numerical simulations of the
cardiac function, accounting for the dependence on a set of parameters associated with the
full-order model (FOM) to be surrogated. The ANN-based ROM is trained from a collection
of pressure-volume transients obtained through the FOM and it can then be coupled with
hemodynamic models for the blood circulation external to the heart, in the same manner
as the original electromechanical model, but at a dramatically lower computational cost. We
demonstrate the effectiveness of the proposed method in two relevant contexts in cardiac
modeling. First, we employ the ANN-based ROM to perform a global sensitivity analysis on both
the electromechanical and hemodynamic models. Second, we perform a Bayesian estimation of
two parameters starting from noisy measurements of two scalar outputs. In both these cases,
replacing the FOM of cardiac electromechanics with the ANN-based ROM makes it possible
to perform in a few hours of computational time the numerical simulations that would be
unaffordable if carried out with the FOM, because of their overwhelming computational cost.

Keywords: Cardiac Electromechanics, Machine Learning, Reduced Order Modeling, Global
Sensitivity Analysis, Bayesian Parameter Estimation

1. INTRODUCTION

The clinical exploitation of cardiac numerical simulations
is seriously hampered by their overwhelming computa-
tional cost (several hours of computational time even
on supercomputer platforms, see e.g. Quarteroni et al.
(2019)). A promising approach to address this issue is to
replace the computationally expensive cardiac electrome-
chanical model, say the full-order model (FOM), with a
reduced version of it, the reduced-order model (ROM), to
be called any time new parameters come in. The ROM is
built from a database of numerical simulations obtained
by solving the FOM.

Recently, this framework has been applied in the context
of cardiac modeling, primarily by using Machine Learning
algorithms, including Gaussian Process emulators (GPEs)
and Artificial Neural Networks (ANNs) (see e.g. Dabiri
et al. (2019); Longobardi et al. (2020)). These emulators
are trained to fit the map that links the model parameters
with a set of scalar outputs of interest, known as quan-
tities of interest (QoIs), which are clinically meaningful
biomarkers.

? This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 740132, iHEART -
An Integrated Heart Model for the simulation of the cardiac function,
P.I. Prof. A. Quarteroni).

2. METHODS

We propose a Machine Learning method to build a ROM
of cardiac electromechanical models, which differs in many
respects from existing approaches. We rely on the ANN-
based method that we proposed in Regazzoni et al. (2019),
which can learn a time-dependent differential equation
from a collection of input-output pairs. In contrast to
existing approaches, we only surrogate the time-dependent
pressure-volume relationship of a cardiac chamber, while
we do not reduce the model describing external circulation
(see Fig. 1). The latter is indeed either a low dimensional
0D windkessel or closed-loop circulation model comprised
of a few state variables (up to two dozens), which does
not require further reduction. Unlike emulators, for which
the online phase consists in evaluations of the map linking
model parameters to QoIs, with our approach the online
phase consists instead in numerical simulations, in which
the ANN-based ROM of the electromechanical model
is coupled with the circulation model, at a very low
computational cost.

Our ANN-based ROM consists of a system of Ordinary
Differential Equations (ODEs), whose right-hand side is
represented by an ANN. The inputs of the ANN are
(1) the state variables of the ROM, whose dimension is
one of the hyper-parameters of the model; (2) the blood
pressure at the current time, that is an input for the
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Fig. 1. The training data are generated by sampling the parameter space and by solving the electromechanical model
M3D, coupled with the circulation model C, for each parameter instance. Then, once the ANN-based ROM (MANN)
has been trained, it can be coupled to the model C, thus surrogating the M3D model.

FOM; (3) the parameters of the FOM (e.g. fiber direction,
electrical conductivities, active contractility, stiffness of
the myocardium); (4) the coordinates of a point that moves
on a unitary circumference with the same frequency of the
heartbeat, in order to take into account the periodicity
of the FOM. The output of the ANN consists instead in
the time-derivative of the state variables. By numerically
solving this system of ODEs, it is possible to simulate the
cardiac dynamics described by the ROM. To train the
weights and the biases of the ANN associated with the
ROM, we use the Machine Learning algorithm proposed
in Regazzoni et al. (2019) by exploiting the open-source
library accompanying the manuscript itself.

3. RESULTS

We present two test cases in which we employ the ANN-
based ROM. We carry out a global sensitivity analysis to
assess the influence of the parameters of the electrome-
chanical and hemodynamic models on a list of outputs of
clinical interest. Then, we perform a Bayesian estimation
of a couple of parameters (belonging to the electromechan-
ical and hemodynamic models, respectively), starting from
the noisy measurement of a couple of scalar quantities
(namely maximum and minimum arterial pressure). In
both the cases, performing through the FOM the large
number of numerical simulations that are needed would
not have been possible, due to their high computational
cost (it would in fact have taken tens of years on a
supercomputer platform). Replacing the FOM with its
ANN-based surrogate allowed us to obtain the results in
a few hours of computation. By taking into account that
the generation of the numerical simulations contained in
the training set required less than 7 days on the same
computational platform, our ANN-based ROM allowed us
to reduce the total computational time by more than 3’000
times.

4. CONCLUSIONS

We presented a Machine Learning algorithm to build
ANN-based ROMs of cardiac electromechanical models.
Our algorithm is capable of learning, on the basis of
pressure and volume transients generated with the FOM,
a system of differential equations that approximate the
dynamics of the cardiac chamber to be surrogated. This
differential equation, linking pressure and volume of a car-
diac chamber, is coupled with lumped-parameter models
of cardiac hemodynamics, thus allowing for the simulation
of the cardiac function at a dramatically reduced computa-
tional cost with respect to the original FOM. As a matter
of fact, our ROM permits to perform numerical simula-
tions in real-time. Moreover, thanks to its non-intrusive
nature, the proposed algorithm can be easily applied to
other electromechanical models besides the one considered
in this work.
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1. INTRODUCTION

Recently, data-driven system identification using sparse re-
gression with L1 regularisation solved the problem to iden-
tify simultaneously functional structure and the related
parameter estimates [Brunton et al. (2016)]. Based on this
open-loop framework, the objectives of this paper are to
theoretically examine the performance of the data-driven
nonlinear system identification using a sequential thresh-
old least-squares (STLSQ) algorithm based on sparse re-
gression with L1 regularisation for closed-loop processes.
Additionally, the effect of normalisation on the proposed
method is discussed. In order to evaluate the method, a
CSTR model with a PI controller to control the reactor
temperature is chosen as benchmark system and the model
is identified using the proposed framework. Finally, the
validation of the proposed method using simulation results
are presented.

2. SPARSE IDENTIFICATION OF NONLINEAR
DYNAMICS

The sparse identification framework seeks to identify dy-
namic systems in the form of

dx(t)
dt

= f(x(t)), x(t0) = x0, (1)

describing the temporal behaviour of the state vector
x(t) ∈ Rn. Data-driven system identification consists of
the identification of nonlinear candidates using the prop-
erties of dictionary learning and regularisation [Brunton
et al. (2016)]. The resulting regression problem can be
written as:

min
Ξ

∥Θ(X) · Ξ − Ẋ∥2 + λ · ∥Ξ∥1. (2)

where the output of the regression is the matrix Ξ ∈
R(

∑
di)×n, i = 1, 2, .., H, which contains the model coef-

ficients for each candidate function from the dictionary
function Θ(X) fit to the data matrix X ∈ Rm×n and
its derivative obtained from the process Ẋ ∈ Rm×n.
λ ∈ R denotes the regularisation parameter. In order
to improve the optimisation performance, [Brunton et al.
(2016), Wang et al. (2011)] recommend the normalisation
of the dictionary function. The idea can be transferred
to a closed-loop identification by adding a manipulated

variable into the regression problem. Reformulating the
regression problem in an augmented state-space form can
account for PI controllers commonly used in practical
applications. The resulting state-space form is

dx

dt
= a(x) + Kp · (w − y) + KI · z, (3)

dz

dt
= w − y, (4)

y = x. (5)
where x ∈ R is a single state, y ∈ R is the system output,
w ∈ R is the reference value to which the system should
be controlled, z ∈ R is the auxiliary state and Kp ∈ R and
KI ∈ R are, respectively, the proportional and integral
gains.

3. SIMULATION AND RESULTS

In order to evaluate the performance of the proposed solu-
tion in a continuous time environment, a CSTR model was
used. The state-space model consists of the mass balance,
the energy balance and the PI controller structure. The
nonlinear part of the model is represented by the reaction
kinetics containing the Arrhenius equation. The model
parameters are given in Table 1 and the model is

dcA

dt
= q

V
· (cAf − cA) − rA

dT

dt
= q

V
· (Tf − T ) − ∆HR

(ρ · cp) · rA+
U · A

(V · ρ · cp) · (Tc − T ) + PI

dz

dt
= Tref − T

rA = k0 · e−E/R·T · c2
A

PI = Kp · (Tref − T ) + KI · z.

(6)

where T ∈ R is the reactor temperature, cA ∈ R is the con-
centration of the considered component, z ∈ R describes
the integrated control error state and PI ∈ R is the PI-
controller structure. Parameters and initial conditions of
the model are shown in Table 1.
The model equations were implemented and solved in
Python to obtain data for the identification. The iden-
tification was performed with a threshold of λ = 0.9,
ten iterations in the STLSQ algorithm, and a normalised
dictionary. The resulting coefficient matrix containing the
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Fig. 1. Result of sparse identification with nonlinear dy-
namics applied to the CSTR model with PI tempera-
ture controller described by Equation 6.

candidate functions as rows and the differential equations
as columns is shown in Figure 1. It can be observed
that the appropriate candidate functions representing the
actual dynamics were identified and a sparse solution was
obtained. The candidate functions and coefficients chosen
by the identification are the same as specified in the in-
put model (see Table 1). The coefficient of determination
R2 = 1 confirms that the resulting model is appropriate.
To produce different dynamical responses of the model and
evaluate the effect of normalisation, the initial conditions
of the CSTR model with PI controller were randomly
varied to produce 51 different data sets for identification.
Figure 2 shows the number of nonzero coefficients in the
identified model equations as a function of the initial
conditions. When no normalisation is performed (red tri-
angles), none of the models has the desired nine nonzero
coefficients, while with normalisation (blue triangles), the
desired model is found in most cases. It was shown that,
with respect to the sparsity of the model, the normalisation
has a significant effect and improves the identification.
Furthermore, it is assumed that the normalisation of the
dictionary improves the predictive capacity of the models.

Table 1. Parameters and initial conditions of
the model

q Volumetric Flowrate (5 m3/h)
V Reactor Volume (1 m3)
ρ Density of Mixture (1000 kg/m3)
cp Heat Capacity of Mixture (0.231 kJ/(kg · K))

∆HR Heat of Reaction (−1.15 · 104 kJ/kmol)
E Activation Energy (50000 kJ/kmol)
R Gas Constant (8.314 kJ/(kmol · K))
k0 Reaction Constant (8.46 · 106 m3/(kmol · h))
U Heat Transfer Coeff. (5000 kJ/(m3 · h))
A Heat Transfer Area (1 m3)
Tf Feed Temperature (350 K)
cAf Feed Concentration Comp. A (4 kmol/m3)
Tc Cooling Jacket Temperature (395 K)

Tref Controller Reference Temperature (380 K)
Kp Controller Proportional Gain (10 1/h)
KI Controller Integral Gain (180 1/h2)
cA0 Initial Concentration Comp. A (2.2 kmol/m3)
T0 Initial Temperature (325 K)
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Fig. 2. Number of nonzero coefficients of the 51 identified
models as a function of the initial conditions cA0, T0.

4. CONCLUSION

The effect of normalising the dictionary of candidate func-
tions was evaluated with 51 data sets obtained from vary-
ing the initial conditions of the model. It was shown that
both process dynamics and controller dynamics can be
identified accurately (R2 = 1). The normalisation of the
dictionary was shown to be beneficial to promote sparsity.
In future work, the proposed framework could be tested
with data coming from black-box models, e.g., from the
process simulation environment UniSim Design. Also, real
process data could be used or additional Gaussian white
noise could be added to the input data. In order to deter-
mine the performance limit of the proposed framework, lo-
cal differentiation methods, e.g., the Savitzky-Golay filter,
or global differentiation methods, e.g., the total variation
derivative, could be evaluated. Furthermore, the frame-
work could be extended to also allow the identification of
the differential part of a proportional-integral-differential
(PID) controller and other controller structures.
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1. INTRODUCTION

Cardiac physiology results from coordinated interactions
across multiple scales, from proteins through to whole
heart function. Physics-based computational models can
encode these multi-scale processes. Calibrating these mod-
els to clinical data measuring whole heart function poten-
tially provides a virtual heart assay to identify the tissue
and cellular scale mechanisms underpinning these clinical
observations. However, these models have large numbers
of parameters and are computationally intensive, making
model calibration challenging. In this context, machine
learning methods for parameter reduction and estimation
can be of great help in reducing the number of required
simulation runs and therefore make parameter fitting pos-
sible.

2. METHODS

In this paper, we applied Gaussian processes emulators
(GPE), Sobol variance-based global sensitivity analysis
(GSA) and Bayesian history matching (HM) to the ToR-
ORd model (Tomek et al., 2019) for human ventricular
action potential and the Land model for human cellular
active contraction (Land et al., 2017). The code for GPE
training, GSA and HM is available online and is described
in detail in (Longobardi et al., 2020). All simulations were
run with a basic cycle length of 1000 ms for 100 beats to
reach a near limit cycle. The calcium and the active tension
transients from the last beat were used to extract features
of interest, that were then used to evaluate parameter
importance.

We selected 29 parameters of the ToR-ORd model rep-
resenting ion channel conductivity, pump and exchanger
maximum flux, the maximum fluxes of the calcium path-
ways and buffering concentrations to study their effect on

the resulting calcium transient. Four separate GPE were
trained to predict the following key calcium transient fea-
tures: 1) diastolic calcium, 2) transient amplitude, 3) time
to peak and 4) time to reach 90% relaxation. We used 2175
latin hypercube samples and the parameter space bounds
were set to ±25% from their default values. Using the GPE
we performed a Sobol GSA to compute the total effect of
each parameter on each output feature. The parameters
were ranked according to their maximum effect across
all outputs. These values were then normalised to sum
up to 1 and the most important parameters cumulatively
explaining 90% of the output variance were selected as the
most important, while the others were discarded.

A HM was then run on this subset of parameters to identify
areas of the parameter space that led to physiological
output features. Literature experimental data for human
ventricular calcium transient were used as target values.
The implausibility measure of each parameter combination
was computed as in (Longobardi et al., 2020), to quantify
discrepancy between GPE prediction and target exper-
imental observations, accounting for both experimental
data and GPE uncertainty. We ran five HM iterations (or
waves) with a cutoff on the implausibility measure of 3.5
and a sixth wave with a cutoff of 3.0.

The non-implausible areas on the ToR-ORd model pa-
rameters were then used to define calcium transients to
input to the Land model. A GSA on all 17 Land model
parameters and the 10 selected ToR-ORd model parameter
was run to detect important parameters for the following
active tension features: 1) peak tension, 2) time to peak, 3)
maximum time derivative, 4) minimum time derivative, 5)
twitch duration and 6) rest tension. The GSA was applied
for three experiments: isometric twitch with 0 and 0.1
constant strains and isotonic twitch.
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We finally applied HM on the Land model fixing the
ToR-ORd parameters to their default value to identify
which parameter space regions led to physiological active
tension. The target values for the HM were set to be
the active tension transient features obtained in the Land
model original paper (Land et al., 2017) and their standard
deviation was set to 10% of their value. In this case, we
ran only two waves with 3.5 cutoff on the implausibility
measure and one last third wave with cutoff of 3.

3. RESULTS

Ranking the ToR-ORd model parameters according to
their maximum total effect on the calcium features showed
that, as expected, the most important parameters were
directly related to either calcium ion channel or pump
conductivities or to other calcium handling regulatory
processes (e.g. diffusion inside the cell, calmodulin binding
or contraction proteins). The GSA allowed us to reduce
the number of parameter from 29 to 10, as the 10 most
important parameters were enough to explain 90% of the
output variance.

These 10 parameters were then used in the HM to restrict
the parameter space to areas leading to physiological
calcium transients. Figure 1 shows the initial calcium
transients (blue) and the ones resulting from the restricted
regions until the last HM wave (red). The corresponding
simulated feature values from the initial (blue) and the
restricted (red) space are compared with the experimental
data (black). The HM allows us to restrict the parameter
space to ensure the simulations give physiological values
for all features. For the last HM wave (red) all simulations
result in physiologically plausible calcium transients.

Fig. 1. ToR-ORd HM Results. Calcium transients
(left) and extracted features (right) from the initial
(blue) and from the restricted (red) parameter space.
Experimental data ranges are shown in black.

The GSA on the Land model allowed us to reduce the
parameters from 17 to 9. Furthermore, according to our
analysis, only 4 of the original 29 ToR-ORd model pa-
rameters were necessary to explain 90% variance of the
active tension transient. Therefore, the GSA allowed us to
reduce the number of parameters in the ToR-ORd+Land
model from 46 parameters down to 13 to explain 90% of
the variance in the tension transient which drives whole
heart simulations.

The HM allowed us to restrict the kinetic parameters
of the Land model to values that led to physiological
active tension transient when coupled with the ToR-ORd
model. (Figure 2). The blue curves obtained with the

Fig. 2. ToR-ORd+Land model HM Results. Active
tension transients from the initial (blue) and from
the restricted (red) parameter space compared to
the target active tension transient from (Land et al.,
2017).

initial sampling are far away from the target active tension
transient from the original publication in (Land et al.,
2017), while the red curves obtained by sampling the
restricted regions are close to the target curve.

4. CONCLUSION

This work shows how GPE, GSA and HM can provide a
systematic workflow to fit models to available experimen-
tal and clinical data while keeping the number of required
simulation runs at a treatable level.
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Abstract: This paper proposes a model to analyze, assess and forecast the viability of Electronic Design 

Automation (EDA) companies that operate in a dynamic environment. Due to the technological 

advancements and the specific characteristics of this industry, companies that operate in the market are 

under continuous pressure to innovate their products, to find new policies of investment, strategies and 

forms of business model organization to maintain viability. Knowledge-intensive industries, like EDA, 

are known for needing continuous access to new knowledge, talents, and experts and a lot of research and 

development activity. Not all companies can provide in time the necessary results and innovation to 

compete in the market, so most of them dissolve, merge, or are being acquired.  

Keywords: EDA industry, Company viability, Forecasting, Disruptive Technologies, Technological 

factors. 



1. INTRODUCTION

The research in the current paper is in the framework of a 

study of the dynamics of Electronic Design Automation 

(EDA) companies. EDA is a relatively new business sector 

emerging, following, and enabling the first the semiconductor 

and later the high-tech industry, manufacturing, and mass 

production. The first data available are from the year 1961, 

the sector is about 60 years old. EDA companies need  highly 

specialized staff with STEM expertise. EDA companies are 

strongly affected by technology development factors and 

disruptive technological events (innovations) lead to 

numerous mergers and acquisitions (M&A), emerging start-

ups, and the disappearance of those who cannot follow. Paper 

(Bitri, A. et al, 2020) addresses the global place of EDA 

companies (EDA_C) and their business models (BM) in the 

current hyperconnected world, paper (Marinova, G. et al, 

2021b) proposes formalization and parameters of the BM of 

an EDA company and paper (Marinova, G. et al, 2021a) 

describes a project of Database with parameters’ values for 

several hundreds of EDA companies. Some initial 

observations and first statistical data are presented in the 

paper. Vu that the total number of EDA companies doesn’t 

overpass 1000 and there are about 10 leaders with more than 

70% of global market shares the study is fully representative. 

The paper proposes a formalization of the Viability of an 

(EDA) Company in case of disruptive technological events or 

innovation.  It will allow to predict the effect of a disruptive 

technological event (innovation) on the Viability of EDA 

company and to help adjust its investments and BM for 

increasing its Viability.  

The study described in (Marinova, G. et al, 2021b) identifies 

3 main technological factors: TF1 – The Moor’s Law; TF2 – 

The System integration Law; TF3 - The technological 

disruptive innovation events – specified by a list of events 

(innovations) in years. The current paper focuses on the 

effect of TF3 which has rather a random character and the 

effect is strongly disruptive. 

On a graph from (Marinova, G. et al, 2021a) are presented 

the numbers of funded and M&A EDA companies in years, 

concerning TF3 events. The formalization of the Viability of 

EDA companies in the paper considers the effect of TF3. 

The current market expanders for EDA companies are 

Internet of things IoT and Digital twins. Some of the 

incoming technological disruptions are nanotechnologies, 

quantum computers, bioinspired engineering. The 

formalization of the Viability will help to determine which of 

the EDA_C has the potential to survive the new Disruptive 

technological events and/or adapt and expand generation 

technological innovations themselves or profiting from 

market expanders. 

2. PROBLEM DEFINITION AND GENERAL 

FORMULATION OF THE VIABILITY IN EDA

The following definitions and notations are adopted: 

V – The viability of a company; 

EDA_C(J) – Electronic design automation company J where 

J=1, N;  

N - number of EDA companies studied;TF3(I) – Technology 

factor 3, technological innovation(I), Technological 

innovations are listed in time per year; 

V(EDA_C(J)) – viability of EDA_C(J); 

G(TF3(I)) – generator of the innovation TF3(I); 

R(TF3(I)) – reaction to TF3(I) with a Delay D(J,I); 

Dmax – maximal delay admissible for viability; 

D(J, I) – delay of the reaction of the company EDA_C(J) to 

the innovation TF3(I); FD – factor of the delay; 

The investment of the EDA company in R&D is a 

precondition for the generation of innovations G(TF3(I)). 
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Table I Feathers of the tool as the main product of EDA_C

 

The reaction and its delay are a result of the Sensing and 

Learning processes (Marinova, G. et al, 2021a) in the EDA 

company and it is related to Human resources HR talents 

(T_HR) and the connection with academia CA(J). 

The viability of the EDA company can be expressed as: 

V(EDA_C(J)=G(TF3(I))+R(TF3(J)xFD= 

G(TF3(I))+R)TF3(I),D(J,TF3(I))<Dmax)  

 
Figure 1. Profit curves of EDA companies 

 

Figure 1 draws a hypothetical curve of the profit of an 

EDA_C between consecutive Technological disruption 

events TF3(I), TF3(I+1) and TF3(I+2). If EDA_C generated 

the TF(I), its profit is maximal, the profit of other EDA_C 

depends on their Reactions and the Delays of the reactions. A 

delay superior to Dmax leads the EDA_C to disappearance. 

This definition of the viability can be implemented to 

formalize the viability and the rules for its forecast. 

3. FEATHERS OF THE TOOL AS A MAIN PRODUCT  

EDA COMPANY 

The main business of an EDA_C is to develop tools. Table I 

presents the feathers of the tool as the main product of 

EDA_C and its connection to the market. The feathers are 

categorized into 6 groups: Interfaces, Mathematical methods, 

and Solvers (Math), Software and hardware description 

languages (SW&HW_DL), Processing power (PP), or 

computer where to tool is run, Models and Application area 

(AA) representing the Market. These feathers can be 

connected to innovations, business models and viability of 

EDA companies. 

4. CONCLUSIONS 

This paper proposes a model to evaluate the viability of a 

Business Model that operated in a dynamic environment, 

such as the Electronic Design Automation Industry. The time 

and the delay to react to a new technological event or 

innovation generated by the competitor might be disruptive 

for the company.  
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Abstract: We introduce a CFD model for the numerical simulation of the heart hemodynamics
in both physiological and pathological conditions, by accounting for all the physical processes
that influence cardiac flows: moving domain and interaction with electromechanics, transitional-
turbulent flows, cardiac valves and coupling with the external circulation. To impose a physiolog-
ical displacement of the domain boundary, we employ a 3D ventricular electromechanical model
coupled to a lumped-parameter (0D) closed-loop model of the circulation and the remaining
cardiac chambers. To extend the ventricular motion to the endocardium of the remaining
heart, we introduce a novel preprocessing procedure that combines an harmonic extension of
the electromechanical displacement with the motion of the atria based on the 0D model. We
thus obtain a one-way coupled electromechanics-fluid dynamics model in the ventricle(s). To
better match the 3D CFD with blood circulation, we also couple the 3D CFD model to the 0D
circulation model. We obtain a multiscale coupled 3D-0D fluid dynamics model that we solve
via a segregated numerical scheme. We carry out numerical simulations for a healthy heart
and we validate our model by showing that significant hemodynamic indicators are correctly
reproduced.

Keywords: Cardiac hemodynamics, cardiac valves, circulation, transitional flows, mitral valve
regurgitation, computational fluid dynamics, multiscale models, finite element method.

1. INTRODUCTION

The study of cardiac blood flow aims at enhancing the
knowledge of the heart physiology, assessing the patholog-
ical conditions and possibly improving the clinical treat-
ment and therapeutics. In the clinical routine, blood flow
analysis is conventionally based on imaging techniques.
However, their space and time resolution is not accurate
enough to capture small-scales features as recirculation
regions, possible regions of transition to turbulence and
the formation, interaction and dissipation of small co-
herent structures. Furthermore, imaging-based techniques
cannot provide relevant fluid dynamics indicators such as
the wall shear stress (WSS) which is correlated with the
function and the remodeling of the heart chambers (Ngo
et al. (2019)). In this respect, computer based numerical
simulations – also known as in silico simulations – of the
heart and circulation represent a valuable tool to quan-
titatively assess the cardiac function and to enhance the
understanding of cardiovascular diseases.

The numerical simulations of cardiac blood flows should
account for several aspects that characterize heart’s hemo-
dynamics (Chnafa et al. (2014)). The strong interaction
between the fluid and the electromechanical activity of
the heart yields a complex multiscale and multiphysics
system involving the interaction of several physical pro-

? alberto.zingaro@polimi.it

cesses. Furthermore, the cardiac valves affect the blood
motion and change the topology of the fluid domain during
the heartbeat. In addition, a CFD simulation of the heart
should also account for the transitional regime of the blood
flow occurring in the heart chambers and, eventually, also
for the strict influence between the local dynamics and
the hemodynamics of the surrounding circulatory system.
In this work, we introduce a CFD model of the heart
accounting for all the aforementioned aspects.

2. MODELS AND METHODS

We model the blood flow in the heart chambers via the
incompressible Navier-Stokes (NS) equations expressed
in an Arbitrary Lagrangian Eulerian (ALE) framework
to account for moving domains. To model the presence
of valves in the fluid, we use the Resistive Immersed
Implicit Surface (RIIS) method, in which the effect of
the immersed surface in the blood is enforced via a
penalization technique by introducing a resistive term in
the momentum balance of the NS equations (Fedele et al.
(2017)).

To prescribe a physiological displacement to the domain
boundary, we employ the ventricular electromechanics
(EM) model developed in Regazzoni et al. (2022); Pier-
santi et al. (2022) coupled to the surrounding circula-
tion described by a 0D lumped-parameter hemodynamic
model. We introduce a novel procedure that combines an
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Fig. 1. The integrated multiscale CFD model of the heart.

harmonic extension of the the ventricular displacement
on the remaining heart chamber(s) based on Laplace-
Beltrami equation, and a volume-based model of the atria
tuned on the basis of the 0D circulation model (Zingaro
et al. (2022)). This yields an integrated and multiphysics
problem in which fluid dynamics is one-way coupled to
EM in the ventricle(s). The model introduced can directly
be applied also to the right heart and to the whole heart
geometry.

To address the reciprocal influence between the hemody-
namics of the heart chambers and the one of the surround-
ing cardiocirculatory system, we rely on the geometric
multiscale modeling (Quarteroni et al. (2016)). We couple
the 3D CFD model of the heart with the 0D lumped pa-
rameter model closed-loop model of the circulation intro-
duced in Regazzoni et al. (2022). The interfaces conditions
of the 3D-0D CFD model consists of the enforcement of
the continuity of pressures and flowrates on the artificially
chopped boundaries. In Figure 1 we represent the overall
integrated and multiscale computational model.

We discretize the NS-ALE-RIIS equations in space via
the finite element (FE) method and in time by means of
backward differentiation formulas. We use a Variational
Multiscale - Large Eddy Simulation method (Forti and
Dede’ (2015)) to get a stable formulation of the NS equa-
tions discretized by means of FE method; to stabilize the
advection-dominated regime and to account for turbulence
modeling within the framework of LES (Zingaro et al.
(2021)). We discretize the system of ODEs of the 0D cir-
culation model through a 4th order explicit Runge-Kutta
scheme. We numerically solve the 3D-0D CFD model by
means of a segregated numerical scheme (Zingaro et al.
(2022)).

3. NUMERICAL RESULTS

We simulate the heart hemodynamics in physiological
conditions and we show that several hemodynamic indi-

cators and flow patterns are correctly reproduced by the
computational model when compared with in-vivo data.
Furthermore, we simulate pathological scenarios as mitral
valve regurgitation and we quantify clinical indicators to
grade the severity of the pathology.
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1. INTRODUCTION

With the development of Industry 4.0 technologies, 
numerous manufacturers are establishing production 
digitization as their corporate strategy to maintain and 
increase competitiveness. More and more data on production 
facilities and processes are collected and stored to answer 
recurring questions e.g., causes of machine downtimes or 
product quality defects, so that measures for correcting the 
failure can be intervened as early as possible.  

For such cause-effect analysis, influencing factors have to be 
gathered, evaluated, and visually represented. Potential 
influencing factors can be found using priori knowledge 
about the production plant, e.g., the plant structure presented 
in a CAE (computer aided engineering) model or the project 
configuration in a control application program. Such prior 
knowledge is considered as context information to the 
production data of the plant, however, there is usually no 
direct link created to the production data. Therefore, 
influencing factors and their belonging production data have 
to be gathered and interrelated with laborious manual efforts, 
and the established relationships are often not reusable for 
new tasks of causal analysis. In addition, heterogeneity in 
production data regarding, e.g., data structure and sampling 
rate, complicates the integration of production data needed 
for analysis. Furthermore, the influencing factors found have 
to be represented in an easy human-readable way. At last, 
saving the context information, the influencing factors, and 
their relationships in a reusable way is challenging as well.  

To address the above described challenges in managing and 
representing of production data for data analysis purposes, 
manufacturers need a sensible and practical concept. In this 
paper, we present a novel and generalized concept, the 
Structure Graph of Production (SGP). 

2. CONCEPT OF THE SGP

The SGP is a graph model based on the phase model of 
production (PMP) (Polke 1992). It includes property clusters 
representing components of the considered production 
system, and relationships between the properties as well as 
the PMP elements (Fig. 1). 

A production system in the current consideration is composed 
of production processes, machines, raw materials, produced 
(intermediate) products, and field devices (including 
actuators, measuring devices), which are abstractly modelled 
with clusters of properties of these components (Fig. 1).  

Nodes and relationships are the most basic model elements 
that build the property clusters and the PMP. Fig. 1. shows 
the generalized SGP class with nodes and relationships, 
which are specialized as shown in Fig. 4 and Fig. 5, 
respectively. 

Fig. 1. General SGP class model 

In the following, the concept of SGP is explained with a 
demonstrative example of a heating system of our laboratory 
plant. Its piping and instrumentation diagram (P&ID) is 
shown in Fig. 2. Pump N13 feeds the outflow from an 
upstream tank B1 into a heat exchanger and feeds it further to 
the downstream processes through valve Y16. A temperature 
sensor (T15) and a flow meter (F17) measures the process 
and product properties, respectively. The pumping power, 
heating power and valve opening are controlled 
automatically. 

NI
N13

YI
Y16

TI
T15

FI
F17tank 

outflow produkt

Jel

Fig. 2. P&ID of a part of a laboratory plant 

With the given information, the SGP is created as shown in 
Fig. 3. The processes and products are modelled as PMP 
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represented by the blue nodes and edges. The respective 
properties of the heating system components are modelled as 
nodes and clusters on the side of the PMP elements, which 
are pipelines with actuators and sensors as well as water. 

Fig. 3. SGP model of the heating process shown in Fig. 2 

Each node (Fig. 4) in SGP has a uniquely identifiable ID that 
can be represented by a textual label. The class node has two 
subclasses: structural node and property node. A structural 
node can either be a product node (e.g., “warm water”) or a 
process node (e.g., “transport + heating”), representing 
process steps or products in the PMP. A Property node (e.g., 
the green nodes) describes either a certain aspect of a 
machine, a product, a process or a measuring device. Each 
property node has two further attributes: (1) Associated 
cluster to which the node belongs to; (2) Associated data 
variable with basic metadata (e.g., name, data type and 
location) which are referencing the data stored in a database. 
The nodes are displayed in corresponding colors and shapes, 
depending on controllability, control mode and measurability. 

Fig. 4. Node class model 

A relationship (Fig. 5) is modelled as an edge in the graph 
model, which is represented by a directed line pointing from 
a source node to a target node. Each relationship is uniquely 
identifiable in an SGP by its ID or by a node tuple (source 
node, target node). A relationship has two subclasses: 

structural or influencing relationship. A structural 
relationship represents the direction of the material flow in 
the PMP, or the data flow between the property nodes of a 
measuring device cluster and a machine, product or process 
cluster, respectively. An influencing relationship (causal or 
correlational) indicates that the source node may have an 
influence on the target node with a certain probability and 
intensity, which can be determined by using methods of 
either data analysis, experimental observation, or expert 
knowledge (see Section 4). When an influencing relationship 
is valid, its attribute isValidated is set TRUE. 

Fig. 5. Relationship class model 

6. DISCUSSION

Causal questions can be answered with a combination of 
process model and data analysis (Pearl 2018). In the concept 
of SGP, prior knowledge about the production plant is 
modelled as PMP and clusters of the production system 
properties. The PMP containing structural relationships and 
nodes forms the fundamental structure of the SGP, which 
allows categorization and association of property clusters. 
The PMP model implies also time constraints for inferencing 
causal and influencing relationships, because the structural 
nodes in PMP are arranged regarding the execution sequence 
of the production processes. In addition, measurements stored 
in databases are associated with properties of process steps, 
products and machines using the attribute associated data 
variable. Thus, semantics and metadata of measurements are 
available, such that the measured data can be extracted, 
integrated and prepared in an efficient way. Influencing 
factors of a certain property can be gathered using existing 
relationships and topological distances between the property 
nodes. Furthermore, PMP allows the property nodes to be 
presented in a structured way, so that human can easily 
interact with the SGP and carry out causal analysis. With the 
above advantages, the SGP provides a basis for a straight 
through data integration and analysis. In future work, we will 
specify the modelling systematics of SGP, and develop SGP 
towards automated data integration and analysis. Moreover, 
aspects of changeability, scalability and user-friendly 
visualization will also be considered. 
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1. INTRODUCTION

Traditional chemical kinetic models use ordinary differen-
tial equations (ODEs) to predict the concentrations of the
involved molecule types (Gillespie (1992)). The evolution
of the corresponding probability distribution is given by
the chemical master equation (CME) which, in principle,
can be solved by numerical integration. Unfortunately, the
computational cost grows exponentially with the number
of species, due to the fact that the system states must
be labeled explicitly to cast the CME into a ODE. A
framework for performing Bayesian inference tasks for the
parameter-dependent CME is suggested, by exploiting the
so called tensor-train (TT) decomposition to approximate
the joint distribution over the CME states and parameters
(see Ion et al. (2021)). For that purpose, we construct an
explicit representation of the evolution operator in the
TT format and show that it can be constructed with-
out ever assembling the corresponding matrix. The TT
format has the advantage that the storage requirement
scales linearly with respect to the number of dimensions,
while at the same time being a numerically robust tensor
decomposition. To that end, we combine the state space
and the parameter space into a higher-dimensional tensor-
product space. The parameter dependence is expressed by
means of a B-spline basis. Since typically every reaction is
governed by an individual rate constant, the parameters
can be seamlessly included in the tensor representation,
thus allowing for efficiently solving the joint system. In
practice, however, the system parameters are often un-
known. Therefore, we develop a framework for filtering,
smoothing, and parameter inference based on the efficient
TT representation of the joint system.

2. TENSOR-TRAIN DECOMPOSITION FOR THE
CHEMICAL MASTER EQUATION

2.1 Chemical master equation

The chemical master equation describes the time evolution
of the probability mass function (PMF) of well-mixed
reaction system with d species (Gillespie (1992)). After
the state space truncation of the PMF p to a n1×· · ·×nd

tensor, the CME is represented as a large linear system of
ODEs

dp(t)

dt
= Ap(t),

where A is a tensor operator with size (n1 × · · · × nd) ×
(n1 × · · · × nd). Parameters that govern the reactions can
be included in the framework, leading to the following
parameter dependent CME

dp(t,θ)

dt
= A (θ)p(t,θ). (1)

For the joint state-parameter density together with the
time dependency, a tensor-product basis representation in
used:

pi (t,θ) ≈
∑
j

∑
l

piljbj(t)Ll(θ), (2)

where p is d + Np + 1 dimensional tensor, {bj}j is the
basis for the time dependency (Chebyshev polynomials)
and {Ll}l is a tensor-product basis for the parameter to
accommodate parameter dependency (product of univari-
ate B-splines). Galerkin projection is then used to derive
an extended multilinear system for p. Since the unknown p
is high-dimensional, the storage requirements grow expo-
nentially and therefore compression schemes are employed
for the unknown p and the multilinear system.

2.2 Tensor-trains

An array x of shape n1 × · · · × nd is said to be in the TT
format if it can be elementwise written as

xi =
R1∑

r1=1

R2∑
r2=1

· · ·
Rd−1∑

rd−1=1

g
(1)
1i1r1

g
(2)
r1i2r2

· · · g(d)
rd−1id1

, (3)

where the three-dimensional tensors g(k) are called the
TT-cores and R = (1, R1, ..., Rd−1, 1) are called the TT-
ranks (Oseledets (2011) provides a detailed look). The
storage complexity becomes linear with respect to d and
once the tensors are converted in the TT-format, the ba-
sic operations (elementwise addition, multiplication, sum-
ming over indices) can be efficiently performed without
building the full d-dimensional object. The construction of
a low-rank TT-decomposition provides an error bound and
rank reduction can be also performed within a given ac-
curacy (see Oseledets (2011) for more details). In addition
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Fig. 1. Noisy observation sample for the SEIQR model
(sample size is 45).

to that, multilinear systems can be solved directly in the
TT-format using optimization based methods (see Dolgov
and Savostyanov (2014)). The CME operator A presented
in the previous section can be directly represented in the
TT-format and the multilinear system arising from the
Galerkin projection can be as well solved in the TT-format.

2.3 Inference tasks

Given a number of noisy observations of a system governed
by a CME with unknown governing parameters, one can
be interested in finding those parameters. A probabilistic
description of the distribution over the parameter space
(called posterior) can be obtained using Bayes rule. As
presented in Ion et al. (2021), updating the posterior
implies solving the CME and constructing the likelihood
(conditional probability of observing the data given the
underlying state of the system). Both of the steps are
efficiently performed using the TT-format without being
affected by the curse of dimensionality, since both the
observation model and the CME operator can be com-
puted directly in the TT-format. A prior PDF over the
parameters can be included in the framework.

3. RESULTS

Numerical experiments have been performed to showcase
the advantages of the proposed framework in terms of
accuracy and computational efficiency Ion et al. (2021).
Among them, we present here only he SEIQR model. It
has 5 species: susceptible (S), exposed (E), infected (I),
quarantined (Q) and recovered (R) involved in 9 reactions
with 4 parameters assumed as unknown. From a sample
path, noisy observations are generated (see Fig. 1) and
the TT CME solver is used to infer the parameters with
the dimension of the parameter space basis is 64 for every
parameter. Marginals of the posterior are shown in Fig.
2, comparing the obtained posterior with the prior (green
dashed line) and also displaying the exact parameter.

The execution time for a TT-solver is ≈ 55 minutes
with a maximum posterior size in the QTT-format of
≈ 30 MB. As a comparison, the chosen state truncation

Fig. 2. Posterior marginal distributions for the four un-
known reaction rates of the SEIQR model. The exact
parameters are marked with the red dashed lines and
the prior with green dashed lines.

of (128, 64, 64, 32, 32) would require ≈ 4.2 GB only for
storing the state for one parameter realization. The storage
complexity for the parameter-dependent CME operator in
the QTT format is ≈ 200 KB.

4. CONCLUSION

We presented a method based on the TT decomposition
to solve the CME, either in its standard form or including
parameter dependencies, and approximate the joint distri-
bution over the state-parameter space, including the time
dependency as well. Using the considered TT-framework,
inference tasks such as parameter identification can be
performed accurately and efficiently.
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Abstract: Creating behavioral models for radio frequency (RF) devices is a challenging task.
Most approaches require a substantial prior knowledge of the physical structure in order to be
able to generate suitable mathematical models for the desired characteristics. However, since
it is usually not attractive for manufacturers to pass on extensive knowledge about internal
components to third parties, one has to rely mainly on black- or gray-box models. An approach is
to fit a parameterized model based on representative measurement data, following the example of
the Hammerstein-Wiener models. With this approach, only simple linear least squares problems
have to be solved and special structures encourage the use of efficient solution methods. In
this paper, the general fitting procedure will be discussed and suggestions for successful device
modeling will be provided

Keywords: Nonlinear system identification, Frequency domain identification, Time series, Gray
box modeling, Recursive identification

1. INTRODUCTION

In order to integrate various new components from dif-
ferent manufacturers into device simulators, the dynamic
behavior of the component under defined operating con-
ditions must be determined as precisely as possible. How-
ever, since the physical structure or other internal compo-
nents are rarely published by the respective semiconductor
manufacturers for such purposes, the simulation software
usually relies on the models they provide. If these do not
exist at all, or only for special simulators, one is faced with
a problem. The only remaining option is to create a gray-
box model, which is associated with various challenges.

2. HAMMERSTEIN-WIENER MODELS

The main challenge one is facing when creating a gray-
box model is the choice of an appropriate structure. Here
a variety of possible models may apply, ranging from
classical RF approaches such as the X-parameter model or
even AI models such as neural networks. In this paper, the
focus is on a model that is composed of classical elements
of signal and system theory, the so-called Hammerstein-
Wiener model, and its possible application in the field of
RF devices.

Fig. 1. Hammerstein-Wiener Block Diagram

2.1 Structural Overview

As displayed in Figure 1, a Hammerstein-Wiener model
consists of a series connection of an arbitrary non-linear
mapping function f1(·), a discrete LTI system G(q) with
the delay operator q−1 and another non-linear function

f2(·). We assume that all of these sub-blocks can be
described with a set of parameters which may be adapted
to fit the input and output measurement data of an actual
RF device. Since the Hammerstein-Wiener model is a
discrete-time system, these must be available in the form
of time domain samples

Y = (y1 · · · yN ) (1)

U = (u1 · · ·uN )

where N is the number of measurement samples. In the
following considerations we assume ut, yt etc. to be a single
sample out of a given measurement series. Based on the
block diagram in Figure 1, the Hammerstein-Wiener model
is given by

vt = f1(ut) (2)

wt = G(q)vt + et
yt = f2(wt) = f2 [G(q)f1(ut) + et]

where f1(·) and f2(·) are set to be continuous, f2(·) is
furthermore monotone and invertible and wt is disturbed
by a sample et of a stationary stochastic process with zero
mean. G(q) is an arbitrary transfer function containing the
delay operator q−1. The nonlinear functions f1 and f2 are
approximated with cubic splines as defined in Zhu (2002)

f1(ut) =

m1−2∑
k=1

αk|ut − ũk|3 + αm1−1 + αm1
ut (3)

f2(wt) =

m2−2∑
k=1

βk|wt − w̃k|3 + βm2−1 + βm2wt

where ũk and w̃k represent the spline knot sequences. It
is established practice to select the spline knots according
to the dynamic range of the function argument. However,
this formulation cannot be applied as it is, since wt can not
be measured. It is replaced in the course of this section.
For the linear time-invariant system G(q) we select a
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Box-Jenkins model, which may be replaced with a higher
order auto-regressive model with exogenous input (ARX)
of order n that reads

A(q)wt = B(q)vt + et (4)

wt = B1vt−1 + ...+Bnvt−n −A1wt−1 − ...−Anwt−n

Since the stochastic process e is used to approximate
the model error, the objective function V (Θ, Z) for the
upcoming optimization is given by

et = A(q)f−12 (yt)−B(q)f1(ut) (5)

f2
−1(yt) =

m2−2∑
k=1

γ|yt − ỹk|3 + γm2−1 + γm2yt

Z = [u1, ..., uN , y1, ..., yN ] ,Θ = [A1, ..., B1, ..., γ1, ..., α1, ...]

V (Θ, Z) =
1

N

N∑
t=1

e2t

where the inverse of f2 is approximated with another
spline model with measurable input dynamics for yt and
Θ contains the parameters of the Hammerstein-Wiener
model.

2.2 Optimization Process

The starting point for the following iterative optimization
procedure also defined in Zhu (2002) is based on a small-
signal analysis of a non-linear device. With low dynamic
ranges, these usually behave almost linearly, which simpli-
fies an initial estimate of the linear ARX model. For this
purpose, the following optimization criterion is defined

N∑
t=1

(
A(0)(q)f

−1
2 (0)(yt)−B(0)(q)f1(0)(ut)

)2
→ min (6)

where A(0)(q) and B(0)(q) represent the initial ARX co-

efficients. The non-linear functions f1(·) and f−12 (·) are
set as identity for this initial estimate. For the subsequent
optimization the following steps are repeated until a target
norm has been reached. Therefore we are introducing an
iteration index i and mark fixed components with the hat-
notation

Step 1: Determine the spline coefficients αk for f1 by
solving a linear least square problem for fixed Â(i)(q),

B̂(i)(q) and f̂−12(i)(yt)

N∑
t=1

(
Â(i)(q)f̂

−1
2(i)(yt)− B̂(i)(q)f1(i+1)(ut)

)2
→ min

Step 2: Determine the spline coefficients γk for f−12 by solv-

ing a linear least square problem, where Â(i)(q), B̂(i)(q)

and f̂1(i+1) [ut] are fixed

N∑
t=1

(
Â(i)(q)f2

−1
(i+1)(yt)− B̂(i)(q)f̂1(i+1)(ut)

)2
→ min

Step 3: The last part of the optimization procedure is
analogous to the initial ARX step but with the previously
computed splines for f1(ut) and f−12 (yt). Then one solves
the least squares problem

N∑
t=1

(
A(i+1)(q)f̂2

−1
(i+1)(yt)−B(i+1)(q)f̂1(i+1)(ut)

)2
→ min

2.3 Modifications

The original idea of this optimization procedure originates
from Zhu (2002), but is associated with several limita-
tions there. For example, it is assumed that ut, yt and
the Hammerstein-Wiener model parameters each repre-
sent scalar values. It is therefore only possible to model
Single-Input Single-Output (SISO) systems with this ap-
proach. However, since this assumption is inadequate for
RF devices with multiple ports, a notation for modeling
Multiple-Input Multiple-Output (MIMO) systems is pro-
posed in the following where ut ∈ IRK and yt ∈ IRL. There
are various possibilities to modify the given structure
of the Hammerstein-Wiener model so that multivariate
data can be approximated. One option are multivariate
splines, but a simpler solution is a higher-dimensional
ARX model in which the coefficients are represented by
matrices. A1...An ∈ IRLxK and B1...Bn ∈ IRLxK therefore
applies. Then it is sufficient to apply scalar spline functions
to every element within ut and wt similarly to the scalar
case in Section 2.2. Another improvement is the use of
b-Splines, where the order can be defined flexibly.

3. NUMERICAL TEST

The variants of the Hammerstein-Wiener models presented
here have so far proven themselves in practical use, al-
though the proof of convergence is still work in progress.
In the course of this work, mainly models from the Cadence
AWR Design Environment were used for verification. An
example of a frequency-dependent non-linear common
emitter amplifier with a two-tone signal at the input port is
provided in Figure 2. As expected, the actual measurement
data show attenuated artifacts around the harmonics of
the input signal (100 kHz), which a Hammerstein-Wiener
model (n = 3, m1 = m2 = 11) approximates accurately.
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Fig. 2. Scattered Wave Approximation at Port 1
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1. INTRODUCTION

Football matches are subject to a temporal sequence of 

different events that result from a series of upstream chains of 

interaction between players, positional groupings or teams 

whose goals either conflict or harmonise. In this context, the 

prevailing idea is to see football matches as dynamic 

interaction processes with evolving behaviour (Gréhaigne et 

al., 1997; Lames & McGarry, 2007; Hughes & Franks, 2008). 

Complex techniques and methods are necessary to adequately 

analyse these processes (Lames & McGarry, 2007).  

Recurrence analysis represents such a method as it examines 

approximations of a trajectory in a phase space (Lames & 

Plück, 2015). The core component of the recurrence analysis 

is the recurrence plot (RP), which visualises the recurring 

patterns in a matrix (Eckmann et al., 1987). The method is 

completed by the recurrence quantification analysis (RQA), 

which expresses the texture and typology of the recurrence plot 

in a number by means of statistically calculated key figures 

(see Marwan et al., 2007). 

Applications of the recurrence method in professional football 

can be found in the work of Lames & Plück (2015), Stöckl et 

al. (2017) and Lames et al. (2021). The results of these studies 

are promising, as they demonstrate the representational 

capacity of RPs in football matches (Lames & Plück, 2015), 

the unpredictability of the players' behaviour (Stöckl et al., 

2017), significant correlations with common performance 

indicators (Lames et al., 2021) and a correlation of RPs and 

RQA parameters to open play (ibid.).  

It is noticable that in all the studies, the recurrence analysis was 

carried out without the aid of method-specific analysis tools. 

Instead, the calculations and plots were executed 

programmatically and with the help of mathematical 

programming and visualisation libraries (e.g. Lames et al., 

2021). This circumstance is consistent with the authors’ 

knowledge that, at the time of writing, no tool exists for 

carrying out recurrence analyses in professional football. 

Furthermore, the method was only used in a scientific context. 

For practical application, an intuitive and easy-to-use tool is 

still missing, with the help of which flexible recurrence views 

are possible within a very short time. 

The aim of this study is to present a user-friendly dashboard 

that can be used to conduct performance analyses in 

professional soccer including the recurrence method. In 

pursuit of this goal, it is investigated how the practicability of 

the recurrence method can be increased and which contents 

and information are additionally relevant for a comprehensive 

performance analysis. 

2. MODELLING

2.1  RPs 

The recurrence plot is a graphical preparation of a square 

matrix whose coefficients express the approximation of a 

trajectory at the corresponding time points t=i and t=j. In terms 

of soccer, the axes correspond to the match time points in 

seconds. To form a coefficient, the Euclidean distance between 

the positions at time points i and j is first calculated. The 

distance is then matched with the recurrence threshold. If the 

distance equals or falls below the threshold, the recurrence 

condition is fulfilled for this point. Graphically, the 

corresponding pixel is coloured black, whereas a non-recurrent 

point is coded white. 

2.2  RQA 

We adopted seven recurrence parameters from Marwan et al. 

(2007). Recurrence Rate (RR) simply counts the recurrence 

points in the whole RP and provides the rate of these points 

compared to all points in the RP. Determinism (DET) is the 

ratio between the recurrence points that lie on a diagonal line 

of length l with l ≥ lmin (lmin=3 in our case) and the total 

number of recurrence points. Laminarity (LAM) means very 

much the same as DET, but for vertical lines instead of 

diagonal ones. Average diagonal line length (LL) is defined as 

the average of all diagonal lines with l ≥ lmin. Trapping Time 

(TT) is analogous to LL but is the average vertical line length 

of all lines with l ≥ lmin. Entropy (ENTR) is the Shannon 

entropy of the different diagonal line lengths ≥ lmin. ENTR-V 

is the entropy of the vertical lines.   
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2.3  Technologies 

21 matches of a German Bundesliga team from the 2019/2020 

season were used as a sample. The data was preprocessed 

using the Python programming language and its common data 

processing libraries. The tool was implemented with the help 

of Plotly's framework Dash, which enables the development of 

web-based analysis applications using Python. 

3. RESULTS 

A recurrence-based dashboard was designed that forms the 

basis for comprehensive match analyses in practice. Central to 

the development is the idea of bundling several analysis 

functions in one tool, so that the RP is contextualised by 

diagrams, graphics, key figures as well as cross-media content 

such as match videos. For this reason, the RP is used as an 

interactive control, whereby the user receives specific 

information by selecting an area. The dashboard shows 

extracts of the game video before and after a selected point on 

the x-axis in the RP and the corresponding part of the game on 

the y-axis. Practicality has been increased in that sports 

analysts are able to use the dashboard to quickly search for 

points of interest in the RP as the relevant video clips are easily 

accessible. This also makes it easier to find similar clips that 

might not be easy to find if they were not marked by specific 

events, e.g. during a set. In addition, a pitch visualisation was 

integrated, showing the players' positions from a bird's eye 

view. From this, more detailed interpretations of the positional 

play at the selected points in time can be derived. Furthermore, 

filtering by tactical groupings or individual players provides 

information about commonalities in the behaviour of players 

in certain positions. In addition to the interactive RP, the 

analysis tool also contains RQA parameters and performance 

indicators such as average speed, which allow further aspects 

of the game to be quantified (Fig. 1). 

 

Fig. 1: User interface draft of the RP analysis tool with RP as 

controller, video display of the selected scenes, local 

performance indicators as well as recurrence parameters and 

filtering options. 

4. CONCLUSIONS 

In this abstract, we presented a dashboard that can be used to 

perform recurrence analysis in professional soccer games. It 

shows how recurrence analysis can be integrated into 

notational performance analysis and what information is 

useful in this context. 

Future work could deal with the further development of the 

dashboard. On the one hand, new functionalities could 

improve the practicability and produce innovative insights in 

performance analysis. At this point, the flexible nature of 

dashboards should be emphasised, which makes it possible to 

analyse any key figures and analysis methods simultaneously. 

On the other hand, the dashboard could be extended to other 

application scenarios. One possibility would be to include 

training operations in the match analysis. This could bridge the 

gap between training and match analysis, for example by 

examining the implementation of specifically trained tactics in 

the match. Although this work is aimed overall at football, it 

is to be expected that other top sports can also benefit from 

such a recurrence-focused dashboard. Particularly obvious are 

implementations in those sports for which empirical data 

already exists in connection with recurrence analysis (e.g. golf, 

Stöckl et al. 2017). 
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Abstract: We propose a computational model of a human heart including three-dimensional
descriptions for electrophysiology, solid mechanics and fluid dynamics of the blood, aiming
at reproducing the feedback mechanisms that occur within the heart. The model is obtained
combining standalone physical models used in the cardiac modeling literature, introducing
coupling terms, resulting in a multi-way coupled integrated model. We numerically solve the
model with a staggered scheme. Fluid dynamics and solid mechanics are coupled implicitly with
a monolithic scheme. The staggered scheme allows to select different timesteps for the different
core models, leveraging the multiscale and multiphysics nature of the model. Simulations results
on a realistic human heart model are consistent with the behavior shown by healthy hearts.
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1. INTRODUCTION

We aim at a multi-way coupled computational model
that integrates three dimensional descriptions of cardiac
electrophysiology (EP), active and passive mechanics and
blood dynamics (individually referred to as core models).
Such a model has the capability of capturing the feed-
back mechanisms between the different components of the
heart. We refer to the model as electro-mechanics-fluid
dynamics (EMF)

Due to the large size of an EMF model, fully coupled
computational models of this kind are seldom considered
in literature, e.g. in Hosoi et al. (2010), Santiago et al.
(2018). Nonetheless, the core models have been studied in
detail either in a standalone way or with reduced coupling
to other models (see e.g. Augustin et al. (2016), Gurev
et al. (2011), Regazzoni et al. (2022), Nordsletten et al.
(2011), This et al. (2020), Zingaro et al. (2022)).

We leverage previously developed core models, introducing
couplings between them. We solve the EMF model with
a staggered scheme in time, exploiting its multiphysics
and multiscale nature, and relying on finite elements for
the space discretization. Numerical results, obtained on a
realistic human heart, showcase the ability of the compu-
tational model to reconstruct physiological behavior.

? This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 740132, iHEART -
An Integrated Heart Model for the simulation of the cardiac function,
P.I. Prof. A. Quarteroni).

2. MODELS AND NUMERICAL METHODS

The EMF model has four major components: EP, ac-
tivation, solid mechanics and fluid dynamics. For EP,
we use the monodomain equation (Colli Franzone et al.
(2014)) coupled with the ionic model of Ten Tusscher
and Panfilov (2006). Active force generation, in the active
stress framework, is obtained with the model presented
in Regazzoni et al. (2018). The muscle displacement is
modeled using elastodynamics equations, as described e.g.
in Regazzoni et al. (2022), fed with the activation state
computed by the activation model to compute the active
stress contribution. We use Guccione and Neo-Hooke con-
stitutive models for passive mechanics. Fluid dynamics of
the blood are described by ALE incompressible Navier-
Stokes equations (see e.g. Zingaro et al. (2022)). Valves
are included with the Resistive Immersed Implicit Surface
method (Fedele et al. (2017)), choosing the opening and
closing times based on computed pressures. Fluid and solid
are coupled by imposing continuity of velocity and stresses
at the interface, see Bazilevs et al. (2013), resulting in a
fluid-structure interaction (FSI) problem.

We discretize the EMF model in time with a staggered
scheme. We solve the EP equations for a few small
timesteps. We then solve the activation model, and the FSI
equations. All couplings are treated explicitly, except for
the FSI coupling, due to stability concerns. We discretize
in space with finite elements on a hexahedral grid, with a
finer grid for EP, nested into the one for mechanics, and
with a conforming fluid-solid interface. The FSI problem is
discretized monolithically and solved with Newton method
and GMRES, with a block-triangular preconditioner using
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SIMPLE (Deparis et al. (2014)) and AMG to approximate
fluid and mechanics blocks.

3. NUMERICAL SIMULATIONS

We consider a human cardiac model, under physiological
conditions. We generate fibers with rule-based algorithms
(Piersanti et al. (2021)). We use boundary conditions mim-
icking the presence of the pericardial sac for the outer wall
of the myocardium (Regazzoni et al. (2022)), and simpli-
fied boundary conditions of Neumann and resistive type
for fluid inlets and outlet. The results are qualitatively con-
sistent with the deformations observed in medical images.
Moreover, major biomarkers such as ventricular volume
and pressure are captured effectively by the model. The
model shows the potential of reproducing effectively the
behavior of the human heart under physiological condi-
tions.

Fig. 1. Three snapshots of a numerical EMF simulation:
EP (left), solid velocity (center), fluid velocity (right).
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1. INTRODUCTION

Positron emission particle tracking (PEPT) has been known 

and used for industrial flow tracking in opaque flow fields 

such as chemical reactors, food processors, and granulators. 

Because of its abilities, such as tracking a single or limited 

number of particles, PEPT has promising potential for 

biomedical imaging applications. 

Both PEPT and positron emission tomography (PET) are 

based on the annihilation of a positron when meeting an 

electron, which results in a release of two gamma rays (511 

keV) at virtually 180 degrees. By triangulation of the relevant 

coincidences, the location of the annihilation is calculated 

(Ingram et al. 2007, Seville et al. 2009). 

Cheng et al. (2011) investigated the standard deviations of 

the position measurements and showed the effect of various 

factors such as the number of the lines of response (LORs) 

and relative position of the tracer and the detector on the 

accuracy of the measurements in a hydrocyclone. The details 

for labelling the resin spheres as well as the algorithm for the 

triangulation and elimination of random coincidence was 

described by Cheng et al. (2011). It has been shown that the 

conventional PET and PEPT tracking algorithms need 

improvement to be optimized for a single particle (Jung et al. 

2020, Schmitzer et al. 2019) and multiple particles (Langford 

et al. 2016, Langford et al. 2017) tracking. 

To assess the potential of clinical applications of PEPT for 

coronary disease diagnosis, we investigated the errors 

associated with the reconstruction of the velocity profile from 

multiple particles in a vessel with a stenotic obstruction.  

2. METHOD

To investigate the uncertainty of the blood velocity 

measurement using the information from a limited number of 

particles, computational models with an axisymmetric 

stenosed geometry and steady flows with various Reynolds 

numbers (Re=50, 100, 200, and 250) were created. ANSYS 

FLUENT was used to simulate the laminar fluid flow in the 

stenosed artery using computational fluid dynamics (CFD) 

techniques. The total axial length of the stenosis was assumed 

to be 1 cm. The wall was assumed to be rigid; therefore, no 

deformation was considered. 

Particle tracking was conducted using an in-house Python 

code. The effects of the number of particles and particle 

tracking time step were analysed. The particles were 

randomly seeded into the inlet of the flow field with a 

uniform distribution. To reconstruct the profile using the 

particles information, we compared 4th and 6th order 

polynomial fitting. We modified the fitting procedure to 

capture the negative axial velocities downstream of the 

stenosis.  

Due to the order of magnitude of the Stokes number, i.e., the 

relaxation time of the particles over the typical time scale of 

the flow, the drag force exerted on the particles was 

neglected. The root-mean-square error (RMSE) between the 

fitted and the CFD solution was calculated as a metric of the 

accuracy of the predicted profile. The radioactivity of the 

tracers bound to the radionuclide (18F) is between 13 and 55 

MBq per particle; therefore, gathering the information of the 

location of the particles is restricted by the particle tracking 

time step not the radioactivity of the tracer.  

3. RESULTS AND DISCUSSION

Figure 1 shows the velocity profile for one of the cases 

(Re=250) around the stenosis. 

The reconstruction of the velocity profile using a limited 

number of particles showed acceptable agreement, i.e., an 

estimated error of 1% with 10 particles with Re=250, for the 

flow before the stenosis. However, recirculation regions were 

observed. Therefore, we used auxiliary points to improve the 

fitting of the velocity profile after the stenosis. Figure 2 

shows the RMS error for various numbers of particles for the 

velocity profiles reconstructed with 6th order polynomials. 

Due to better results, we only present the results 

corresponding to the 6th order.  

The RMS error was less than 3.6% with a standard deviation 

(SD) of 4.1% for more than seven particles and decreased to 

1.5 (SD=0.18%) as the number of particles grew to 30. 

However, it was observed that the error did not approach zero 
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for velocity prediction after the stenosis when we increased 

the number of particles.  

 

Fig. 1. The velocity contour in the case with 50% stenosis 

and Re=250  

 

Fig. 2. RMS error between fitted and simulated velocity 

profiles for different number of particles. The bars show the 

standard deviation. 

 

Fig. 3. RMS error between fitted and simulated velocity 

profiles for different particle tracking time steps. The bars 

show the standard deviation. 

The particle tracking time step was varied from 0.5 ms to 5 

ms to investigate its effect on the accuracy of the velocity 

reconstruction. Figure 3 presents the RMS error of the 

normalized velocity difference for the different temporal 

resolutions. The results suggest that the accuracy of the 

reconstructed velocity profile drops as the particle tracking 

time step increases. The RMS error was below 10% for 

tracking time steps less than 25 ms and increased to 30% 

(SD=12.5%) for tracking time steps larger than 40 ms, 

respectively. For the untreated 6th order profile, the RMS 

error of the normalized velocity after the stenosis, increased 

from 6% (SD=2%) to 39.9% (SD=38%) when Re increased 

from 150 to 250. However, when the modified fitting was 

used the RMS error remained below 10% (SD<3%) for all 

cases.  

4. CONCLUSIONS 

PEPT is a novel technology with high potential diagnostic 

impact in clinical applications where non-invasive 

assessment of blood flow velocity and subsequent derivation 

of pressure gradients are of critical importance, such as 

coronary stenosis. To determine the effects of parameters 

involved in PEPT, we analysed a simplified set-up for 

stenosed vessels with steady flow at different Reynolds 

numbers. We investigated the error of this method for 

velocity profile reconstruction after the stenosis. This 

methodology is currently being developed for 3D idealised 

and patient-specific coronary arteries to investigate the 

correlation of the pressure field and the reconstructed 

velocity field.  
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1. INTRODUCTION

The demand of mobile platforms for the motion in a
constrained spaces in complex environments or personal
high-maneuverability robots for disabled persons has led
to the invention of new types of wheels. Beginning from
the first patent received by Grabowezky in USA in 1919,
engineers started developing wheels that could move not
only in their own plane but, for example, perpendicularly
to this plane. A key issue for the effective usage of these
wheels and for the optimal control of the entire mobile
system is the understanding of the physical interaction
between the wheels and the environment. For this reason,
the mechanics of motion with such wheels draws attention
of both researchers and engineers (Campion et al. (1996),
Ostrowski and Burdick (1998) and others). The motion
of a platform with four Mecanum wheels is investigated
in Zeidis and Zimmermann (2019) within the framework
of non-holonomic mechanics. In this paper the dynamic
equations of a wheel pair that contain two Mecanum
wheels with controllable orientation of the rollers during
motion is considered. Such a system consists of two co-
axial disks with rollers attached to them as shown in Fig. 3.
When one of the disks turns with respect to the other disk,
the angle of inclination of the rollers relative to the wheel’s
plane changes. The relative rotation of the disks can be
produced by a separate actuator, which allows choosing
an optimal orientation of the rollers for a given trajectory.

2. MATHEMATICAL PROBLEM

The Mecanum wheel pair moves so that all its wheels
have permanent contact with the underlying plane. The
distance between the centers of the wheels is 2 l. The
coordinates of the center of mass C in a fixed coordinate

? This study was partly supported by the Deutsche Forschungsge-
meinschaft (DFG) (project ZI 540-19/2).

Fig. 1. Prototype of a Mecanum wheel with controllable
angle of the rollers

system XOY are xc, yc , the angle formed by the axis that
is orthogonal to the axis of wheel pair with axis OX we
denote by ψ. The angles of rotation of the wheels relative
to the axes that are perpendicular to the planes of the
respective wheels and pass through their centers are ϕi,
and the time-dependent torques applied to the wheels are
Mi(t) (i = 1 , 2).

A Mecanum wheel is a wheel with rollers fixed on its outer
rim. The axis of each of the rollers forms the same angle
δ (0◦ ≤ δ < 90◦) with the plane of the wheel. Each roller
may rotate freely about its axis, while the wheel may roll
on the roller. We will model a Mecanum wheel by a thin
disk of radius R, see Fig. 2. Let V K be the velocity of
the wheel’s center K, γ be the unit vector of the roller’s
axis, and ϕ be the angle of rotation of the wheel about the
axis that is perpendicular to the wheel’s plane and passes
through its center. The wheels move without slip, which
implies the constraint (Nejmark and Fufaev (1972))

V K · γ = R ϕ̇ cos δ . (1)
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Fig. 2. Mecanum wheel pair

We introduce a wheel pair-attached coordinate system
ξηζ with origin at the center of mass C of the axis between
the wheel pair (Fig. 2). We point axis Cξ orthogonal to
the axis of the wheel pair, axis Cη along the axis of the
wheel pair, and axis Cζ vertically upward. Denote by VCξ
and VCη the projections of the velocity of the center of
mass onto the movable axes Cξ and Cη, respectively, and
represent expression (1) as follows:

VCξ cos δ1 − VCη sin δ1 − l cos δ1 ψ̇ = R cos δ1 ϕ̇1 ,

VCξ cos δ2 + VCη sin δ2 + l cos δ2 ψ̇ = R cos δ2 ϕ̇2 .
(2)

Here the angles δ1 = δ1(t), δ2 = δ2(t) are given functions
of time t. Then the components ẋc and ẏc of the velocity
vector of the center of mass in the fixed reference frame
are as follows:

ẋc = VCξ cosψ − VCη sinψ,

ẏc = VCξ sinψ + VCη cosψ.
(3)

The configuration of the mechanical system is defined by
five generalized coordinates, q1 = ϕ1, q2 = ϕ2, q3 = ψ,
q4 = xc, and q5 = yc. Two generalized velocities can be
expressed in terms of the remaining generalized velocities
by using the non-holonomic constraint equations (3). The
coefficients in these equations be functions of only the
independent coordinates and time t. Chaplygin’s systems
(Papastavridis (2002), Zimmermann et al. (2009)) are
usually defined as mechanical systems with non-holonomic
time-invariant constraints that are linear with respect to
the generalized velocities and can be reduced to the form
in which the dependent generalized velocities are expressed
in terms of the independent generalized velocities in such
a way that the coefficients of the independent generalized
velocities are functions only of the independent generalized
coordinates. In this case, the dynamic equations can be
represented in a special form that are called Chaplygin’s
equations. Chaplygin’s equations form a closed system
that does not involve the constraint equations, as it is
the case for systems with holonomic constraints. This
remarkable property remains valid for the systems with
linear time-varying constraints if the coefficients of the
independent generalized velocities depend only on the
independent generalized coordinates and on the time.

Fig. 3 depicts the time histories xc(t) and yc(t) of the
coordinates of the wheel pair center of mass for the case
where the rollers inclination angle changes periodically
with a period of 2 s first from 5◦ to 85◦ and then from 85◦

to 5◦ (curves 1) and for the case where the roller inclination
angle is constant and is equal to 45◦ (curves 2).

t [s]

x
x  ,y
[m]

xy

y

1

2

2

C

C

C

C

C

C

Fig. 3. The time histories of the xc- and yc-coordinates of
the center of mass of the wheel pair for the cases of
changing and constant inclination angle of the rollers

3. CONCLUSION

The equations of motion of a wheel pair with time vary-
ing change in the angle of inclination of rollers to the
wheel’s plane are presented. These equations can be re-
garded as a modification of Chaplygin’s equations for
non-holonomic systems with time-varying constraints. The
modified equations contain additional terms as compared
with the classical equations for the systems with time
invariant constraints. The main property of Chaplygin’s
equations is that the dynamic equations can be integrated
irrespective of the constraint equations. This property
is retained for the modified equations. The ability of a
controllable inclination angle of the rollers of the Mecanum
wheels during motion enhances the kinematic possibilities
of mobile robots with such wheel pairs.
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1. INTRODUCTION

A mobile system consisting of two interacting bodies
regarded as point masses is a simplest model of a worm-
like limbless crawler. The interaction force plays the role
of a control variable. This system can move progressively
on a rough plane with Coulomb’s friction acting between
each of the bodies and the plane. On a horizontal plane, if
both bodies did not move at the initial time instant, this
system can move only along the line that connected the
bodies at the initial time instant. This is the case, because
no lateral impressed forces act on the system. The motion
of a two-body crawling system along a straight line on a
horizontal plane was studied by Chernousko (2002) and
Chernousko (2011). The situation changes for an inclined
plane, since the gravity force has a projection onto the
direction orthogonal to the line that connects the bodies,
provided that both bodies do not lie on the common line of
maximum slope. The motion of a two-body crawler on an
inclined plane along a line of maximum slope is addressed
by Figurina (2018). The aim of this study is to show that
the two-body crawler can, in principle, be driven from any
initial state of rest to an arbitrarily small neighborhood of
any terminal state of rest on an inclined plane, if at the
initial time instant the bodies do not lie on the common
line of maximal slope.

2. STATEMENT OF THE PROBLEM

Consider a system of two interacting point bodies of
masses m and M , m < M , on a rough inclined plane.
Let k be the coefficients of Coulomb’s friction between the
bodies and the plane, γ the inclination angle of the plane
(0 < γ < π/2), F the interaction force applied by body M
to body m. We assume that from a state in which both
bodies lie on the common line of maximum slope and do
not move, body m can be moved upward along this line,
with body M remaining at rest. This assumption implies
the inequality

tan γ ≤ k
M −m

M +m
. (1)

⋆ This study was partially supported by the Ministry of Science and
Higher Education of the Russian Federation within the framework
of the Russian State Assignment under contract No. AAAA-A20-
120011690138-6 and partially supported by RFBR Grant No. 20-01-
00378.

Let at the initial time instant both bodies be not moving
and the bodies do not lie on the common line of maximum
slope. The issue we are interested in is whether the system
can be transferred into an arbitrary terminal state of rest
on the plane. We investigate this possibility in principle
and do not impose constraints on the control force and
the relative displacement of the bodies. In particular, the
impulsive interaction force F that changes instantaneously
the distance between the bodies is allowed and, moreover,
the bodies are allowed to pass through each other. It will be
shown that such a transfer can be performed by combining
infinitely slow (quasistatic) motions of body m and fast
motions in which the distance between the bodies changes
virtually instantaneously.

3. QUASISTATIC MOTIONS

Consider the quasistatic motion of the system, i.e., the
slow motions that can be regarded as a continuous se-
quence of equilibria. As follows from inequality (1), in the
quasistatic mode, only body m can move and body M
remains at rest. Introduce in the inclined plane the coor-
dinate system Mxy (fixed for the case of the quasistatic
motion), the y-axis of which points upward along the line
of maximum slope (Fig.1).

Fig. 1. Two-body system on an inclined plane.

Let r and α denote the polar coordinates of body m in the
inclined plane, related to the pole M and the polar axis
Mx. The trajectories of the quasistatic motion of body m
for α ∈ (−π/2, π/2) are defined by the equation

dr

dα
= ±r

√
1− a2 cos2 α

a cosα
, a =

tan γ

k
< 1, (2)

The minus sign on the right-hand side of Eq. (2) cor-
responds to the repulsive motion for which the force F,
applied to body m is directed along the vector

−−→
Mm, and

the plus sign corresponds to the attractive motion.
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Let r±(α, α0, r0) denote the solution of Eq. (2) subject
to the initial conditions r(α0) = r0. The function r+
(r−) monotonically increases (decreases) as α increases in
the interval (−π/2, π/2). The function r+ possesses the
following properties:

lim
α→π/2

r+(α) cosα = ∞, lim
α→−π/2

r+(α) = 0.

The trajectories r− are symmetric to r+ about the axis
Mx, i.e.,

r−(α, α0, r0) = r+(−α,−α0, r0).

The quasistatic trajectories of bodym are plotted in Fig. 2.
It can be shown that bodym can move quasistatically from
the point (α0, r0) clockwise along a curve that is arbitrar-
ily close to the circumferential arc r = r0, α ∈ (−π/2, α0].
We will call such a motion quasistatic circumferential mo-
tions (motions along a circumference). The circumferential
motions require infinitely frequent switchings between the
attractive and repulsive trajectories.

Fig. 2. Quasistatic trajectories of body m.

For α ∈ (π/2, 3π/2), the repulsive and attractive tra-
jectories are symmetric with respect to the axis My
to the respective trajectories for α ∈ (−π/2, π/2). For
α ∈ [α0, 3π/2), body m can move quasistatically along a
circumference counterclockwise.

4. FAST MOTIONS. ALGORITHMS FOR DRIVING
THE SYSTEM INTO THE TERMINAL STATE

By fast motions we understand the motions that transfer
the system between two states of rest in an infinitesimal
time. For such motions, the interaction force of the bodies
is much larger than the force of friction and, therefore, the
center of mass of the system and the line that connects the
bodies remain fixed. By assumption, the bodies may pass
through each other and, hence, by means of a fast motion
body M can be driven to any position on the initial line
Mm; then the position of body m is defined uniquely.

By combining fast and quasistatic motions one can drive
body m into any position on the plane, with body M
remaining arbitrarily close to its initial position. We will
prove this proposition for the particular case where α ∈
(π/2, 3π/2) for the initial position and α ∈ (−π/2, π/2) for
the terminal position. The respective process is illustrated
in Fig. 3. The starting position of body m is denoted by A
and the destination position by B. The larger and smaller
circles depict the successive positions of bodies M and m,
respectively. The shading density of the circles decreases as
the later positions are depicted. First, we proximate body
m quasistatically to body M by a distance of r = ε. If ε is

small enough, the angle α is close to 3π/2. The respective
position of body m corresponds to point C. After this,
we perform a fast motion as a result of which bodies m
and M change their positions to the positions that are
symmetric to the previous positions with respect to the
system’s center of mass, body m comes into point D, while
the change in the position of body M is less than ε. Then,
body m is moved quasistatically along a circumference
clockwise until it arrives at the point E that belongs to the
repulsive trajectory that passes through the desired point
B. Finally, body m is moved quasistatically along this
repulsive trajectory into the point B. Simplifying, we can
regard the described strategy (for ε → 0) as proximation of
bodies m and M until coincidence, with following motion
of body m along an appropriate quasistatic repulsive
trajectory emerging from the origin.

line of
maximal
slope

e

A

e
e

fast
motion
(jump)

quasistatic
attraction

quasistatic
repulsion

B

C

D

C
E

Fig. 3. Motion of body m between two prescribed points,
with body M remaining close to its initial position.

The entire strategy for moving the system into the given
terminal state can be briefly described as follows. By
alternating fast motions of the system and quasistatic
motions of body m along a circumference, we move the
system into a position in which the line mM passes
through the terminal position of body M . Then, by fast
motion, we transfer body M into the terminal position.
Finally, by using the strategy that was described above,
we move body m into the terminal position, the change in
the position of body M being able to be made arbitrarily
small.

5. CONCLUSION

If at the initial state of rest the bodies of the crawler do
not lie on a common line of maximum slope, the system
can be driven into an arbitrarily small neighborhood of
any terminal state of rest on an inclined rough plane by
combining quasistatic and fast motions.
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Abstract:  

Dielectric elastomers (DEs) are flexible active materials capable of large deformations 

when activated by high voltage. They consist of a thin elastomeric membrane covered 

on each side by flexible and stretchable soft electrodes. When a high voltage (~1kV) is 

applied, the membrane is compressed and its surface area increases by up to 100% [1]. 

Because of this strong electromechanical conversion, associated to their high energy 

density, lightness and ability to work over a broad frequency range, they are 

considered as promising materials in different mechatronic applications[2], such as soft 

robotics[3] or fluidic pumps[4] and energy harvesting systems[5] just to name a few. On 

this regard, DEs have been considered also as promising materials for acoustic 

applications, such as loudspeakers [6]. Several prototypes have been developed and 

tested by several research groups, and models have been proposed to estimate their 

performance [7,8]. 

Previous studies described the electro-elastoacoustic interactions occurring in a DE 

membrane with the help of an electromechanical model solved numerically using finite 

elements. The frequency response was well predicted in a broad frequency range. 

Moreover, the relation between the electrode shape and the dynamical and acoustical 

behavior of membranes was described for the first time with the perspective to control 

selectively the contribution of eigenmodes to the radiated sound [9].

Although several progresses have been made in the field in these recent years, still a 

high actuating electric field (~10V/µm) is needed to induce large mechanical 

deformation of DEs, thus limiting their practical applications[10]. The major challenge in 

this field is to achieve a high actuation stress under a low applied electric field. A new 

approach based on the use of polymers loaded with conductive nano-inclusions is the 

subject of growing interest in scientific research. Indeed, the presence of nanoparticles 

leads to an increase in the dielectric constant of the material, altering their 

electrostriction coefficient, which is linked to the actuation deformation of the 

composite according to the Maxwell stress equation.

DE nanocomposites, are generally made up of random dispersions of particles without 

any structural optimization. In this study, we propose to manufacture and formulate 

isotropic self-assembled networks of core-shell nano-inclusions composed of 

conductive carbon nanotubes (CNT) coated by a few nanometers of SiO2 passivation 

layer uniformly dispersed in flexible polymer elastic matrix (PDMS) without 

compromising breakdown strength (Eb) and elasticity (Y) of membrane assuring high 

actuation strain under a low driving electric field.  

According to Maxwell stress equation SMaxwell=ε0βE², with β= εrY a substantial increase 

of the electromechanical sensitivity (β) obtained by a slight improvement of the 
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dielectric constant of DEs nanocomposite keeping a reasonable elastic modulus 

represents a safe and reliable solution to reduce the driving electric field of dielectric 

elastomer loudspeakers. The improvement of the electromechanical couplings in these 

novel elastomeric dielectric nanocomposites, following the optimizations electrodes 

shaping studied by Garnel et al. will be validated by the integration of these 

membranes in loudspeakers prototypes. Based on actual measurements of the tensile-

dielectric properties of nanofabricated nanocomposites, we aim for improvements 

beyond the state of the art by obtaining high actuation stress at halved applied electric 

field. 

 
Fig. 1 – TEM/EDS images of the CNT-SiO2 prepared by sol-gel method: (a) Pristine carbon nanotubes, (b) 7 nm of SiO2 

passivation shell, (c) 14 nm of SiO2 passivation shell, (b) 20 nm of SiO2 passivation shell. Dielectric-tensile properties of 

nanofabricated nanocomposites: (e) frequency dependence of dielectric constant, (f) frequency dependence of dielectric 

losses and (g) Tensile stress-strain curves of the nanofabricated nanocomposites. 

 

Keywords: Dielectric elastomers (DEs), Loudspeakers, Core-Shell nanocomposites, electromechanical 

sensitivity, Dielectric properties. 
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Abstract: The present study applied social networks analysis to objectively discriminate and describe 

interpersonal interaction dynamics of players coached by the top-level professionals Jürgen Klopp, Pep 

Guardiola, and Mauricio Pochettino, across the UEFA Champions League seasons from 2017 to 2020, 

considering different quality of opposition. Statistical analysis revealed that two of Jürgen Klopp’s team 

passing network metrics differ according to the quality of opposition. Density (U(34) = 202; p = 0.02) 

and largest eigenvalue (t(32) = -3.24; p = 0.03)  were lower when Liverpool played against strong 

opponents. Pochettino also showed lower values for density (t(26) = -2.77; p = 0.01) and largest 

eigenvalue when playing against strong opponents (U(28) = 148; p = 0.01), compared to when playing 

against weak opponents. Additionally, the average shortest-path length was significantly lower when 

playing against strong opponents (U(28) = 148; p = 0.01). This is novel evidence on sports teams’ 

coordination and cooperation relationships through passing in football association, along seasons of a 

high-level European competition. 

Keywords: coaching, football (soccer), notational analysis, social network analysis, collective behaviour. 



1. INTRODUCTION

Previous work has dedicated efforts to unveil patterns in 

passing dynamics through social network analysis for the 3 

finalists of the Best FIFA Men’s Coach awards ins 2019: 

Jürgen Klopp, Pep Guardiola, and Mauricio Pochettino [1]. 

The authors investigated the potential of passing social 

networks to objectively discriminate match dynamics across 

different coaching framework styles. As a step forward, the 

analysis of teams’ performance level according to specific 

constraints should yield practical information that can be 

more representative to elaborate models and help on coaches’ 

operational decisions. Quality of opposition have been 

associated to influence positioning behaviour of players in 

matches [2], as well as a change in the average use of 

attacking and defensive style of play in association football 

[3]. Thus, we applied social networks analysis to objectively 

discriminate and describe interpersonal interaction dynamics 

of players coached by the top-level professionals Jürgen 

Klopp, Pep Guardiola, and Mauricio Pochettino, across the 

UEFA Champions League seasons from 2017 to 2020, 

considering different quality of opposition. 

2. MATERIALS AND METHODS

2.1  Sample 

In total, passing data of 92 games of the UEFA Champions 

League in the seasons of 2017/18, 2018/19 and 2019/20, 

while coaching Liverpool, Manchester City, and Tottenham 

Hotspur teams, were analysed, respectively. Data from the 

games were gathered from the media press kits of UEFA [4], 

and were divided according to 2 different qualities of 

opposition: strong (finished the group stage between the 1st 

and 2nd places) and weak opponents (placed in 3rd and 4th in 

their respective groups).  

2.2 Social Network  and Data Analysis 

A dedicated toolbox for social network analysis [5] was 

applied, and the passing data from the 11 players that played 

most time during the matches were included. The network 

metrics were considered the following: local clustering 

coefficient, density, average shortest-path length, mean 

centrality, and largest eigenvalue. All variables were 

calculated from adjacent matrices normalized by the 

maximum number of passes performed, to avoid the bias of a 

different number of passes in each game to impact the 

interpretation of the results. After applying the Kolmogorov-

Smirnov, for the normally distributed data, T-test was carried 

out. For not-normally distributed data, the U Mann-Whitney 

test was applied, with p < 0.05. 

3. RESULTS

The results for the network metrics are described in Table 1. 

Jürgen Klopp’s team passing network metrics showed to 

differ according to the quality of opposition. Density (U(34) 

= 202; p = 0.02) and largest eigenvalue (t(32) = -3.24; p = 

0.03)  were lower when Liverpool played against strong 

opponents. Pochettino also showed higher values for density 

(t(26) = -2.77; p = 0.01) and largest eigenvalue when playing 
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against strong opponents (U(28) = 148; p = 0.01), compared 

to when playing against weak opponents. Additionally, the 

average shortest-path length was significantly lower when 

playing against strong opponents (U(28) = 148; p = 0.01). 

Guardiola’s network metrics were not statistically different 

according to the quality of opposition in the analysed 

matches. 

Table 1.  Mean ± standard deviation of passing network 

metrics for the coaches of Liverpool, Manchester City, 

and Tottenham Hotspur during 3 seasons of the UEFA 

Champions league (2017 to 2020), considering the quality 

of opposition. 

    
Jürgen  

Klopp  

Pep 

Guardiola 

Mauricio 

Pochettino  

Matches 
Strong 21 17 17 

Weak 13 12 11 

Density [a.u.] 

Strong 49.77 ± 26.53* 64.35 ± 21.69 45.01 ± 14.36* 

Weak 69.44 ± 26.25 63.10 ± 22.74 60.34 ± 15.81 

Local clustering 

coefficient [a.u.] 

Strong 0.54 ± 0.21 0.50 ± 0.18 0.53 ± 0.23 

Weak 0.52 ± 0.19 0.52 ± 0.20 0.56 ± 0.23 

Average shortest-path 

length [a.u.] 

Strong 2.47 ± 1.93 2.98 ± 0.44 2.57 ± 0.32* 

Weak 3.06 ± 0.59 2.83 ± 0.43 3.06 ± 0.51 

Centrality dispersion 

[a.u.] 

Strong 0.11 ± 0.03 0.14 ± 0.02 0.12 ± 0.04 

Weak 0.12 ± 0.03 0.14 ± 0.01 0.13 ± 0.03 

Largest eigenvalue [a.u.] 

Strong 40.23 ± 16.03* 64.16 ± 19.69 38.19 ± 12.13* 

Weak 58.67 ± 16.24 62.70 ± 13.48 50.78 ± 11.10 

*Significantly different from weak (p<0.05). 

4. DISCUSSION 

Pep Guardiola is to be able to maintain a consistent work 

regarding passing, independently on his opponents, once the 

metrics showed no statistical difference when playing against 

weak and strong opponents. He presents higher largest 

eigenvalue overall, which indicates the promotion of a higher 

number of passes than the other coaches. His team also 

presents pairs of players less closely connected when 

compared to the other coaches’, meaning that more 

intermediate players participate to connect passes among 

teammates [1]. He’s been also reported to stand out by the 

capacity to adjust the important roles assigned to his players, 

thus affecting the centrality dispersion in the team [6]. Jürgen 

Klopp and Mauricio Pochettino coaching style are reported to 

share important similarities. Both explore more the flexibility 

of interpersonal linkages synergies, with fluid opportunities 

or levels of collaboration between all teammates [1]. The 

present study also found similarities for these coaches’ 

passing networks when the quality of opposition is 

accounted. Both coaches had decreased values for density 

and largest eigenvalue when playing against stronger 

opponents, challenging their teams’ ability in exploring 

passing options, thus, reducing the synergy in team 

coordination, when compared to the matches which they 

played against the weak opponents. The present results could 

reflect a certain difficulty in achieving the sweet spot 

between robustness and adaptability in the passing dynamics. 

Additionally, Pochettino also presented a lower average 

shortest-path length when playing against stronger 

opponents. Maybe, as a compensation for difficulties in 

maintaining quality of ball possessions, the exploration of 

interpersonal linkages synergies contributes to smaller 

topological distance between pairs of players and give 

Pochettino’s team more options to distribute the ball. 

Therefore, it might be a sign of changing tactical patterns of 

plays when playing against strong opponents, which can alter 

the topological distances of players and altering the average 

shortest-path length. 

5. CONCLUSIONS 

Coaches’ fundamental role is to elaborate and adjust the 

strategies underlying their teams’ collective behaviour and 

most of coaches’ work is discussed on the plane of 

impressions. Klopp and Pochettino, which stand out for more 

the flexibility of interpersonal linkages synergies in their 

passing dynamics, presented lower density and largest 

eigenvalue when playing against strong opponents. Guardiola 

is able to maintain his footprint which is related to integrated 

and coordinated connection between groups of players, thus 

keeping the relevant players connecting the attacking plays, 

regardless of the quality of opposition.   
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1. INTRODUCTION

Hyperbolic conservation laws play an important role in
many applications. For instance, modeling the behavior of
fluids or gases leads to conservation equations for quanti-
ties like mass, momentum, or energy. The resulting equa-
tions are typically nonlinear and exhibit phenomena like
shock formation and transport. Parametrized hyperbolic
equations suffer from a highly nonlinear solution manifold
that cannot be approximated appropriately by a linear
subspace, that is, the solution manifold has a slowly de-
caying Kolmogorov N -width, see for instance Ohlberger
and Rave (2016). Therefore, methods that rely solely on
linear combinations of ansatz-functions are not sufficient
to achieve suitable reduced models. Furthermore, the for-
mation and interaction of shocks is an additional difficulty
when dealing with model order reduction for conservation
laws.
In this contribution, we describe a new nonlinear model or-
der reduction technique. The nonlinearity of the approach
stems from the exponential map applied to vector fields in
Euclidean space. We will thus identify diffeomorphisms,
resulting from the application of the exponential map,
with vector fields. Afterwards, we use standard ideas from
linear model order reduction to compute a subspace of the
space of vector fields. During the online phase, for a given
parameter, elements from this subspace are computed and
the exponential map is used to determine the correspond-
ing diffeomorphism. This transformation is subsequently
applied to a (fixed) space-time solution snapshot to obtain
the approximate solution for the new parameter.

2. BASICS FROM DIFFERENTIAL GEOMETRY
AND IMAGE REGISTRATION

In this section, we give a brief overview of important
notions from differential geometry and introduce the basic
concepts of image registration via geodesic shooting.

? The authors acknowledge support by the Deutsche Forschungs-
gemeinschaft under Germany’s Excellence Strategy EXC 2044
390685587, Mathematics Münster: Dynamics – Geometry – Struc-
ture.

2.1 Differential geometry and Lie groups

In the intersection of differential geometry and group
theory, one considers so called Lie groups, which are
groups such that group multiplication and inversion are
smooth. Directly connected to the concept of Lie groups
is the notion of Lie algebras. For a Lie group G, the
corresponding Lie algebra g is defined as the tangent space
to the manifold G at the identity element. The exponential
map exp: g → G describes, for an element v ∈ g of the Lie
algebra, the end point of a shortest path (a geodesic) that
starts at the identity in G in the direction given by v.

2.2 Image registration and geodesic shooting

The field of image registration has its origins in the anal-
ysis of medical image data. Given two images u0, u1 : Ω →
Rd, treated as functions on a fixed domain Ω ⊆ Rd, the aim
of image registration is to find a transformation φ : Ω → Ω
such that u0 ◦ φ−1 ≈ u1. There exist several choices for
the class of transformation to employ. A quite general
approach uses the group of diffeomorphisms of the domain
Ω. Since the group of diffeomorphisms also forms a Lie
group, with the vector space of smooth vector fields on
Ω being the corresponding Lie algebra, we parametrize
a diffeomorphism by a single vector field to which we
apply the exponential map to regain the corresponding
diffeomorphism. This idea is used in the geodesic shoot-
ing algorithm developed in Miller et al. (2006). In the
aforementioned work, the Euler-Poincaré equations for the
evolution along a geodesic in the diffeomorphism group
are described. Together with the corresponding adjoint
equations, it is possible to formulate a gradient descent
algorithm for an energy functional of the form

Eu0→u1
(v0) := ‖v0‖2V +

1

σ2
‖u0 ◦ φ−1

1 − u1‖2L2(Ω),

where v0 : Ω → Rd denotes a vector field, ‖·‖V is a suitable
norm on the space of vector fields, σ > 0 is a weighting
parameter, and the diffeomorphism φ1 : Ω → Ω is given as
the solution at the final time t = 1 of the equation

dφt

dt
= vt ◦ φt,

where vt, for t ∈ [0, 1], solves the Euler-Poincaré equation
for the initial vector field v0. It then holds φ1 = exp(v0).
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3. NONLINEAR APPROXIMATION SCHEME

Before describing the algorithm in detail, we introduce
some more notation: We denote by P ⊂ Rp for some p ∈ N
the parameter space. Moreover, the space-time solution of
the equation under consideration for the parameter µ ∈ P
is denoted by u(µ) : Ω → R. The domain Ω is a subset of
Rn×R+, where n ∈ N is the space dimension. It therefore
holds d = n+1 for the dimension of the domain we deform.
For simplicity, we restrict our attention to a single ”topol-
ogy” of the solution, which is assumed to be independent
of the parameter µ ∈ P. We consider, for instance, only
solutions with a single shock or solutions with two merging
shocks. This means that we assume that it is possible to
transform solutions into each other by means of diffeomor-
phic transformations of the underlying domain Ω.
The idea of using Lie groups together with their corre-
sponding Lie algebra for model order reduction of hy-
perbolic equations was introduced in Ohlberger and Rave
(2013), where finite-dimensional groups acting only on the
spatial domain were considered, for instance the transla-
tion group. Here, we use the infinite-dimensional diffeo-
morphism group on the space-time domain Ω, such that
shock formation and interaction are already included in
the ansatz-functions.

3.1 Offline algorithm

During the offline phase, we first of all choose a reference
parameter µref ∈ P and compute the related full-order
space-time reference solution u(µref). Afterwards, we select
training parameters µ1, . . . , µM ∈ P and compute the
solution snapshots u(µ1), . . . , u(µM ). We do not detail the
exact solution algorithm for the full-order computations,
the only requirement we impose is that the solution data
can be treated as a function on Ω, such that we can apply
the geodesic shooting algorithm for image registration.
Subsequently, vector fields v(µ1), . . . , v(µM ) : Ω → Rd are
computed, using the geodesic shooting algorithm, such
that they minimize Eu(µref)→u(µ1), . . . , Eu(µref)→u(µM ). The
set of vector fields v(µ1), . . . , v(µM ) is now reduced using
proper orthogonal decomposition, similar to the procedure
described in Wang et al. (2019). This step results in
an orthogonal matrix VN , whose columns span an N -
dimensional subspace of the space of vector fields. Finally,
an artificial neural network Φ: P → RN is trained to
approximate the mapping π : P → RN defined as π(µ) =
V >
N v(µ). The function π maps a parameter µ ∈ P to

the coefficients (with respect to the basis VN ) of the
orthogonal projection of the optimal vector field v(µ) onto
the subspace ran(VN ).

3.2 Online algorithm

Given a new parameter µ ∈ P, a forward pass through the
neural network is performed to obtain the approximate
coefficients Φ(µ) ≈ π(µ). Next, the vector field vN (µ) =
VNΦ(µ) is computed. By applying the exponential map
exp to vN (µ), we derive the diffeomorphism φN (µ) =
exp(vN (µ)). The approximate solution for the parameter
µ is now given as uN (µ) = u(µref) ◦ φ−1

N (µ).

4. EXAMPLE

We present the decay of the singular values of the com-
puted vector fields for a Burgers’ equation with two merg-
ing shocks. The equation of interest reads

∂tu+ u ∂xu = 0, u(x, 0) =


2, if x ≤ 0.25,

1, if 0.25 < x < 0.5,

0, otherwise,
where µ ∈ [0.25, 1] =: P, and (x, t) ∈ [0, 1]2 =: Ω. An
example of a space-time solution for this equation for
µ = 1/2 is given in the left part of Fig. 1. Starting with the
reference parameter µref = 0.25, we performed registration
onto 50 snapshots for parameters uniformly selected from
P. The singular values of the vector fields together with
the singular values of the space-time snapshots themselves
are presented in the right part of Fig. 1. The maximum
relative L2-error of the transformed snapshots with respect
to the exact solutions is roughly 6%. The plots show that
the singular values of the vector fields decay much faster
(even exponentially) than those of the snapshots, which
means that the vector fields can be approximated more
efficiently by a linear subspace than the snapshots.
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Fig. 1. Sample solution to Burgers’ equation and singular
values of vector fields (red) and snapshots (blue)

5. CONCLUSION

In this work we describe a new approach for nonlinear
model order reduction for parametrized hyperbolic equa-
tions. Future research in this direction will be concerned
with the computation of the reduced coefficients for the
vector fields by solving a residual-minimization problem.
Furthermore, the treatment of different solution topologies
would make the algorithm more flexible.
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1. INTRODUCTION

Once an infectious disease starts circulating in a pop-
ulation, the main goal is to contain its spread. Several
control strategies may be applied to control a disease,
such as detection and isolation of infectious individuals
or vaccination. However, the detection of infectious indi-
viduals is far from being an easy task: various diseases,
such as influenza, cholera, shigella or Covid-19, are of-
ten spread by asymptomatic individuals. The presence of
asymptomatic cases allows a wide circulation of a disease
in the population, since they often remain unidentified.
Hence, the contribution of the so called “silent spreaders”
to the infection transmission dynamics should be consid-
ered in mathematical epidemic models, as in Robinson and
Stilianakis (2013). Unlike the more famous and studied
epidemic models, much less attention has been paid to
the SAIR(S)-type models. Thus, we think that a deeper
understanding of these kinds of models is needed, and
could prove to be very useful in the epidemiological field.

In this work, we consider an SAIRS (Susceptible - Asymp-
tomatic infected - symptomatic Infected - Recovered - Sus-
ceptible) model based on the one proposed in (Robinson
and Stilianakis, 2013, Sec. 2), in which the authors provide
only a local stability analysis. An SAIR-type model is
studied in Ansumali et al. (2020), with application to
SARS-CoV-2. The proposed global stability analysis re-
gards only a simplified version of the model in Robinson
and Stilianakis (2013): first, recovered people do not lose
their immunity; moreover, the infection rates of the asymp-
tomatic and symptomatic individuals are equal, as well
as their recovery rates, while in Robinson and Stilianakis
(2013) these parameters are considered to be potentially
different. In Ottaviano et al. (2022b), we provide a global
stability analysis of the model proposed in Robinson and
Stilianakis (2013), and for some variations thereof. In addi-
tion, we include in our model the possibility of vaccination.
In the investigation of global stability, we answer an open
problem left in Ansumali et al. (2020). In particular, we
study the global asymptotic stability (GAS) of the disease-
free equilibrium (DFE) and provide results related to the
global asymptotic stability of the endemic equilibrium
(EE) for many variations of the model. We found the
expression of the basic reproduction number R0 and prove
that the DFE is globally asymptotically stable if R0 < 1
and unstable if R0 > 1, condition under which a positive
endemic equilibrium (EE) exists.

2. FORMULATION OF THE MODEL

In our model, the total population N is partitioned into
four compartments, namely S, A, I, R, which represent
the fraction of Susceptible, Asymptomatic infected, symp-
tomatic Infected and Recovered individuals, respectively,
such that N = S +A+ I +R. Without loss of generality,
we assume N = 1. The infection can be transmitted to a
susceptible through contact with either an asymptomatic
infected individual, at rate βA, or a symptomatic individ-
ual, at rate βI . From the asymptomatic compartment, an
individual can either progress to the class of symptomatic
infectious I, at rate α, or recover without ever develop-
ing symptoms, at rate δA. An infected individual with
symptoms can recover at a rate δI . We assume that the
recovered individuals do not obtain a long-life immunity
and can return to the susceptible state after an average
time 1/γ. Furthermore, we assume that a proportion ν
of susceptible individuals receive a dose of vaccine, which
grants them a temporary immunity. Moreover, we con-
sider the vital dynamics of the entire population and, for
simplicity, we assume that the rate of births and deaths
are the same, equal to µ; we do not distinguish between
natural deaths and disease related deaths. The system of
ODEs that describes the model is given by:

dS(t)

dt
= µ−

(
βAA(t) + βII(t)

)
S(t)− (µ+ ν)S(t)+

+ γR(t),

dA(t)

dt
=

(
βAA(t) + βII(t)

)
S(t)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t),

dR(t)

dt
= δAA(t) + δII(t) + νS(t)− (γ + µ)R(t),

(1)

with initial condition (S(0), A(0), I(0), R(0)) belonging to
the set

Γ̄ = {(S,A, I,R) ∈ R4
+|S +A+ I +R = 1}, (2)

where R4
+ is the non-negative orthant of R4. Assuming

initial conditions in Γ̄, S(t) + A(t) + I(t) + R(t) = 1, for
all t ≥ 0; hence, system (1) is equivalent to the following
three-dimensional dynamical system:
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dS(t)

dt
= µ−

(
βAA(t) + βII(t)

)
S(t)− (µ+ ν + γ)S(t)+

+ γ(1−A(t)− I(t)),

dA(t)

dt
=

(
βAA(t) + βII(t)

)
S(t)− (α+ δA + µ)A(t),

dI(t)

dt
= αA(t)− (δI + µ)I(t),

(3)

with initial condition (S(0), A(0), I(0)) belonging to the
set

Γ = {(S,A, I) ∈ R3
+|S +A+ I ≤ 1},

which is positively invariant for system (3). In the follow-

ing, we denote with Γ̊ the interior of the set Γ.

3. RESULTS

System (3) always admits a disease-free equilibrium, given
by

x0 = (S0, A0, I0) =

(
µ+ γ

µ+ ν + γ
, 0, 0

)
. (4)

The behaviour of the system is related to the basic
reproduction number R0 of (3), given by

R0 =

(
βA +

αβI
δI + µ

)
γ + µ

(α+ δA + µ)(ν + γ + µ)
. (5)

Theorem 3.1. The disease-free equilibrium x0 of (3) is
globally asymptotically stable in Γ if R0 < 1, and unstable
if R0 > 1.
Theorem 3.2. There exists a unique endemic equilibrium
x∗ = (S∗, A∗, I∗) in Γ̊ for system (3) if and only if R0 > 1.

In Ottaviano et al. (2022b), we analyze different variations
of the model. In the case of the SAIR model (i.e. γ = 0) and
when asymptomatic and symptomatic individuals have the
same transmission rate and recovery rate (i.e. βA = βI
and δA = δI), we prove the following result providing an
appropriate Lyapunov function.
Theorem 3.3. The endemic equilibrium x∗ = (S∗, A∗, I∗)

is globally asymptotically stable in Γ̊ for system (3) if
R0 > 1.

In the general case of the SAIRS model with different
rate of transmission and recovery for the two groups of
infectious individuals, we use a geometric approach for
the global stability of equilibria of nonlinear autonomous
differential equations proposed in Lu and Lu (2017).
Theorem 3.4. Assume that R0 > 1 and βA < δI . Then,
the endemic equilibrium x∗ is globally asymptotically stable
in Γ̊ for system (1).

However, as illustrated by various numerical simulations
in Ottaviano et al. (2022b), we are led to think that the
assumption on the parameters βA and δI could be relaxed.

4. EXTENSION TO A MULTI-GROUP MODEL

Later, we generalize the SAIRS model to a multi-group
model, which takes into account different groups of indi-
vidual among which an epidemic can spread.

In this framework, the total population is divided into
n groups. We denote with Si, Ai, Ii and Ri the frac-
tion of Susceptible, Asymptomatic infected, symptomatic

Infected and Recovered individuals in the i−th group,
respectively, such that Si +Ai + Ii +Ri = 1 at all times.

The disease can be transmitted by individuals Ai and Ii,
within their group, to the susceptible Si, with transmission
rate βA

ii and βI
ii, respectively, but also between different

groups: e.g., individuals Aj and Ij , belonging to the j-th
group, may infect susceptible individuals Si of group i with
transmission rate βA

ij and βI
ij , respectively. We also assume

that the multi-group network is undirected and connected.
The disease-related parameters, that are the average time
of the symptoms developing, denoted by 1/α, the recovery
rates from both the infectious compartments, δA and δI ,
and the average time to return to the susceptible state,
1/γ, do not depend on the group of origin. We assume,
instead, that the proportion νi of vaccinated individuals
depends on the group. Moreover, we consider the vital
dynamics of each group, assuming that the rate of births
and deaths are the same in the i−th group, equal to µi.

Even though some results on SIRS-type model in Muroya
et al. (2013) and SEIRS-type model in Fan et al. (2018)
have been achieved, the problem of existence and global
stability of an endemic equilibrium for several multi-group
models remains open, as stated in Mohapatra et al. (2015).

Our results, in Ottaviano et al. (2022a), regard a gen-
eralization of Theorems 3.1-3.3 for the multi-group type
model. The problem of the global asymptotically stability
of the endemic equilibrium, as in Theorem 3.4, remains
open.
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1. INTRODUCTION

Medical imaging represents a relevant tool for diagnosing
heart diseases. Different techniques are available, such as
echocardiography, magnetic resonance imaging, computed
tomography scans, and nuclear medicine. These are as-
sociated with an increasing space-time resolution, which
may capture crucial details for the clinical decision-making
process. However, the more detailed ones might have con-
traindications for some patients. For this reason, numerous
research efforts are directed toward developing new math-
ematical methods to process those images (especially the
most accessible ones) and extract meaningful indications.
Deep Learning methods have been very successful in this
area (Hernandez et al., 2020) by providing tools for the
automatic segmentation of geometry and structural de-
fects (resulting, e.g., from myocardial infarction) and for
the computation of clinical biomarkers (such as cardiac
motion and strains). Nevertheless, Deep Learning methods
generally require large datasets for the training phase,
which are not always available.

The knowledge of the physical laws governing the my-
ocardial motion may balance this lack of data, enabling
the training of the so-called physics-informed neural net-
works (PINNs) introduced in Raissi et al. (2019). PINNs
consist of interconnected neurons, whose parameters are
trained by minimizing the mismatch between the output
and the available noisy data, together with additional
terms encoding the partial differential equation (PDE)
and the boundary conditions characterizing the physical
phenomenon.

Compared to standard model personalization strategies
(Chabiniok et al., 2016) based on iterative schemes re-
quiring the numerical approximation of the forward and
the adjoint problems at each iteration, PINNs enable the
simultaneous numerical estimation of both the displace-
ment and the parameters of interest. This is achieved by
automatic differentiation, which provides a flexible and
computationally inexpensive tool to evaluate the PDE
residual and the boundary conditions in their strong form.

? This project has been supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 740132, iHEART,
P.I. Prof. A. Quarteroni)

Fig. 1. Undeformed geometry of a parallelepiped with a
fixed base.

In this framework, promising proofs of concept have been
already presented in Zhang et al. (2020) and Nguyen-
Thanh et al. (2020).

In this work, we study the feasibility of using PINNs in
estimating parameters of interest for a 3D mechanical
problem starting from scattered measurements of the
displacement. We also focus on the effects of the density
of data and the associated level of noise on the accuracy
of the estimation.

2. MATHEMATICAL MODELS AND METHODS

We consider a quasi-static non-linear elastic problem to
model the deformation of a parallelepiped with a fixed
base (see Fig. 1) and different boundary conditions. We
analyze traction, compression, and shear scenarios.

The mechanical problem for the undeformed configuration
reads as follows:{

−∇ ·PPP(d) = 0 in (0, L)× (0,W )× (0,W ),

+ B.C.,
(1)

where d = d(x) is the displacement, L and W define the
dimensions of the parallelepiped, and PPP is the first Piola-
Kirchhoff stress tensor. Additional boundary conditions
are considered for the three different scenarios (traction,
compression, and shear). After introducing a hyperelastic
energy W = W(FFF), the first Piola-Kirchhoff stress tensor
PPP can be computed as:

PPP =
∂W
∂FFF

.
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Among the several constitutive laws available for cardiac
mechanics (Quarteroni et al., 2019), we use the following
quasi-incompressible Neo-Hookean hyperelastic energy:

W =
µ

2
(J−2/3tr(CCC)− 3) +

λ

4

(
(J − 1)2 + log2(J )

)
where J = det(FFF) is the determinant of the deforma-
tion tensor, CCC = FFFTFFF is the right Cauchy-Green ten-
sor and, finally, µ and λ are the mechanical parameters
(shear and bulk modulus, respectively). We construct in
silico datasets by solving Eq. (1) with the Finite Element
Method, by employing the Dolfin Python library (Logg
et al., 2012). We sample the displacement in different
locations of the computational domain, and we possibly
add Gaussian noise to the pointwise values:

dobs
i = d(xi;µex) + εi εi,j ∼ N (0, σ2),

where µex is the exact value of the parameter to be es-
timated. Indeed, we adopt PINNs to find the unknown
parameter µ ⊂ P ⊂ R by solving a statistical learn-
ing problem in which the numerical solution of Eq. (1)
is approximated by means of a fully-connected Neural
Network NN , formed by a set of neurons distributed
over different layers. Moreover, NN is characterized by
a set of parameters W, namely weights and biases, which
are tuned during the optimization process by solving the
following PDE-constrained optimal control problem:{

min
µ,W

(Jfit(W) + Jphys(µ,W))

s.t. d(x) = NN (x; W).

We minimize the loss function composed of the weighted
sum of different components leveraging data and physics.
Specifically, the mismatch between the output of the NN
and the available Nobs noisy observations is measured
through the following component of the loss function:

Jfit(W) =
ωfit

Nobs

Nobs∑
i=1

‖NN (xi; W)− dobs
i ‖2.

Here, ωfit > 0 is an additional hyperparameter that
weights the contribution of the available data with respect
to the information coming from the physical model. The
latter is encoded in Jphys, which is made by several
terms containing the residuals of the PDE and boundary
conditions, expressed in the strong form:

Jphys(µ,W) = ωphysRphys(d;µ,W)

+

Nbc∑
i=1

ωibcB
i
phys(d;µ,W),

with scalar hyperparameters ωphys and ωibc, i ∈ 1, . . . , Nbc,
that leverage the contributions of the mathematical model.
In particular, Jphys contains a regularization term Rphys

formed by the norm of the PDE residual:

Rphys(d;µ,W) =
1

Nc

Nc∑
i=1

‖ − ∇ ·PPP(NN (xci ; W))‖2,

which is averaged over the set of collocation points {xci },
i = 1, . . . , Nc.

The training ofNN parameters, along with the estimation
of the unknown parameter µ, is attained by combining
the first-order ADAM optimizer (Kingma and Ba, 2014)
with the second-order BFGS optimizer. Specifically, we
develop a multistage training strategy that allows robustly

performing data fitting and parameter estimation over a
wide range of initial guesses for the NN parameters W.

3. DISCUSSION

We studied the ability of PINNs to estimate the solution
of Eq. (1) and the unknown parameter µ for different
benchmark test cases based on a 3D non-linear elastic
problem. We investigated the performances of PINNs in
different setups, showing the dependence of the accuracy in
parameter estimation with respect to the level of noise and
density of measures. Hyperparameters may be suitably
tuned by properly weighting the different components
of the loss function to handle large noise and low data
regimes.

PINNs have proven to be a powerful and flexible tool for
solving the parameter estimation problem in this context.
This will potentially lead to the clinical exploitation of
PINNs. Nevertheless, finding an automatic optimal tuning
of the various hyperparameters in the algorithm remains
an open challenge.

REFERENCES

Chabiniok, R., Wang, V.Y., Hadjicharalambous, M., As-
ner, L., Lee, J., Sermesant, M., Kuhl, E., Young, A.A.,
Moireau, P., Nash, M.P., Chapelle, D., and Nordsletten,
D.A. (2016). Multiphysics and multiscale modelling,
data-model fusion and integration of organ physiology
in the clinic: ventricular cardiac mechanics. Interface
Focus, 6(2), 20150083.

Hernandez, K.A.L., Rienmüller, T., Baumgartner, D., and
Baumgartner, C. (2020). Deep learning in spatiotem-
poral cardiac imaging: A review of methodologies and
clinical usability. Computers in Biology and Medicine,
104200.

Kingma, D.P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Logg, A., Mardal, K.A., and Wells, G. (2012). Automated
solution of differential equations by the finite element
method: The FEniCS book, volume 84. Springer Science
& Business Media.

Nguyen-Thanh, V.M., Zhuang, X., and Rabczuk, T.
(2020). A deep energy method for finite deformation hy-
perelasticity. European Journal of Mechanics-A/Solids,
80, 103874.

Quarteroni, A., Dede’, L., Manzoni, A., and Vergara, C.
(2019). Mathematical Modelling of the Human Cardio-
vascular System: Data, Numerical Approximation, Clin-
ical Applications. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge Univer-
sity Press.

Raissi, M., Perdikaris, P., and Karniadakis, G.E. (2019).
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems in-
volving nonlinear partial differential equations. Journal
of Computational Physics, 378, 686–707.

Zhang, E., Yin, M., and Karniadakis, G.E. (2020).
Physics-informed neural networks for nonhomogeneous
material identification in elasticity imaging. arXiv
preprint arXiv:2009.04525.

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

62



pyMOR – Reduced Order Modeling with
Python ?
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1. INTRODUCTION

Over the last decade, Model Order Reduction (MOR) has
become an essential tool in mathematical modeling and
simulation workflows, significantly speeding up compu-
tation times, especially in multi-query contexts such as
optimization, optimal control or interactive design appli-
cations (see, e.g., Benner et al. (2020)).

Since MOR methods work on top of existing ODE/PDE
solvers, their implementation is often non-trivial and
requires knowledge of both the given solver and the
MOR method to be implemented. pyMOR (Milk et al.
(2016); Balicki et al. (2019); Mlinarić et al. (2021),
https://www.pymor.org) is a free and open source MOR
library for the Python programming language which fa-
cilitates the integration of MOR methods with high-
performance solvers by expressing MOR algorithms via
operations on simple solver interface classes.

In this poster contribution we give a short overview on
pyMOR’s design (Section 2). In Section 3 we discuss
two new features of the upcoming 2022.1 release, which
significantly facilitate the construction and reduction of
full-order models (FOMs) in pyMOR.

? Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strat-
egy EXC 2044 –390685587, Mathematics Münster: Dynam-
ics–Geometry–Structure and under RA 3055/1-1, SA 3477/1-1: py-
MOR – Nachhaltige Software zur Modell-Ordnungs-Reduktion.

2. SOFTWARE DESIGN

pyMOR’s design is based on the idea of expressing all
MOR operations through low-level, MOR agnostic inter-
face classes for interacting with the solver that implements
the FOM. In particular this allows to easily prototype new
MOR algorithms using a lightweight discretization library,
such as the toolkit shipped with pyMOR, and later use
the same implementation for a large application problem
implemented in a specialized high-performance code.

2.1 Interfaces

pyMOR interacts with external solvers through Vector-
Arrays, Operators and Models. A VectorArray repre-
sents an ordered collection of vectors of the same di-
mension and allows the usual linear algebra operations
such as inner products or linear combinations. Operators
encapsulate matrices or nonlinear operators, which can be
applied to VectorArrays. A Model encodes the math-
ematical structure of the given FOM and exposes the
solvers’ simulation routines via the solve method.

We emphasize that all required interface operations can
be expected to be already implemented in the external
solver. In particular, no MOR-specific code has to be added
to integrate a new solver with pyMOR. The integration
usually is technically realized by compiling the external
solver as a Python extension module, but also network or
disk-based communication is possible.
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FirstOrderModel

LTIModel

SecondOrderLTIModel BilinearModel

Model

StationaryModel

LinearDelayModel

LinearStochasticModel

TimeDependentModel

AffineModel

Fig. 1. Hierarchy of Models in pyMOR 2022.1 (subject to
change). Reductors for a base class can be applied to
each subclass in the hierarchy.

2.2 Algorithms

Based on the aforementioned interface classes, pyMOR im-
plements various MOR algorithms such as Reduced Basis
(RB) methods, Proper Orthogonal Decomposition (POD),
(discrete) empirical interpolation, Balanced Truncation,
the Iterative Rational Krylov Algorithm (IRKA), as well
as non-intrusive data-driven methods, such as approxima-
tion with artificial neural networks. As an example, the
Petrov-Galerkin projection WT · A · V of the full-order
matrix A onto bases spanned by the columns of V and W
can be written as

W.inner(A.apply(V)),

where A is given as an Operator and V,W are Vector-
Arrays. All MOR algorithms are realized as Reductor
objects, which transform a given full-order Model to a cor-
responding reduced-order Model (ROM) of similar type,
where the FOM’s Operators have been replaced by new
Operators storing their reduced counterparts. Due to
the general nature of pyMOR’s interfaces, pyMOR also
implements further algorithms, such as Gram-Schmidt or-
thonormalization, a Newton algorithm or different time
steppers.

3. NEW FEATURES IN PYMOR 2022.1

In this section we highlight two main new features in py-
MOR related to building and reducing Models in pyMOR.

3.1 A new Model hierarchy

To our knowledge, pyMOR is the only available software
package which includes a large variety of both RB meth-
ods, which are geared at parameterized PDEs, as well as
system-theoretic methods such as Balanced Truncation or
IRKA, which originally were mainly developed for LTI
systems. For years, both branches of MOR have been
developed mostly independently from one another, which,
so far, has also been reflected in pyMOR, where system-
theoretic reductors operate on LTIModels and related
classes, which are incompatible with the classes required
by RB reductors, which operate on StationaryModels
and InstationaryModels.

Discretizer
Analytical
Problem

Model
(FOM)

Reductor
Model
(ROM)

Fig. 2. Reduced-order modeling pipeline in pyMOR (blue
background: solver specific code, green background:
generic code).

In pyMOR 2022.1, the existing Model classes are refac-
tored into a new class hierarchy that provides a unified
view onto Models for both RB and system-theoretic meth-
ods (see Fig. 1). In particular, this allows to seamlessly
apply RB reductors for general FirstOrderModels to
Models with additional structure, such as LTIModel, in
addition to the more specialized methods, e.g., Balanced
Truncation.

3.2 Discretizers for external PDE solvers

pyMOR’s builtin discretization toolkit uses analytical-
problems as data structures to define the (parameterized)
PDE problem to be solved. Analyticalproblems combine
a definition of the computational domain with coefficient
functions for the respective PDE that is given by the
respective problem class. Such an analyticalproblem is
then given as an input to a discretizer, which builds
a corresponding Model using pyMOR’s builtin FEM/FV
Operators. So far, building a Model with an external PDE
solver, even for a standard benchmark problem, required
manually building the Model using appropriate PDE solver
code and pyMOR’s wrapper classes for the given solver.

Based on pyMOR’s recently introduced symbolic expres-
sion library, pyMOR 2022.1 includes new discretizers
which allow to use the same analyticalproblems to au-
tomatically build Models using external solvers, such as
FEniCS, and, thus, to make use of advanced features of
these solvers, such as higher-order methods or MPI paral-
lelization. This enables a powerful reduced order modeling
workflow, where the user can easily build efficient ROMs,
even for complex problems, without having knowledge of
the used PDE solver library (see Fig. 2).
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Balicki, L., Mlinarić, P., Rave, S., and Saak, J. (2019).
System-theoretic model order reduction with pyMOR.
PAMM, 19(1). doi:10.1002/pamm.201900459.

Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni,
A., Rozza, G., and Miguel Silveira, L. (eds.) (2020).
Model Order Reduction: Volume 1–3. De Gruyter.

Milk, R., Rave, S., and Schindler, F. (2016). pyMOR
– Generic Algorithms and Interfaces for Model Order
Reduction. SIAM Journal of Scientific Computing,
38(5), S194–S216. doi:10.1137/15M1026614.
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Abstract: In this paper, we propose an interval observer-based fault detection strategy for a hydrogen
production bioreactor in occurrence of sensor faults. Based on the dark fermenter model in presence of
disturbances, we design a robust interval observer to: (i) estimate the glucose and biomass concentrations
from hydrogen flow rate measurements, (ii) attenuate the influence of a disturbance, and (iii) detect the
occurrence of the sensor faults by adaptive thresholds. The features of the proposed observer are assessed
by numerical simulations.

Keywords: Fault detection, adaptive thresholds, interval observer, biohydrogen production.

1. INTERVAL OBSERVER-BASED SENSOR FAULT
DETECTION STRATEGY

Dark fermentation is a complex hydrogen production process,
it involves crucial state variables that can be estimated by state
observers (software sensors). Nevertheless, kinds of malfunc-
tions or imperfect behaviors may appear during the normal
operation of the sensors used to measure the system output.
They can be detected by means of different methods of fault
detection.

In this paper, we consider the interval observer structure, re-
ported in (Meslem et al., 2020), for a class of linear systems
in presence of perturbations. The interval observer provides the
upper and lower bounds for the trajectory of the dark fermenter
state. Furthermore, we present a sensor fault detection scheme
considering the adaptive thresholds for the output signal.

1.1 Interval observer

In this section we consider the 3-order linear model proposed in
(Torres and Avilés, 2021) that satisfies the following Assump-
tions.
Assumption 1. The pair (A, C) is detectable.
Assumption 2. We know the upper and lower bounds

(
x+ (t0) ,

x− (t0)
)

for the initial condition, satisfying the following
inequality

x+ (t0) � x (t0) � x− (t0) , (1)
and the disturbance w (t) is also bounded in the following way,

w+ (t) � w (t) � w− (t) , ∀t ≥ 0, (2)

where w+ (t) and w− (t) are known bounded.

Based on the formulation in (Meslem et al., 2020), we firstly
consider the linear observer with the Luenberger structure for
the dark fermenter linear model presented in (Torres and Avilés,
2021), described as follows

ΥO1
:

{
ξ̇(t) = Aξ(t) +Buū(t) + L(ȳ(t)− ˆ̄y(t)),

ˆ̄y(t) = Cξ(t),

(3)

where ξ (t) represents the estimate of the real state vector x (t)
and the matrix L requires to be selected to ensure the stability
property of the observer. If we define the estimation error as
e (t) , x (t) − ξ (t), we get the estimation error dynamics in
the fault-free case fs (t) = 0, which are given by the following
equations

ΥE :

{
ė(t) = ALe(t) + Bww(t) ,

ye(t) = I3e(t), e (t0) = e0,
(4)

where w (t) represents the bounded unknown signals and the
matrix AL = A− LC. I3 is the identity matrix of dimensions
3× 3. The estimation error behavior can be analyzed using the
solution of the linear system ΥE, expressed as follows

e(t) = Φ (t, t0) e(t0) + σ (t) , (5)

where

σ (t) =

∫ t

t0

Φ (t, τ)Bww(τ) dτ, (6)

with Φ (t, t0) = exp (AL(t− t0)) is the state transition matrix
of the system ΥE in (4).

Secondly, the observer (3) in ΥO1 is combined with the interval
predictor, which is given by the following equations

ΥO2
:


σ̇+(t) = Φ+ (t, t0)

(
B+

ww
+ −B−

ww
−)−

Φ− (t, t0)
(
B+

ww
− −B−

ww
+
)
,

σ̇−(t) = Φ+ (t, t0)
(
B+

ww
− −B−

ww
+
)
−

Φ− (t, t0)
(
B+

ww
+ −B−

ww
−) ,

(7)
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ΥO3
:


x+(t) = ξ (t) + Φ+ (t, t0) e+ (t0) +

σ+ (t) − Φ− (t, t0) e− (t0) ,

x−(t) = ξ (t) + Φ+ (t, t0) e− (t0) +

σ− (t) − Φ− (t, t0) e+ (t0) ,

(8)

where x+ (t) and x− (t) stand for the upper and lower
bounds of the state x (t). The matrices B+

w and B−
w in

(7) comprise the positive decomposition of the matrix Bw.
(Φ+ (t, t0) , Φ− (t, t0)) and (σ+ (t) , σ− (t)) are the positive
decompositions of Φ (t, t0) and σ (t), respectively. Addition-
ally, e+ (t0) = x+ (t0)− ξ (t0) and e− (t0) = x− (t0)− ξ (t0)
are upper and lower bounds, positive representations, of the
initial estimation error e (t0).

We design the interval observer gain L, under fault-free con-
ditions fs(t) = 0, to guarantee that the estimation error e(t)
converges to a neighborhood of the origin even if the dark
fermenter is in presence of the perturbation w(t), as proposed
in (Torres and Avilés, 2021).

1.2 Adaptive thresholds strategy

We consider the sensor fault detection using a scheme of
adaptive thresholds for the output signal, stated as follows

ΥTest :

{
y(t) ∈ [y−(t), y+(t)], if fs(t) = 0,
y(t) /∈ [y−(t), y+(t)], if fs(t) 6= 0,

(9)

where y− = Cx− and y+ = Cx+. Thus, the plant is fault
free when the output signal is inside the set, limited by the
adaptive thresholds (the upper and lower estimates), while a
fault is indicated in the plant when the output is outside the set,
[y− (t) , y+ (t)].

2. RESULTS AND DISCUSSION

Simulations of the biohydrogen production process and the
Luenberger observer ΥO1 combined with the interval predictor
(ΥO2 , ΥO3) have been performed in Matlab for the inputs Qin

and Gluin used in (Torres and Avilés, 2021).

We set the following conditions for simulations on the dark
fermenter in order to analyze the sensor fault detection strategy
proposed. The first one considers the case with a noise variation
up to 1% on the hydrogen flow rate sensor during the time
period from the beginning of the simulations to day 15, from
day 25 to day 35, from day 40 to day 50, and from day 60 to
the end of the simulations. This condition corresponds to the
sensor fault-free condition. Moreover, we take a noise variation
of 10% on the measured variable during the time-period from
day 15 to day 25 and from day 50 to day 60, while from day
30 to day 40 an offset of 25% is added to the measured output.
These last conditions correspond to sensor fault conditions.

Figure 1a shows the glucose concentration in the dark fer-
menter, Figure 1b shows the biomass concentration in the dark
fermenter, while Figure 1c shows the produced hydrogen flow
rate. In green lines the bioreactor simulations, in dashed red
line the estimation by the Luenberger observer, and in blue line
the lower and the upper estimations by the interval predictor.
The behavior of the interval observer is shown in the three
figures, where the upper and lower estimations preserve the
partial ordering with respect of the trajectories of the bioreactor
state when there is no occurrence of faults fs = 0, taking

an adequate initialization, and reducing the influence of the
unknown inlet glucose concentration. In particular, if there is
the presence of sensor faults fs 6= 0, the trajectories of the
outputs are outside the interval set given by the lower and
upper estimations y(t) /∈ [y−(t), y+(t)]. This fact validates
the adaptive thresholds strategy to detect sensor faults.
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Fig. 1. Biohydrogen production dark fermenter estimations.
In green line the bioreactor data, in dotted red line the
estimation by the Luenberger observer, and their lower and
upper estimations in blue lines. (a) Glucose. (b) Biomass.
(c) Hydrogen flow rate.

3. CONCLUSIONS

In this paper, an interval observer to detect sensor faults in a
hydrogen production bioreactor was presented. The simulation
results validated the effectiveness of the proposed method. Be-
sides, its performance guaranteed robustness against measure-
ment noise and the exogenous disturbance.
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1. REFERENCE MODEL

We are interested in constructing efficient and accurate
models to approximate time-dependent quantities of in-
terest (QoI) f ∈ L2

(
P;L2([0, T ])

)
in the context of re-

active flow, with T > 0 and where P ⊂ Rp for p ≥ 1
denotes the set of possible input parameters. As a class
of QoI functions, we consider those obtained by apply-
ing linear functionals sµ ∈ V ′ to solution trajectories
cµ ∈ L2(0, T ;V ) of, e.g., parametric parabolic partial
differential equations. Thus, f(µ; t) := sµ(cµ(t)), where
for each parameter µ ∈ P, the concentration cµ with
∂tcµ ∈ L2(0, T ;V ′) and initial condition c0 ∈ V is the
unique weak solution of

⟨∂tcµ, v⟩+ aµ(cµ, v) = lµ(v) ∀ v ∈ V, cµ(0) = c0. (1)

Here, V ⊂ H1(Ω) ⊂ L2(Ω) ⊂ V ′ denotes a Gelfand
triple of Hilbert-spaces associated with a spatial Lipschitz-
domain Ω and, for µ ∈ P, lµ ∈ V ′ denotes a continuous
linear functional and aµ : V ×V → R a continuous coercive
bilinear form.

As a basic model for reactive flow in catalytic filters,
(1) could stem from a single-phase one-dimensional linear
advection-diffusion-reaction problem with Dammköhler-
and Péclet-numbers as input (thus p = 2), where c models
the dimensionless molar concentration of a species and the
break-through curve s measures the concentration at the
outflow, as detailed in Gavrilenko et al. (2022).

Since direct evaluations of f are not available, we resort
to a full order model (FOM) as reference model, yielding

fh : P → RNT for NT ≥ 1, fh(µ; t) := sµ(ch,µ(t)), (2)

which we assume to be a sufficiently accurate approx-
imation of the QoI. For simplicity, we consider a P 1-
conforming Finite Element space Vh ⊂ V and obtain the
FOM solution trajectory ch,µ ∈ L2(0, T ;Vh) by Galerkin
projection of (1) onto Vh and an implicit Euler approxi-
mation of the temporal derivative.
⋆ Funded by BMBF under contracts 05M20PMA and 05M20VSA.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under contracts OH 98/11-1 and SCHI 1493/1-
1, as well as under Germany’s Excellence Strategy EXC 2044
390685587, Mathematics Münster: Dynamics – Geometry – Struc-
ture, and EXC 2075 390740016, Stuttgart Center for Simulation
Science (SimTech).

2. SURROGATE MODELS

The evaluation of (2) may be arbitrarily costly, in partic-
ular in multi- or large-scale scenarios where dimVh ≫ 1,
but also if NT ≫ 1 due to long-time integration or when
a high resolution of fh is required. We thus seek to build
a machine learning (ML) based surrogate model

fml : P → RNT , fml(µ; tn) ≈ fh(µ; tn) ∀1 ≤ n ≤ NT , (3)

to predict all values {fml(µ; tn)}NT
n=1 at once, without time-

integration. Such models based on Neural Networks or
Kernels typically rely on a large amount of training data{(

µ, fh(µ)
) ∣∣µ ∈ Ptrain

}
, Ptrain ⊂ P, |Ptrain| ≫ 1, (4)

rendering their training prohibitively expensive in the
aforementioned scenarios; we refer to Gavrilenko et al.
(2022) and the references therein and in particular to
Santin and Haasdonk (2021). In Gavrilenko et al. (2022)
we thus seek to employ an intermediate surrogate to
generate sufficient training data.

2.1 Structure preserving Reduced Basis models

The idea of projection-based model order reduction by
Reduced Basis (RB) methods is to approximate the state
ch in a low-dimensional subspace Vrb ⊂ Vh and to obtain
online-efficient approximations of fh by Galerkin projec-
tion of the FOM detailed in Section 1 onto Vrb and a pre-
computation of all quantities involving Vh in a possibly ex-
pensive offline-computation; we refer to Milk et al. (2016)
and the references therein. Using such structure preserving
reduced order models (ROM)s we obtain RB trajectories
crb,µ ∈ L2(0, T ;Vrb) and a RB model

frb : P → RNT , frb(µ; t) := sµ(crb,µ(t)), (5)

with a computational complexity independent of dimVh,
the solution of which, however, still requires time-integra-
tion.

The quality and efficiency of RB models hinges on the
problem adapted RB space Vrb which could be constructed
in an iterative manner steered by a posteriori error esti-
mates using the POD-greedy algorithm from Haasdonk
(2013). Instead, we obtain by the method of snapshots

Vrb := ⟨POD({ch,µ |µ ∈ Prb)⟩ , with Prb ⊂ P (6)
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consisting of only few a priori selected parameters (e.g. the
outermost four points in P), where we use the hierarchic
approximate POD from Himpe et al. (2018) for NT ≫ 1
to avoid computing the SVD of a dense snapshot Gramian
of size N2

T .

2.2 Kernel models

While still requiring time-integration, we can afford to use
RB ROMs to generate a sufficient amount of training data

Xtrain =
{(

µ, frb(µ)
) ∣∣µ ∈ Pml

}
∪
{(

µ, fh(µ)
∣∣µ ∈ Prb

)}
,

augmented by the FOM-data available as a side-effect from
generating Vrb. Using this data, we obtain the ML model
fml from (3) using the vectorial greedy orthogonal kernel
algorithm from Santin and Haasdonk (2021).

While resulting in substantial computational gains, the
presented approach from Gavrilenko et al. (2022) still
relies on the traditional offline/online splitting of the
computational process to train the RB ROM as well as
the ML model to be valid for all of P, requiring a priori
choices regarding Prb and Pml with a significant impact on
the overall performance and applicability of these models.

3. AN ADAPTIVE MODEL HIERARCHY

Keil et al. (2021) introduced an approach beyond the
classical offline/online splitting where a RB ROM is adap-
tively enriched based on rigorous a posteriori error esti-
mates, following the path of an optimization procedure
through the parameter space. Similarly, we propose an
adaptive enrichment yielding a hierarchy of FOM, RB
ROM and ML models, based on the standard residual-
based a posteriori estimate on the RB output error,
∥fh(µ) − frb(µ)∥L2([0,T ])) ≤ ∆rb(µ), for which we refer to
the references in Milk et al. (2016).

Algorithm 1 Adaptive QoI model generation

Require: ROM tolerance ε > 0, ML trust/train criteria
1: Xtrain = ∅, ΦRB = {}, Vrb := ⟨Φrb⟩, fml := 0
2: for all µ ∈ P selected by outer loop do
3: if ML model is trustworthy then return fml(µ)
4: else
5: compute frb(µ), ∆rb(µ)
6: if ∆rb(µ) ≤ ε then
7: collect Xtrain = Xtrain ∪ {(µ, frb(µ))}
8: (optionally) fit ML model, return frb(µ)
9: else ΠΦrb

: orth. proj. onto ⟨Φrb⟩
10: compute fh(µ)
11: enrich Φrb = Φrb∪POD(ch(µ)−ΠΦrb

[ch(µ)])
12: update RB ROM
13: collect Xtrain = Xtrain ∪ {(µ, fh(µ))}
14: (optionally) fit ML model, return fh(µ)

As a means to judge if a ML model is trustworthy,
we propose a manual validation using the following a
posteriori error estimate on the ML QoI error. While not
as cheaply computable as fml, it still allows to validate the
ML model without computing fh.

Proposition 1. (ML model a posteriori error estimate).
Let frb(µ), fml(µ) ∈ RNT denote the RB ROM and
ML model approximations of fh(µ), respectively, and let

∆rb(µ) denote an upper bound on the RB-output error.
We then have by triangle inequality for all µ ∈ P

∥fh(µ)− fml(µ)∥L2([0,T ]) ≤ ∆rb(µ) (7)

+ ∥frb(µ)− fml(µ)∥L2([0,T ]),

where the right hand side is computable with a computa-
tional complexity independent of dimVh.

Applying Algorithm 1 to the example of one-dimensional
single-phase reactive flow from the last row of Table 1 in
Gavrilenko et al. (2022), with dimP = 2,NT = 24576 time
steps, dimVh = 65537 gives the behaviour shown in Figure
1, where we set ε = 10−2, retrain the ML model every 10
collected samples and unconditionally trust the ML model
as soon as |Xtrain| ≥ 50. 1 For the considered diffusion
dominated regime, we only require a single evaluation of
fh (yielding a dimVrb = 15-dimensional RB ROM), which
results in even further computational savings, compared
to the results obtained in Gavrilenko et al. (2022).

Fig. 1. Each dot correspond to the input-to-output query
time of the adaptive model from Algorithm 1 applied
to Gavrilenko et al. (2022).
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1. INTRODUCTION

The capsule system driven by a periodically moving in-
ternal mass was considered in a number of papers, see
Chernousko (2008); Yan et al. (2017). Different control and
optimization problems were solved for such systems. The
solution of such problems is always searched among the
motions with periodic velocity of the capsule, because such
motions provide prolonged positive averaged displacement
of the system. But the uniqueness and stability of such
periodic regimes of motion is not sufficiently studied. For
the case when the medium resistance is a monotonous
continuous function of the velocity of the capsule and
the velocity of the internal mass relative to the capsule
is continuous, it was proved, that the periodic regime
of motion exists, is unique, and the velocity of all other
motions converge to the periodic one exponentially, see
Knyaz’kov and Figurina (2020). The same results were
obtained in Figurina and Knyazkov (2022) for a system
of several interacting bodies and capsules.

In the current paper, a capsule system with an internal
mass moves on a plane with dry friction, and the relative
velocity of the mass has discontinuities (jumps). These
jumps may occur due to collisions in the system. It is
proved, that the periodic regime of motion exists and the
velocity of any motion converges to the periodic velocity
exponentially or in finite time. In contrary to the results
obtained in Knyaz’kov and Figurina (2020); Figurina and
Knyazkov (2022) for similar locomotion systems, in the
current paper, the periodic by velocity motion may be
non-unique. This non-uniqueness appears due to jumps in
velocity of the capsule for the case of dry friction between
the capsule and the plane.

2. PROBLEM STATEMENT

The capsule of mass M contains an internal body of mass
m. The position l(t) of the internal mass relative to the
capsule changes periodically as a result of some forces,
that are internal for the system:

l(t+ T ) = l(t).

The capsule moves with the velocity v(t) along a straight
line on a rough plane (see Fig. 1). Dry friction force R acts
on the capsule. The equation of motion can be written as

v̇ = u+ r(v, u), (1)

⋆ This study was supported by Russian Science Foundation, Project
No. 18-11-00307, https://rscf.ru/en/project/18-11-00307/

R
M v(t)

m

l(t)

Fig. 1. Scheme of the motion

where r is the normalized dry friction force, r = R
M+m , u is

the normalized relative acceleration of the internal mass,
u = − m

M+m l̈. According to Coulomb’s law of dry friction,

r(v, u) =

{−µ signv, v ̸= 0,
−u, v = 0, |u| ≤ µ,
−µ signu, v = 0, |u| > µ,

(2)

where µ = kg, k is the coefficient of dry friction, g is the
gravitational acceleration. We assume, that for t ∈ [0, T ]

u(t) = u0(t) +

N∑
i=1

diδ(t− ti),

where δ is Dirac delta function, u0(t) is a periodic
piecewise-continuous function. As far as the relative mo-
tion of the internal mass is periodic, we have

u(t+ T ) = u(t), t ≥ 0, (3)

T∫
0

u(t)dt = 0. (4)

The details of the statement of the problem can be found
in Knyaz’kov and Figurina (2020). We are interested in the
existence, uniqueness, and stability of the periodic solution
v∗(t) of the problem (1)-(4), such that

v∗(t+ T ) = v∗(t).

3. MAIN RESULTS

The following results regarding the periodic solution v∗(t)
and the behavior of velocities v(t) of motions with any
initial velocity are obtained.

Lemma 1. The distance between any two solutions v(t),
ṽ(t) of the equation (1) does not increase:

d

dt
|v(t)− ṽ(t)| ≤ 0.
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It follows from (1) and (2). From Lemma 1, the following
corollary can be easily obtained.

Corollary 1. If there exist two periodic solutions v∗, ṽ∗ of
the equation (1), they differ by a constant:

v∗(t) = ṽ∗(t) + C.

Theorem 1. The periodic solution v∗(t) of the problem (1)-
(4) exists. If the periodic solution is non-unique, then the
set of periodic solutions consists of all the solutions with
initial values from an interval [vmin

∗ (0), vmax
∗ (0)].

Proof. The idea of the proof is the following. For the

initial values v+(0) = max |u0(t)|T +
∑N

i=1 |di|, v−(0) =
−v+(0), we have v+(0) ≥ v+(T ), v−(0) ≤ v−(T ). Due
to continuity, there exists such v∗(0) ∈ [v−(0), v+(0)] that
the corresponding solution v∗(t) is periodic.

Let vmin
∗ , vmax

∗ are periodic solutions with minimum (max-
imum) possible initial values, v(0) ∈ (vmin

∗ (0), vmax
∗ (0)).

Due to Lemma 1, the distances |vmin
∗ − v|, |vmax

∗ − v|
between the solutions do not increase. From Corollary 1,

vmax
∗ = vmin

∗ + C. Thus, v = vmin
∗ + C̃, and v is periodic.

The behavior of non-periodic solutions is described by the
following theorem.

Theorem 2. Any solution v(t) of the problem (1)-(4) such
that v(0) > vmax

∗ (0) converges to the periodic solution
vmax
∗ (t). Any solution v(t) of the problem such that v(0) <
vmin
∗ (0) converges to the periodic solution vmin

∗ (t).

Proof. Due to Lemma 1, any solution v with v(0) >
vmax
∗ (0) tends to vmax

∗ +C. It can be shown that vmax
∗ +C

is also the solution of (1)-(4). By definition, vmax
∗ is the

periodic solution with the maximum possible initial value
vmax
∗ (0), hence, C = 0 and v converges to vmax

∗ . The
second part of the theorem is proved in a similar way.

The following theorem gives a criteria for the type of this
convergence.

Theorem 3. (A) Solution v(t) such that v(0) > vmax
∗ (0)

converges to the periodic solution vmax
∗ (t) in a finite time

if and only if there exists a time instant τ such that
vmax
∗ (τ) = 0, and either vmax

∗ (t) < 0, |u(t)| ≤ µ or
vmax
∗ (t) ≡ 0, −µ ≤ u(t) < µ take place in some left vicinity
of the point τ .

(B) Solution v(t) such that v(0) < vmin
∗ (0) converges to

the periodic solution vmin
∗ (t) in a finite time if and only

if there exists a time instant τ such that vmin
∗ (τ) = 0,

and either vmin
∗ (0) > 0, |u(t)| ≤ µ or vmin

∗ (t) ≡ 0,
−µ < u(t) ≤ µ take place in some left vicinity of the
point τ .

(C) If a non-periodic solution v(t) does not converges to
the periodic solution vmax

∗ (t) (or vmin
∗ (t)) in a finite time,

it converges to vmax
∗ (t) (or vmin

∗ (t)) exponentially.

Proof. Let v be a non-periodic solution such that v(0) >
vmax
∗ (0). If vmax

∗ (t) ≡ 0, −µ ≤ u(t) < µ for t ∈ [τ − a, τ ],
then a distance between v(t) and vmax

∗ (t) decreases by a
constant value over every time period. If vmax

∗ (t) < 0,
|u(t)| ≤ µ for t ∈ [τ − a, τ), then there exists such time
moment t0 ∈ [τ − a+nT, τ +nT ] that v(t0) = 0, v(t) = 0,
t ∈ (t0, τ + nT ], and v(t) = vmax

∗ (t) for all t ≥ τ + nT .
Thus, part (A) is proved. (B) is proved in a similar way.

Fig. 2. Example of non-uniqueness of the periodic regime

If a non-periodic v does not converge to v∗ in a finite time,
there is infinite number of intervals where v and v∗ have
different signs. From (1), (2), the distance between v and
v∗ decreases with the rate 2µ on these intervals. It can be
proved that the total length of these intervals is sufficiently
large, thus, the exponential convergence takes place.

Consider the example, that illustrates the behavior of the
velocities v(t) for different initial velocities v(0).

Example. Let’s take take µ = 1, T = 4, u(t) = u0(t) −
3δ(t − T/2) + 3δ(t − T ), where u0(t) = 2 for t ∈ [0, T/2)
and u0(t) = −2 for t ∈ [T/2, T ). The corresponding
velocities for different initial values are shown in Fig. 2.
The velocities of periodic and non-periodic regimes are
shown by red and black colors correspondingly. Here we
have vmin

∗ (0) = 0, vmax
∗ (0) = 1.

If the initial velocity of the capsule v(0) is greater than
vmax
∗ (0), then v(t) converges to the motion with vmax

∗ (t),
and average velocity of the capsule is directed to the
right. If the initial velocity of the capsule v(0) is less
than vmin

∗ (0), then v(t) converges to the motion with
vmin
∗ (t), and average velocity of the capsule is directed
to the left. And there exists some initial velocity v(0) ∈
[vmin

∗ (0), vmax
∗ (0)], that the capsule returns to its initial

state at the end of each time period. This can be used
to control vibro-driven capsule robots, because it gives us
the ability to influence the direction of movement of the
capsule only by specifying its initial velocity. Note, that
all periodic solutions v∗(t) with initial velocities v∗(0) ∈
[vmin

∗ (0), vmax
∗ (0)] are not asymptotically stable.
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1. INTRODUCTION

Balancing-related model order reduction (MOR) is one of
the main techniques for reducing the complexity of linear
dynamical systems

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (1)

and is particularly popular in systems and control engi-
neering due to its beneficial properties for control system
design (e.g. Antoulas (2005); Benner (2009); Baur et al.
(2014); Benner et al. (2021)). The basic principle is to use
two symmetric positive semidefinite matrices P,Q and a
contragredient transformation to find a coordinate system
in which they are equal and diagonal. Then one projects
the dynamics of (1) onto the dominant subspace of P = Q
in this coordinate system. This is always possible if the
system is controllable and observable, and can still be used
on the controllable and observable subspaces for MOR
purposes.

The most common choice (Moore (1981)) for P,Q is to
use the system (reachability and obervability) Gramians
which solve the two “dual” Lyapunov equations

AP + PAT + BBT = 0, (2a)

ATQ + QA + CTC = 0. (2b)

Note that for the usual SR or BFSR procedures to compute
a reduced-order model from A,B,C and P,Q, one needs
(approximations of) full-rank or Cholesky factors of P,Q,
i.e. one works with S,R satisfying

P = SST , Q = RTR

approximately. A prerequisite for this to be a successful
is that A is stable, i.e., has all its eigenvalues in the open
left half of the complex plane. The resulting method is
commonly called Balanced Truncation (BT).

? Partially supported by the DFG Research Training Group 2297
”Mathematical Complexity Reduction (MathCoRe)” in Magdeburg.

2. BT FOR UNSTABLE SYSTEMS

One possibility to apply balancing-based MOR for unsta-
ble systems is to use LQG balanced truncation (LQGBT)
(Jonckheere and Silverman (1983)). Here, (P,Q) =
(Xs, Ys) is chosen, where Xs and Ys are the unique stabi-
lizing solutions of the algebraic Riccati equations (AREs)
corresponding to the linear-quadratic regulator (LQR) and
Kalman-Bucy filter problems related to (1):

ATX + XA−XBBTX + CTC = 0, (3a)

AY + Y AT − Y CTCY + BBT = 0. (3b)

An alternative to LQGBT is closed-loop balancing (Wortel-
boer (1994)). The idea is to first stabilize the system and
then to use the Gramians of the closed-loop system in
the balance-and-truncate procedure. Suppose one chooses
for the stabilization Xs, the stabilizing solution of the
LQR ARE (3a). This requires to first compute the unique
stabilizing solution Xs of the LQR Riccati equation and
then to apply the feedback law

us(t) = −BTXsx(t) + u(t)

to (1), resulting in the closed-loop system

ẋs(t) = (A−BBTXs)xs(t) + Bu(t), ys(t) = Cxs(t). (4)

Then, closed-loop balanced truncation (CLBT) uses the
solutions Ps, Qs of the Lyapunov equations

(A−BBTXs)Ps + Ps(A−BBTXs)
T + BBT = 0, (5a)

(A−BBTXs)
TQs + Qs(A−BBTXs) + CTC = 0. (5b)

As it turns out, Ps can simply be computed by applying
the sign function to the Hamiltonian matrix[

A −BBT

−CTC −AT

]
(6)

associated to the LTI system (1), without ever computing
Xs. In particular, Ps can be read off from sign(H) with-
out further computation! This follows from the following
corollary of the proof of (Kenney et al., 1989, Theorem 1).

Corollary 1. Let (A,B) be stabilizable, and (A,C) be
detectable. Then the unique stabilizing solution Xs to the
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ARE (3a) exists and is symmetric positive semidefinite.
Hence, A − BBTXs is stable, (5a) as well as (5b) have
unique solutions Ps = PT

s ≥ 0, Qs = QT
s ≥ 0, resp., and

it holds

sign(H) =

[
−I + 2PsXs −2Ps

2XsPsXs − 2Xs I − 2XsPs

]
. (7)

How to get Qs solving (5b) is not so straightforward,
though. It should be computed using any Lyapunov solver
where one would then also need Xs to set up the coefficient
matrix A−BBTXs.

It is interesting to note that the observability Gramian
of yet another stabilized system can also be read off
from sign(H). Here, one uses as “closed-loop matrix” A−
YsC

TC, which is stable under the same assumptions as
used in Corollary 1. The observability Gramian Q̃s of this
stable LTI system solves the Lyapunov equation

(A− YsC
TC)T Q̃ + Q̃(A− YsC

TC) + CTC = 0. (8)

Now, Q̃s can be obtained from the (1, 2)-block of the sign
function applied to the Hamiltonian matrix corresponding
to (3b) which is nothing but HT with H as in (6). As

sign
(
HT

)
= (sign(H))T , we can read-off Q̃s from the

(2, 1)-block of sign(H). BT could now also be based on

(P,Q) = (Ps, Q̃s), which to the best of our knowledge
has not been described in the literature. As we will see
from the numerical example below, this new balancing-
based MOR method for unstable systems yields very good
results, comparable to LQGBT.

2.1 Numerical Example

We use the eady data from the SLICOT benchmark col-
lection 1 . Here, n = 598, m = p = 1. We computed
reduced-order models (ROMs) of order r = 17 using
BT and LQGBT as implemented in MORLAB (Benner
and Werner (2020)). We also computed a ROM based on

(Ps, Q̃s) as suggested above, where we used signm from
MORLAB to compute sign(H) and read off the (1, 2)-

and (2, 1)-blocks to get Ps and Q̃s. We then obtained
approximate full-rank factors of both matrices using trun-
cated SVDs, and passed them to srrom from MORLAB
to compute the reduced-order model, using the rank pa-
rameter set to r = 17. For now, we call this method
”CLBT2”. Fig. 1 shows the Bode magnitude plot for the
full-order model and the three computed ROMs, where the
graphs are indistinguishable in the “eyeball norm”. The
Bode magnitude plot of the errors for the three ROMs is
displayed in Fig. 2. Here, the interesting fact arises that
the error plots of LQGBT and CLBT2 coincide, and differ
from that of BT. This supports the conjecture that CLBT2
and LQGBT actually compute the same ROM, i.e., that
they are equivalent.

3. OUTLOOK

The discussion of the conjecture that the new ”CLBT2”
method is really just another (and potentially) more
efficient implementation of LQBT will be part of the
talk delivered at MATHMOD 2022. The proof of this
1 https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/
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conjecture will be reported elsewhere, as it requires more
space than available here.
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Abstract: The problem of conjugate heat transfer in gas turbine blades and their cooling ducts
is investigated by constructing a highly simplified mathematical model that focuses on the
relevant coupling structures and aims to reduce the unrelated complexity as much as possible.
Then, the Port-Hamiltonian formalism is applied to the model and its subsystems, and the
interconnections are investigated. Finally, a simple spatial discretization is applied to the system
to investigate the properties of the resulting finite-dimensional Port-Hamiltonian system and
to determine whether the order of coupling and discretization has an effect on the resulting
semi-discrete system.
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1. INTRODUCTION

In this discussion contribution we propose a simplified
mathematical model of the coupled system of a heated
blade and a cooling channel as it appears in modern
gas turbines. First we develop a port-Hamiltonian sys-
tem (PHS) formulation for each of the subsystems and
investigate the coupling structure of their interconnection
in order to determine whether the coupling of the two
subsystems forms a PHS for the overall system. Next
we propose some spatial discretization of the PHS and
study whether the resulting semi-discrete systems form
finite-dimensional PHS and whether there is a difference
between the coupling of the discretized systems and the
discretization of the coupled system. For details we refer
to Jäschke et al. (2021).

2. THE MODEL SYSTEM

First, let us introduce the mathematical model of the
coupled system under investigation. Ωm = (0, 1)× (0, 1) ⊂
R2 denotes the spatial domain of the blade metal. The
heat equation on Ωm is given by

∂T

∂t
(x, y, t) =

1

cmρm
div (λ gradT (x, y, t)) , (x, y) ∈ Ωm.

(1)
In Figure 1 we give a rough sketch of the model setting.

The left, upper and lower boundary (x = 0, y = 0 and
y = 1), denoted by ∂Ωext, are in contact with a thermal
reservoir with a given temperature Text, leading to:

−λ
∂T

∂x
(x, y, t) = h0

(
Text(t)− T (x, y, t)

)
, x = 0, y ∈ [0, 1]

(2)

−λ
∂T

∂y
(x, y, t) = h0

(
Text(t)− T (x, y, t)

)
, x ∈ (0, 1), y = 0

(3)

λ
∂T

∂y
(x, y, t) = h0

(
Text(t)− T (x, y, t)

)
, x ∈ (0, 1), y = 1

(4)
The right boundary ∂Ωc (x = 1) is in contact with the
cooling channel, so that ∂Ωm = ∂Ωext ∪ ∂Ωc and

−λ
∂T

∂x
(1, y, t) = h1

(
T (1, y, t)−Θ(y, t)

)
, (1, y) ∈ ∂Ω, (5)

with the temperature of the cooling channel Θ that is
governed by a transport equation with an additional source
term describing the heat flux into the cooling channel:

∂Θ

∂t
(y, t) = −v

∂Θ

∂y
(y, t) +

h1

ccρc

(
T (1, y, t)−Θ(y, t)

)
, (6)

Θ(0, t) = Θin(t). (7)

3. PORT-HAMILTONIAN FORMULATION

We formulate the PHS for each subsystem using quadratic
Hamiltonians. For the heat equation in the metal rod we

Fig. 1. Schematic of the 2D model system with ∂Ωext

marked as a red line and ∂Ωc as a blue line.
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choose the Hamiltonian, cf. Serhani et al. (2019)

H(t) =
1

2

∫
Ωm

ρ(x)cm(x)T (t,x)2 dx, (8)

with temperature T (t,x) and cm is the isochoric specific
heat capacity that does not depend on the temperature.

We now choose the usual flow and effort variables

eT = δTH = T, fT = ∂tT, (9)

with δT denoting the variational derivative w.r.t. T and
the measure ρcm dx.

Next, the first law of thermodynamics yields

ρ(x)cm(x) ∂tT (t,x) = −divΦQ(t,x), (10)

with the heat flux ΦQ. The (isotropic) Fourier’s law gives

ΦQ(t,x) = −λ gradT (t,x). (11)

Therefore we introduce the additional flow and effort
variables similar to Serhani et al. (2019)

eQ = ΦQ, fQ = − gradT, (12)

to obtain the system of equations(
ρcmfT
fQ

)
=

(
0 −div

− grad 0

)(
eT
eQ

)
, (13)

eQ = λfQ. (14)

The time derivative of the Hamiltonian reads

dtH = −
∫
Ωm

eQfQ dx−
∫
∂Ωm

eT (eQn) dγ, (15)

i.e. the same boundary port variables as Serhani et al.
(2019). To replicate the boundary conditions, we set

eQn = ΦQn = h0 (T − Text) on ∂Ωext (16)

so equation (15) becomes

dtH = −
∫
Ωm

eQfQ dx

−
∫
∂Ωext

h0e
2
T dγ +

∫
∂Ωext

h0eTText dγ

(17)

turning the boundary port of (15) into two new boundary
ports and additional dissipative terms on the boundary.

For the treatment of the cooling channel we refer to
Jäschke et al. (2021), providing us with a PHS that has an
input T (1, y, t) and an output h1

(
T (1, y, t)−Θ(y, t)

)
.

To obtain a PH formulation of the model system by
coupling the PHS we need the following equality:

−λ
∂T

∂x
(1, y, t) = h1

(
T (1, y, t)−Θ(y, t)

)
. (18)

With the inputs and outputs of the two systems we find

e1 = T (1, y, t), f1 = −ΦQn = λ
∂T

∂x
(1, y, t), (19)

e2 = h1

(
T (1, y, t)−Θ(y, t)

)
, f2 = T (1, y, t). (20)

The ‘gyrative’ interconnection, cf. Cervera et al. (2007)

f2 = e1, f1 = −e2, (21)

is a Dirac structure, and obviously satisfies (18). Therefore,
the combined system is again a port-Hamiltonian system.

4. DISCRETIZED COUPLED SYSTEMS

We employ a standard finite difference discretization to
the PHS and due to its simplicity we can easily write down

the matrices of the discretized system. Here, spatial grid
variables are indicated by an underscore, e.g. x.

We consider a uniform spatial grid with N + 1 points and
define T ∈ RN ·M , such that T is defined on an offset grid,
i.e. T i+jN ≈ T (xi +

∆x
2 , y

j
+ ∆y

2 ). Meanwhile, the heat

fluxes Φx ∈ RN ·M and Φy ∈ RN(M+1) are defined on a

grid offset in only the y- and x-direction, respectively, i.e.
Φxi+Nj

≈ Φx(xi, yj +
∆y
2 ) and Φy

i+Nj
≈ Φy(xi +

∆x
2 , y

j
).

We discretize the Hamiltonian (8) w.r.t. space using the
midpoint rule

H =
1

2
ρcm∆x∆y T⊤T , (22)

giving us the internal energy change as flow variable and
the temperature as effort variable:

f (T ) = ρcm∆x∆y
∂T

∂t
, e(T ) = T . (23)

The PHS modelling the cooling channel is disrectized
similarly, cf. Jäschke et al. (2021).

Now the two PHS are coupled, results in a system with
the Hamiltonian

H =
1

2

∫
Ω

ρ(x)cm(x)T (t,x)2 dx+
1

2

∫ 1

0

ρccc Θ
2(y, t) dy.

(24)
Discretizing T , Θ with a proper midpoint rule yields

H =
1

2
ρcm∆x∆y T⊤T +

1

2
∆y

M−1∑
i=0

ρcccΘ
2
i , (25)

the same Hamiltonian produced by coupling the two
discretized PHS. We then obtain the following system:

f (T )

0
0

f (Θ)

 =


0 Jx Jy 0

−J⊤
x −Rx 0 Bx,N

−J⊤
y 0 −Ry 0

0 −B⊤
x,N 0 JΘ −RΘ



e(T )

Φx

Φy

e(Θ)

+

B


Text(x0, y +

∆y

2
)

Text(x+
∆x

2
, y

0
)

Text(x+
∆x

2
, y

M
)

vρccΘin

 , w̃ = B⊤(e(T ),Φx,Φy, e
(Θ)

)⊤
,

which is a PHDAE with JΘ skew-symmetric andRx, Ry, RΘ

symmetric.

At least in this case, for the discretization chosen here,
there is therefore no difference between coupling the dis-
cretized systems and discretizing the coupled system.
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Abstract: A crucial issue in simulating the heart function is accounting and modeling
the arrangement of myocardial fibers that characterizes the cardiac tissue. Aggregations of
myofibers, namely the results of cardiomyocytes orientation, plays a key role in the electric signal
propagation and in the myocardial contraction. This motivates the need to accurately include
muscular fibers in cardiac computational models (CCM). Rule-Based-Methods (RBMs), which
provide a surrogate of myocardial fibers field, are one of the most used strategy to prescribe fiber
orientation in CCM. In this work, we present a Laplace-Dirichlet-Rule-Based-Method (LDRBM),
a particular class of RBMs, for generating myocardial whole heart fibers directly on full heart
computational geometries. The methodology is straightforward and can be easily applied to
any four-chambers models. The heart LDRBM includes a detailed myocardial fiber architecture
and is able to quantitatively reproduce almost all the features of the different four-chambers,
particularly those of the right ventricle and the atrial bundles.

Keywords: Cardiac fiber architecture, Fiber reconstruction, Finite element method,
Laplace-Dirichlet-Rule-Based-Methods, Whole heart modeling.

1. INTRODUCTION

In cardiac computational models (CCM), a major issue
consists in modeling the complex arrangement of myocar-
dial fibers that characterizes the cardiac tissue. Aggrega-
tions of myofibers determine how the electric potential
propagates within the muscle and also the mechanical
contraction [Punske et al. (2005); Gil et al. (2019)]. This
motivates the need to accurately include fiber orientations
in order to obtain physically meaningful results.
Due to the difficulties of reconstructing cardiac muscle
fibers from medical imaging [Toussaint et al. (2013)], a
widely used strategy, for generating myofiber orienta-
tions in CCM, relies on the so-called Rule-Based Methods
(RBMs) [Potse et al. (2006)].
Laplace-Dirichlet-Rule-Based Methods (LDRBMs) are the
most used RBMs for prescribing ventricular fibers in CCM.
LDRBMs, which rely on the solution of Laplace boundary-
value problems, have been recently reviewed and analysed
under a communal mathematical description [Piersanti
et al. (2021)].
Regarding the atria, several RBMs have been developed,
using either semi-automatic rule-based approaches [Fastl
et al. (2018)], atlas-based methods [Roney et al. (2020)] or
manually prescribing the atrial fiber orientations [Krueger
et al. (2010)]. All the former procedures require manual
⋆ e-mail: roberto.piersanti@polimi.it

intervention and often are designed for specific morpholo-
gies. Only recently, a LDRBM has been proposed for the
atria [Piersanti et al. (2021)].
Prescribing the myofibers architecture is significantly more
challenging in full heart geometries. Many of the existing
four-chambers heart models embed only the ventricular
fibers [Strocchi et al. (2020)], include simplified architec-
ture for the atria [Land and Niederer (2018)] or adopt
different RBMs for the ventricles and the atria [Gerach
et al. (2021)]. To the best of our knowledge, none of whole
heart computational studies makes use of a unique RBM
to directly embed reliable and detailed cardiac myofiber
architecture that takes into account different fiber orien-
tations specific of the four chambers.
In this work we present a LDRBM for the generation of full
heart myofibers architecture, that is able to reproduce all
the important characteristic features of the four chambers,
needed to provide a realistic cardiac musculature. Our
newly developed method is built upon the combination of
the ventricular and atrial LDRBMs presented in [Piersanti
et al. (2021)] and on a novel definition of several inter-heart
distances by means of Laplace problems.

2. METHODOLOGY

To properly represent the cardiac fiber architecture,
throughout the whole heart computational domain, the
heart LDRBM defines several inter-heart and intra-heart
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Fig. 1. Fiber generation, employing the full heart LDRBM,
applied to the realistic Zygote Heart model.

distances, obtained by solving Laplace problems with spe-
cific Dirichlet boundary conditions on the heart bound-
aries. The inter-heart distances are used to define a trans-
mural distance (from the endocardium to the epicardium),
to discriminate the left from the right heart and the atria
from the ventricles. Meanwhile, the intra-heart distances
are computed to represent different atrial and ventricular
distances, characteristic of the four chambers.
Afterwards, the heart LDRBM first sorts the atria from
the ventricles. Then, it suitably combines the gradients
of the inter-heart and intra-heart distances with the aim
of defining an orthonormal local coordinate axial system
in each nodal point of the heart computational domain.
Finally, the reference frame is rotated with the purpose of
defining the myofiber orientations.

3. RESULTS

The heart LDRBM has been applied to prescribe the
whole heart muscular fiber architecture on the realistic
3D Zygote heart (see Figure 1), a CAD-model representing
an average healthy human heart reconstructed from high-
resolution Computed Tomography scan [Inc. (2014)]. As it
is a very detailed geometry of the human heart, it demon-
strates the applicability of the proposed methodology to
arbitrary patient-specific scenarios.
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1. INTRODUCTION

Poroelastic structures can be found in many biological
applications, such as the study of biofilm growth dis-
tribution near fluids, cardiac perfusion and myocarditis
formation (see Showalter (2005); Barnafi et al. (2021);
Freitas Reis et al. (2019a)). This work concerns the for-
mation of oedema, a build up of excess of fluid content in
the myocardial intercellular space, due to an inflammatory
reaction driven by the immune system.

We extend the results from Freitas Reis et al. (2019a,b)
and develop a phenomenological model for the dynamic
interaction between poroelastic finite-strain deformations
and the chemotaxis of leukocytes towards pathogens. We
address the local solvability of such model by studying its
linearization, and additionally include the applicability of
this model for large scale simulations by devising a robust
block preconditioner (White et al. (2016)).

The main advantages of the proposed mathematical model
and the associated computational methods are:

(1) a framework valid for finite strains,
(2) the versatility of the formulation to accommodate 2D

or 3D geometries,
(3) the accuracy and efficiency of the numerical scheme,
(4) the potential of replacing invasive methods for the

detection of interstitial fibrosis and myocarditis (such
as endomyocardial biopsy) by techniques hinging only
on MRI data.

2. THE MODEL

We consider an open connected domain Ω representing the
heart that is deformed by a deformation field x. A refer-
ence point X is deformed into the point x(X, t) = X +
u(X, t), where u is the displacement field and F := ∇x.
The domain represents a mixture of extracellular and
intracellular space, distributed according to their poros-
ity, i.e. the local percentage of such phase pulled-back
to reference configuration (MacMinn et al. (2016)), given
respectively by ϕ, and ϕIC = det(F )−ϕ. In the extracellu-
lar space we consider the concentration of the leukocytes
and a pathogen, given by cl and cp respectively. These
concentrations, together with the porosity, the pressure
p acting on the intracellular space and the displacement
form the main (primary) variables of our model.

The conservation of linear momentum is given by (MacMinn
et al. (2016)):

−div
(
P − αpdet(F )F−T

)
= 0 in Ω,

where P is the Piola stress tensor, and α is the Biot-
Willis modulus. The Piola stess tensor P is related to the
primary variables through a Helmholtz potential Ψ such
that P = ∂Ψ

∂F , in our case given by the Holzapfel-Ogden
energy (Holzapfel and Ogden (2009)).

In the extracellular space we consider the mass conser-
vation of the liquid it contains, given by the following
equation (MacMinn et al. (2016)):

dϕ

dt
+ div (ϕK(F , ϕ)∇ p) = Θ(p, cp) in Ω,
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where K is modeled with an isotropic power law, and the
immune response is modeled through Θ using a Starling-
Hill function (Freitas Reis et al. (2019a)). The evolution of
the immune system dynamics related to the concentrations
cp, cl is dictated by the following mass conservation laws:

d(ϕcp)

dt
− div (ϕDp(F )∇ cp)

= rp(ϕ, cp, cl), in Ω,

d(ϕcl)

dt
− div (ϕDl(F )∇ cl − χϕcl ∇ cp)

= rl(ϕ, cp, cl), in Ω.

both valid throughout Ω, where Dp,Dl are the pulled-
back diffusion tensors for the species in the extracellular
space, χ is the leukocyte chemotactic rate and rp, rl are
the reaction terms that yield the interaction between the
pathogen and the leukocytes. The last equation is given
by the incompressibility of the intracellular space:

det(F )− ϕ = 1− ϕ0, in Ω,

where ϕ0 represents the initial (resting) porosity.

3. RESULTS

In Figure 1 we show the evolution of the chemotaxis
variables cp (first row) and cl (second two), where it can
be appreciated how leukocytes appear as a reaction to the
passage of the pathogen.

Fig. 1. Evolution of pathogens and leukocytes concentra-
tion (first and second row, respectively) at t = 0
minutes and t = 15 minutes.

In our work we report five different numerical tests:
i) a sensitivity analysis, where pathogen concentration,
pressure and displacement were studied for a wide range of
different parameters; ii) an isolated poromechanics study,
where compression and drainage responses of the tissue
were verified; iii) a coupled chemotaxis study, where the
entire model was tested with an initial concentration of
pathogen in a 2D square domain; iv) a convergence study,
to validate the approximability properties of our proposed

numerical scheme; lastly, v) an integrated simulation in a
real left ventricle geometry, together with a verification of
the robustness of our preconditioner in such case.

4. CONCLUSIONS

We have proposed a general model capturing the phe-
nomenological features of the interaction between chemo-
taxis of the immune system in saturated poroelastic me-
dia admitting large deformations. The problem exhibits a
saddle-point structure that allowed us to devise an ade-
quate approximation scheme, that we complemented with
a block-partitioned preconditioner. The vast collection of
numerical tests allow us to conclude that our model yields
a physiologically accurate behavior, which together with
our scalable solver results in a realistic model that can be
efficiently approximated numerically in large scale simula-
tions.

Further investigation is necessary, for instance, regarding
the specific role of the anisotropic porous structure of the
tissue, as well as in designing new coupling mechanisms
that will contribute to a better understanding of the
formation and termination of myocarditis and myocardial
oedema. Another fundamental problem to address is that
of a more thorough sensitivity analysis, in order to better
understand the role of each of the many parameters
involved in the model, so that they can be more easily
adapted to patient-specific scenarios.
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1. INTRODUCTION

We consider the computation of low-order port-Hamilto-
nian (pH) surrogate models of the form

ΣpH :

{
ẋ(t) = (J −R)Qx(t) +Bu(t),

y(t) = BTQx(t),

where J, R, Q ∈ Rr×r and B ∈ Rr×m with J = −JT,
R ≥ 0, and Q ≥ 0. We call x : R → Rr, u : R → Rm, and
y : R → Rm the state, input, and output of the system,
respectively. The state dimension r is also called the model
order of the system. We compute surrogate models in the
sense that ΣpH is not derived by first-principle modeling
but is instead obtained by approximating the input-to-
output mapping of a given system.

For linear dynamical systems, the input-to-output map-
ping is characterized by the transfer function in the fre-
quency domain. The transfer function of ΣpH is given by

HpH(s) := BTQ(sIr − (J −R)Q)
−1
B.

In this work, we aim at determining matrices J, R, Q, and
B such that HpH approximates the transfer function Hg

of a given (possibly unstructured) system Σg with respect
to the H∞ norm. Let RHm×m∞ denote the normed space of
all real-rational and proper m×m transfer functions that
have no poles in the set C+ := {λ ∈ C | Re(λ) ≥ 0}. Then
the H∞ norm of a function H ∈ RHm×m∞ is given by

‖H‖H∞
:= sup

λ∈C+

‖H(λ)‖2 = sup
ω∈R

σ1(H(iω)),

where σ1(·) denotes the largest singular value of its matrix
argument.

Two use cases for the construction of low-order surro-
gate models that approximate a given input-to-output
mapping are model order reduction (MOR) and system
identification. MOR is used when a given model has a high
complexity (e. g., a large state-dimension), which makes its
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repeated simulation or model-based control computation-
ally prohibitively expensive. Therefore, MOR is applied to
construct a low-order surrogate model that is then used in
place of the high-complexity model. On the other hand,
system identification is applied when no mathematical
model of a given system is available, and instead a model
must be constructed from experimental data. Our method
can be applied in both situations. However, in this note, we
only explain our method in the context of MOR and refer
to Schwerdtner (2021) for a related system identification
algorithm.

The main features of our method are as follows:

• We construct surrogate models with pH structure,
which are automatically passive. Passivity leads to
several benefits for simulation and controller design.

• We only use transfer function evaluations to construct
our low-order model. In this way, no particular model
structure of the original model is required for our
computation of a pH surrogate model. Therefore, our
method can be applied to a wide range of dynamical
systems.

• Our experiments show that our algorithm can deter-
mine pH surrogate models that are as accurate as
models found by well-established (and unstructured)
MOR routines such as balanced truncation (BT).

2. OUR METHOD

In Schwerdtner and Voigt (2020) we pose MOR as a
parameter optimization problem. For that, we define a
parametrized pH system as follows.

Lemma 1. (Schwerdtner and Voigt (2020)). Let θ ∈ Rnθ
be a vector with nθ := r

(
3r+1

2 +m
)
. Furthermore, let θ be

partitioned as θ :=
[
θTJ , θ

T
R, θ

T
Q, θ

T
B

]T
with θJ ∈ Rr(r−1)/2,

θR ∈ Rr(r+1)/2, θQ ∈ Rr(r+1)/2, and θB ∈ Rrm. Further
define the matrices

J(θ) = vtsu(θJ)T − vtsu(θJ),

R(θ) = vtu(θR)T vtu(θR),

Q(θ) = vtu(θQ)T vtu(θQ),

B(θ) = vtfr,m(θB),

where the function vtu : Rr(r+1)/2 → Rr×r maps a vector
of length r(r + 1)/2 to an upper triangular matrix, the
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Fig. 1. The progress of our method for reduced model order of r = 8 is depicted for decreasing levels γ. The given
transfer function is illustrated as black solid line, the low-order surrogate transfer function is depicted as green
dashed line, and the error is shown as blue dash-dotted line. The sample points are depicted as black crosses.

function vtsu : Rr(r−1)/2 → Rr×r maps a vector of length
r(r − 1)/2 to a strictly upper triangular matrix, and the
function vtfr,m : Rrm → Rr×m reshapes a vector of length
rm to an r × m matrix. Then, to each θ ∈ Rnθ one can
assign the pH system

ΣpH(θ) :

{
ẋ(t) = (J(θ)−R(θ))Q(θ)x(t) +B(θ)u(t),

y(t) = B(θ)TQ(θ)x(t).

(1)

Conversely, to each pH system ΣpH with r states and m
inputs and outputs one can assign a vector θ ∈ Rnθ such
that ΣpH = ΣpH(θ) with ΣpH(θ) as in (1).

For details of the construction, we refer the reader to
Schwerdtner and Voigt (2020). In the following, we denote
the transfer function of ΣpH(θ) by HpH(·, θ).
Using this parametrization, we minimize the objective
function
L (γ,H,HpH(·, θ), S) :=

1

γ

∑
si∈S

([
‖Hg(si)−HpH(si, θ)‖2 − γ

]
+

)2
, (2)

with respect to θ for decreasing values of γ > 0, where

[·]+ : R→ [0,∞), x 7→
{
x if x ≥ 0,

0 if x < 0

and S ⊂ iR := {λ ∈ C | Re(λ) = 0}. Minimizing this
objective function for decreasing values of γ effectively
reduces the H∞ error between Hg and HpH. Furthermore,
using L comes with several benefits compared to a di-
rect minimization of ‖Hg −HpH‖H∞

. These are discussed

in Schwerdtner and Voigt (2020).

To obtain a good approximation of Hg by minimizing L,
the sample points si ∈ S must capture the error transfer
function Hg −HpH with sufficient accuracy, such that

max
si∈S
‖Hg(si)−HpH(si)‖2

is close to ‖Hg −HpH‖H∞
. However, each new sample

point also increases the computational demand of the
optimization, since both the large-scale transfer function
and our surrogate transfer function (and gradient of the
their difference with respect to θ) must be evaluated
at each sample point. This speed/accuracy trade-off is
circumvented by a recently developed adaptive sampling
strategy, which adds new sample points at those locations
where the discrepancy between Hg(s) and HpH(s) is larger
than a tolerance which is automatically adjusted by the
algorithm. For implementation details we refer to Schw-
erdtner and Voigt (2021).
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Fig. 2. H∞ error comparison for different MOR methods

3. EXPERIMENTAL RESULTS

We assess the performance of our described optimization-
based MOR by computing low-order approximations to
a large-scale mass-spring-damper model from Gugercin
et al. (2012). Fig. 1 illustrates how the minimization of
L for decreasing values of γ leads to increasingly accurate
surrogate models. Furthermore, it can be observed that
the number of sample points is increased as γ is reduced to
capture the error transfer function with sufficient accuracy.

In Fig. 2, we report the H∞ errors that are obtained when
using our method in comparison with another structure-
preserving as well as an unstructured MOR method. The
key observation is that using our method, we can obtain
pH structured surrogate models that are as accurate as
models obtained from unstructured MOR routines (such
as BT), while other structured MOR methods (such as pH-
IRKA developed in Gugercin et al. (2012)) typically lead
to a decrease in accuracy. All reported results are obtained
with the setup described in Schwerdtner and Voigt (2021).
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1. INTRODUCTION

ROTOR is an agronomic planning tool used by farmers and 
consultants to generate and evaluate crop rotations, which are 
crucial to organic farming systems in terms of their projected 
yields, humus-, nitrogen- (N), phosphorus- (P), and potassium- 
(K) balances, considering weed infestation risks and
phytosanitary restrictions. ROTOR has been developed since
1997 at the Leibniz-Centre for Agricultural Landscape
Research (ZALF). A rule-based static approach is used to
determine crop sequences and to assess their yields (Bachinger
and Zander 2007).

The fact that ROTOR 3.1 runs within the commercial software 
Microsoft (MS) Access and that the software’s structure and 
database have grown over the years, becoming less 
maintainable, made a software re-engineering indispensable. 
The newly developed version 4.0 of ROTOR is an open-source 
standalone software written in Python with a PostgreSQL 
database. The graphical user interface (GUI) was created with 
Qt and PyQt. Although the core principles of the underlying 
models have remained, the calculations of nutrient-balances 
were refined, whereas the generation of crop rotations was 
comprehensively revised. The modular structure of the new 
software allows for easy scalability and better maintainability. 

2. THE SOFTWARE RE-ENGINEERING OF ROTOR 4.0

2.1 ROTOR 4.0’s functionalities 

The site-specific parameters such as the soil rating index (SRI) 
and precipitation necessary for the generation and assessment 
of crop rotations are gathered from user input. Standard values 
for manure types and soil specifications are retrieved from the 
database but can all be modified by the user. The new database 
in ROTOR also contains user-related project data and all data 
used in the nutrient and humus calculations. The user input, as 
well as all results, are stored in a project file. Projects can be 
imported and exported as a JavaScript Object Notation (JSON) 
file with the extension ‘.rotor’. 

In ROTOR 4.0, three use-cases for the generation and 
assessment of crop rotations are implemented. All three 
options rely on the ‘key-and-lock principle’ (chapter 2.2) and 

evaluate the crop rotations executing all nutrient and humus 
calculations, as well as the weed infestation risk assessment. 
The new software inhibits user inputs where not needed or not 
possible for the selected method of crop rotation generation or 
assessment.  

i. The ‘free generation’ allows an unordered input of
crops and available organic manure types. ROTOR
then generates and - if necessary - extends and
completes optimized crop rotations putting the crops in
sensible orders. The result includes recommendations
for manure use and amounts.

ii. The option ‘assessment’ allows any ordered selection
of crops and cover crops, as well as manure types and
amounts. This method is meant to evaluate existing
crop rotations. Its criteria are the nutrient- and humus-
balances, but also the rules of succession. The input
crop rotation is checked for discrepancies from
ROTOR’s key-and-lock principle and phytosanitary
restrictions.

iii. The ‘guided generation’ provides a context sensitive
user input for the generation of new crop rotations. In
the selection for each crop in a rotation, all impossible
options are greyed out or not displayed according to the
expert knowledge implemented in ROTOR, as these
options are not only dependent on the currently selected
crop, but also on the previous and following selections.

2.2 The models in ROTOR 

Modelling in ROTOR consists of two parts: The model for 
the generation of crop rotations and the calculations of 
nutrient- and humus-balances. The latter remains unchanged 
in its principle in ROTOR 4.0 but is adapted to the changes in 
the model for the generation crop rotations. 

Several rules apply in the generation of sensible crop rotations 
in organic farming: 

i. The first crop should be legume-grass (Bachinger and
Zander 2007).

ii. Leaf crops should not follow leaf crops.
iii. No wheat after cereals.
iv. Grain legumes should not follow grain legumes or

legume grass (Stein-Bachinger and Reckling 2013).
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v. Alternation between leaf crops and cereals.  
vi. Alternation between winter and summer crops (Kolbe 

2008).  
vii. Summer crops after cover crops.  
viii. Deep rooting crops to loosen the soil after shallow 

rooting crops (Stein-Bachinger and Reckling 2013) 

Crop rotations should be composed of 30-50% legumes, 30-
60% cereals, 5-25% leaf crops and 20-60% cover crops per 
area according to the farming type (dairy, stockless or stock 
farming) (Stein-Bachinger 2013). Phytosanitary restrictions 
limit the frequency and share of crops or crop types in a crop 
rotation according to their infestation risks in order to prevent 
pest and fungal infestations and plant diseases and therefore 
the use of pesticides (Stein-Bachinger and Reckling 2013). 
Since in organic farming no mineral fertilizers are applied, the 
nitrogen-balance must be regulated in part by using legumes, 
as they fix atmospheric nitrogen in the soil. They can be 
cultivated as main crops or as catch crops that are either 
undersown or sown after the main crop’s harvest. This 
distinction is crucial to the model as it is based on the concept 
of ‘crop production activities’ (CPA), describing the variable 
time span starting after and ending with the harvests of the 
main crops and their cultivation methods (Bachinger and 
Zander 2007). The CPAs in the database have to be created 
manually for each crop according to expert knowledge. 

A crop sequence is generated applying the key-and-lock 
principle by matching the properties of the preceding crop with 
the requirements of the current crop concerning crop type, N-
delivery of the preceding CPA with the N-need of the current 
CPA and a matching catch crop (Bachinger and Zander 2007). 
Thus, a CPA with an undersown catch crop needs to be 
followed by a CPA with a catch crop. To make the rather 
complex calculations concerning the N levels required and 
output by each CPA applicable in the generation of crop 
rotations in a software, the N-delivery of each CPA to the 
following is classified as either high or low according to expert 
knowledge (Bachinger and Zander 2007). 

The above-mentioned rules i. – v. are implemented by an entry 
for possible preceding crop types (cereal, leaf crop, grain 
legume and legume grass) in the CPA database table. The 
alternation of summer and winter crops (vi.) is ensured by the 
according SQL-queries in the crop rotation generation. Rule 
vii., cover crops should always be followed by summer crops, 
is implemented by restricting the availability of the option for 
cover crops in the GUI to summer crops. The last rule 
mentioned (viii.) is partially neglected in the software, as there 
is no clear definition of deep and shallow rooting plants. Root 
structure not only depends on the crop, but also on several 
surrounding factors such as the soil type and its density. With 
the previously mentioned preceding crop type defined in each 
CPA, this principle is only applied by a rule of thumb, since 
legumes are generally classified as deep rooting, whereas 
cereals tend to have shallower roots (Kutschera et al. 2018). 

The new model reduces the possible number of CPAs per crop 
to 16, as only the four crop types, two levels of N delivery of 
the previous crop and a Boolean value for undersowing that 
can, but does not necessarily affect the N-delivery to the next 
crop. This reduction was achieved not only by removing all 

degrees of freedom introduced by parameters of the CPA that 
do not affect the N-delivery of a CPA such as manuring, but 
also by shifting the timespan describing a CPA. Although in 
agronomy, a cultivation period starts after the harvest of the 
main crop, the revised model applies a timespan starting with 
the sowing of a main crop, making it obsolete to include the 
type of catch crop (none, undersown, or sown after the main 
crop’s harvest), reducing the maximum number of manually 
created CPAs by a factor of three. 

After the generation of a crop rotation, the yields are 
calculated. These amounts can be modified by the user. Based 
on the yields, the humus balance is calculated according to 
Ebertseder et al. (2014). The P and K balances are assumed to 
be the difference of by manuring added and by the harvest 
removed P and K. The N-balance is obtained by a complex 
chain of calculations, not only determining the N removed by 
harvest and added by manuring, but also the amount of 
atmospheric N fixed by legumes, the amount of mineralised N 
that is available to the plants, the N lost through leaching, and 
volatilisation. The weed infestation risks are assessed by 
assigning values to relevant elements of the cultivation 
methods such as tillage (Bachinger and Zander 2007). 

3. CONCLUSIONS 

The new version 4.0 of ROTOR is a software for the 
generation and evaluation of crop rotations in organic farming 
systems. The new modular software build facilitates the 
introduction of new CPAs and functionalities. Currently, an 
economic assessment of crop rotations is implemented and the 
software’s accessibility will be improved by the development 
of a web frontend. 
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Abstract: Classical projection-based model order reduction methods, like the reduced basis
method, are popular tools for getting efficiently solvable reduced order models for parametric
PDEs. However, for some problems, the error-decay with respect to the dimension of the linear
projection space is predetermined to be slow, e.g., for parameterized wave equations with jump
discontinuities.
In order to cope with this issue, we consider approximations formed by a linear combination
of given functions enhanced by ridge functions – a Linear/Ridge expansion. For an explicitly
or implicitly solution of a parameter-dependent problem, we reformulate finding a best
Linear/Ridge expansion in terms of an optimization problem that we solve with a particle
grid algorithm.
The linear functions as well as the ridge profiles are built offline with a greedy-type algorithm.
By training the directions offline, we can achieve an efficient online evaluation to solve the
projected parametric PDE.
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1. MOTIVATION

As a motivating example for the developed method, we
recall the parametric linear wave equation.

Parametric wave Consider the linear wave equation
∂2ttu − µ2 ∂2yyu = 0 for t > 0 and y ∈ R with initial
conditions u(0) = u0 and u̇(0) = 0. The parameter-
dependent solution is given by the famous d’Alembert
formula as u(t, y;µ) = 1

2 (u0(y − µt) + u0(y + µt)). Hence,

choosing v1 = v2 = u0, c1 = c2 = 1
2 , b1 = b2 = 0 as well

as a1 = (−µ, 1)>, a2 = (µ, 1)> and x = (t, y)> yields a
representation of the solution u(t, y;µ) = c1v1(a>1 x+b1)+
c2v2(a>2 x + b2) as a sum of two ridge functions. Besides,
also for u̇(0) 6= 0, the wave equation is a sum of two, but
then different, ridge functions.

This problem is particularly interesting since it is known
that projection-based (i.e., linear) model order reduction
techniques do not work in the sense that the decay of
the Kolmogorov N -width is at most O(N−1/2), Greif and
Urban (2019). Nevertheless, the use of ridge functions can
enhance such error reduction and is in fact convenient to
use here since we only need two appropriate ridge profiles.

2. LINEAR/RIDGE EXPANSIONS

We consider a given function u : Ω → R, where Ω ⊂ Rd
is an open bounded domain and u ∈ L2(Ω). In order to
formulate the approximation problem under consideration,
let XN := span(ΦN ) ⊂ L2(Ω), ΦN := {ϕ1, ..., ϕN} be
a given linear space of dimension N ∈ N with ϕi, i =
1, ..., N , being given functions.

In addition to ΦN , we assume that we are given a finite
number M ∈ N of (ridge) profiles VM := {v1, ..., vM} ⊂
L2(R) and consider the approximation problem for x ∈ Ω

u(x) ≈
N∑
i=1

αi ϕi(x) +
M∑
j=1

cj vj(a
>
j x+ bj) =: uδ(x) ∈ UN,M ,

where UN,M is the nonlinear space built with ΦN and VM .
The objective is to minimize the residual of the PDE,
where u = u(·;µ) is the implicit solution.

Given directions and offsets For fixed directions aj ∈ Rd
and offsets bj ∈ R, the coefficients αi ∈ R and cj ∈
R are just given as the solution of a linear system of
equations (Lemma 2.5 in Greif et al. (2022)). Therefore
we reformulate the approximation to just search for the
optimal (aj , bj) ∈ Rd+1.
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2.1 A particle grid algorithm

Since the determination of directions and offsets amounts
to solving a complex optimization problem, we aim at
using a well-known heuristic method, the particle swarm
algorithm. In order to reduce computational complexity,
we arrange our particles (which are associated to the
collection of all directions aj ∈ Rd and offsets bj ∈ R, j =
1, ...,M) in a dynamic grid. For each profile, we collect the
direction and the offset in one vector dj := (aj , bj) ∈ Rd+1.
These vectors are then associated to some component
pj ∈ (−1, 1)D =: SD. The vector (dj)j=1,...,M ∈ RDM of
all directions and offsets is then associated to one particle
p ∈ (−1, 1)DM = SP .

The algorithm produces a sequence of particle grids, where
each grid (i.e., a swarm in form of a grid) P(k) consists
of mpar particles in SP . We choose npar nodes in each
dimension, i.e., mpar = nPpar for npar ∈ N. Then, we

initialize the initial particle grid P(0) by taking the tensor
product, yielding a regular grid. Each particle has uniquely
defined next neighbors in each diagonal direction. This
next neighbor relation does not change in the course of
the iteration. This means that each swarm is a grid whose
internal geometry does not change even if the position of
each particle may vary. We may associate each particle
grid P(k) with a tensor of dimension P (e.g., a matrix for
P = 2).

Solve parametric PDEs We used the method with the
particle grid algorithm to solve two different PDEs, the
already introduced wave equation as well as the thermal
block, that is a classical problem for model reduction,
Haasdonk (2017). (For the thermal block, we used the
domains Ω = (0, 1)2,Ωi := [0, 1] × [ i−14 , i4 ], i = 1, ..., 4).
We fed the method with ΦN = {ϕ1, ϕ2, ϕ3, ϕ4} and VM =
{v1, v2} and the algorithm was able, for a new parameter
µ, to choose the appropriate functions and discard the
remaining functions by setting the coefficients to zero. The
results can be seen in Table 1. Obviously there are more
iterations needed for the case of the wave equation.

PPDE parameter µ no. iterat. K L2-error

Thermal block (0.1, 10, 1, 0.6) 1 5.1019e− 15

Thermal block (10, 2, 0.1, 0.5) 1 1.4446e− 14

Thermal block (0.4, 2, 0.3, 5) 1 6.0861e− 15

Wave 1/4 20 7.6682e− 05

Wave 1/4 83 8.9850e− 16

Wave 1 21 8.2400e− 05

Wave 1 86 3.1765e− 16

Wave 4 28 4.3012e− 05

Wave 4 83 8.9850e− 16

Table 1. Errors and iterations for both para-
metric PDEs and different parameter values.

3. COMPLETE MODEL REDUCTION METHOD

Generation of basis functions Until now, we considered
ΦN and VM as given. However, we need to extract them
from the problem. (Due to page limitation we can just
sketch the idea here.) Using a greedy-type algorithm, we

build a linear basis from snapshots and successively add
ridge functions attained by integration along directions
according to Pinkus (2015).

Efficient online computation By assuming certain affine
parameter dependence, we can get an efficient online
computation that is faster than the classical particle
grid algorithm. Therefore we offline train the parameter-
dependence on the directions using the particle grid algo-
rithm and online use this as an initial guess to just evaluate
a very local optimization.

3.1 Full model reduction method

• Offline: Build basis functions XN =
{ϕ1, . . . , ϕN} and profiles VM = {v1, . . . , vM}.

• We first build XN by a greedy method mini-
mizing an residual error.

• If the error decay is not ”fast” any more,
we switch and add profiles to VM to further
reduce the error.

• With the obtained space UN,M , we train the
parameter-dependence of the directions using
a training set of snapshots.

• Online: For a parameter µ find directions with
a local optimization method by solving the
PDE on the projected space UN,M .

3.2 Conclusion

We introduced a model order reduction method that is
able to solve a broader class of problems than classical
projection-based methods. Unfortunately, the method also
has some drawbacks, like the harder to reach online effi-
ciency. Computing the optimal ridge directions is more
costly than just solving a linear system of equation.
Furthermore, the Linear/Ridge expansions are still a re-
stricted approximation type. One can easily think of func-
tion classes that are still hard to solve with approaches like
this, like PDEs with nonlinear characteristics. But unlike
in the linear case, there won’t be a nonlinear method that
fits all problems. Related approaches are an active field of
research, c.f. Black et al. (2020).
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1. INTRODUCTION

Earthworks in infrastructure construction are dominated
by extensive logistics operations. They have to be planned
thoroughly, even in a very early phase of a project.
Herein, the authors report the practical use of optimisation
models and simulation to achieve an optimal allocation of
transports.

Despite its commonly acknowledged usefulness in other
industries, simulation of logistics systems is not yet com-
monplace in the construction industry. Clients usually ask
for a variety of documents and calculations, ensuring a
timely and highly qualitative execution of the owed work.
These include construction schedules and site layouts, but
hardly ever simulation models (with one of the rare excep-
tions being Deutsche Bahn in the project Rastatt tunnel
in Germany). Occasional collaborations of academic insti-
tutions with companies in the field look promising yet still
have to prove usefulness in a large scale of application (see
Gschwendtner (2021) for a recent example). In general,
the application of simulation appeared to be restricted to
simplified cases or very special processes (Höfinger and
Brunner (2016)). An interesting example of simulation is a
marketing tool by an equipment vendor, allowing to select
the transportation equipment suited best for the given task
(Volvo Construction Equipment (2021))

Earthworks, the field of application considered herein, is
typically a part of road construction, and includes all
activites necessary to create a plane surface carrying the
asphalt or concrete top layer of a road. Especially for
green-field projects, activities are dominated by moving
massive amounts of earth materials within the project
area.

A logistics concept is understood here as a list of trans-
ports necessary to complete the project. A transport is
defined by start and end point, transport mean, material
quantity and type, and time of execution. A good or
even optimal logistics concept considers re-use of materials
within the site, storing and production capacities, avail-
ability and performance of machinery, road connections
including temporary roads, temporal constraints, etc.

Even before actual operation, a logistics concept is used
to derive schedules, estimate costs, and procure logistics
ressources. Especially when working in the tender phase

of a project, frequent updates to input data are made,
and scenarios have to be compared. This calls for an
efficient tool, allowing the creator of the concept to finish
optimization cycles in the range of a few hours, which
means a practically useful optimisation model has to be
executed in several minutes (considering manual updates
of input data, and necessary pre- and post-processing).

2. MODELS FOR THE EARTHWORKS PROCESS

With the given challenges, a workflow with three steps was
designed, which can provide insights after every step. The
first two steps consist of solving a linear program (LP) ,
while the third step is the execution of a generic simulation
model, using the result of the LP model.

2.1 LP model

A detailed description of the linear programs used as first
and second step is given in Dell’Amico et al. (2019). These
models were first applied in 2012 for the highway project
Pedemontana Lombarda in Italy (see Dell’Amico et al.
(2016)) and since then used regularly for major projects
tendered or executed by STRABAG AG all over the world.
It has to be noted, that in pratical use cases, optimality
is defined by a minimal transport effort, measured in m3 ·
km. The total flow of material is determined as a result
of the first model, with the other models splitting the
material flow into transports and allocating ressources to
the transports, respectively. Thus, the actual optimization
part is completed after the first step, allowing to stop
the process of optimization, if results are undesirable or
non-consistent inputs were given (infeasible model). In
addition, a mathematically optimal solution is guaranteed,
because LP solvers find global optima and the transport
effort is not changed in the second and third step.

With demand for material (filling process, e.g. construc-
tion a road dam), supply of material (cutting process, e.g.
preparing a trench) and a connection road network, in
principle, a simple minimum-cost flow problem has to be
solved. Adding construction related constraints (e.g. limit
supply by excavating equipment), and a time dimension,
the problem becomes increasingly complex. In contrast to
warehouse location problems, demand and supply loca-
tions tend to be located along longitudinal axes (string of
pearls), and typically a main axis dominates the topology
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of the network. This special structure is used to split the
problem into two models. In the first phase, an optimal
material flow is determined, that uniquely defines for each
network edge and time step which material is transported
there, where material is procured and where it is disposed.
Only relations between neighbouring nodes in the network
are considered, with material allowed to pass through
nodes. This reduces the number of relations, and with the
given structure they are in a nearly linear relation with the
number of nodes instead of a quadratic one. In the second
phase, transports over the network are combined in a way
that the solution from the first phase is represented as
transport relations, i.e. transports from a source location
(e.g. a cutting location or a quarry) to a sink location
(e.g. a filling location, disposal site, temporary storage)
The two-phase LP model therefore creates transport rela-
tions which are connected with an arbitrary small or big
quantity, which later has to be translated to single hauls by
actual trucks. It provides added value, as it already solves,
how demands can be fulfilled, which parts of the road
network will be (over-)used, which procurement locations
will be used (an important information for negotiating
contracts) and what the overall haul effort, expressed in
m3 · km will be.

2.2 Simulation model

An important limiting factor in construction performance
is the availability of haulage equipment that is often not
provided by the main construction contractor but by sub-
contractors. Therefore, it is of importance to have knowl-
edge about the haulage equipment at an early stage to
be able to make appropriate contracts. In the LP model
described above, no statements are made on individual
trucks, loading and placing equipment. The intention of
the simulation model is to close this information gap.
The simulation model is implemented as an agent-based
model in AnyLogic, using a straight-forward approach
with machinery represented as agents on a network with
exactly the same nodes and relations as in the LP model.
The target performance of the construction equipment in
combination with the distance to the optimal source/sink
for each working location and assumed loading capacities
and driving speeds of the haulage equipment is sufficient
to trivially calculate round times and thus required truck
numbers for each task. These calculations are automati-
cally done by the simulation model.

Additionally, a schematic visualization of the process is
generated as a by-product. This can be useful as a means
of communication towards the client. For this standardized
simulation, a 3D-representation is omitted, as 3D-data of
the project is not always available, even less 3D-models
for all the surrounding area relevant for logistics (quarries
and dump sites typically are in radius up to 50km around
a construction site).

The filling and cutting tasks are located on certain nodes
of this network. The quantities for each location are stored
within a so-called workstation agent. Once all workstations
have reached the “done” state (i.e.: all quantities have
reached 0), the simulation is finished. The actual perfor-
mance of the machine is depending on the availability of
a sufficient number of trucks - material can only be cut

when there is a truck to load it on and only material that
has already been delivered to the machine can be filled.

The present simulation model can be used on any project
where an optimization with the LP model is done. The
project specific need for adaption is limited to adjusting
the background map and start date of the simulation
model to the actual project. Unfortunately, this cannot
yet be automatized due to technical reasons. Apart from
that the simulation model is entirely dynamically built on
data that is generated during the LP optimization process
anyway. There is an analysis view within the simulation
model, where real time data is visualized, e.g. number of
trucks used, transport distances, processed quantities etc.

3. CONCLUSION

With our three-model approach, we are in a position to
quickly evaluate major earthworks projects with respect
to minimal (optimal) transport effort, usage of ressources,
optimal locations for procurement etc. The workhorse of
the approach is the first LP model, where the flow of
material over the network is determined. Nevertheless, the
following stages are necessary to create the required input
for cost estimators, project technicians and procurement.
The graphical capabilities of the simulation model can
be used in an educational way to explain our method
to teams who never worked with us (as opposed to the
LP model, where only macro code can be shown). Mod-
els of this kind need comprehensive input information,
available only in projects with well-designed processes,
especially in the case of time-critical tender phases. The
introduction of BIM is therefore a facilitator for simulation
as well as many other downstream processes. With BIM
becoming a standard, more and more often required by
clients, together with our model, the way is pathed for
a standard application of simulation in major projects in
infrastructure construction.
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Abstract: Under-actuated bipedal walking robots are an active area of research. Previously,
Sangwan and Agrawal (2007) have presented a mechanical design methodology for under-
actuated bipeds based on placing center-of-mass of the legs at the hip joint that renders
dynamics of a class of planar bipedal walking robots differentially flat. Once this class of under-
actuated bipeds is proven to be differentially flat, one can analytically write down a feasible
parametrized family of trajectories. Proving flatness results for an n-dof bipedal robot does
not guarantee the existence of reasonable walking solutions satisfying the motion constraints.
This work demonstrates planning and tracking control of feasible walking trajectories satisfying
motion constraints for a higher degree-of-freedom four-link biped with a knee joint in each leg.

Keywords: Robotics, Algebraic methods, Optimization, Under-actuated Biped, Differential
flatness.

1. INTRODUCTION

In case of walking robots, under-actuation makes the robot
motion more human like since human walking does have
phases of under-actuation McGeer (1990); Collins et al.
(2001). One approach of planning and controlling trajec-
tories is based on mechanically redesigning the biped, with
center of mass at the hip for each leg, such that the con-
tinuous component of its overall hybrid dynamics becomes
differentially flat Sangwan and Agrawal (2007). Once this
class of under-actuated bipeds is proven to be differentially
flat, a family of feasible parameterized trajectories can be
written down analytically and then can be numerically op-
timized to satisfy additional motion constraints. Although
the previous flatness result was proven for an n-dof bipedal
robot with potentially multiple joints in each leg but it
was numerically demonstrated with a simple biped with
only two links without a knee joint. For bipeds with more
joints, it does not directly imply that reasonable walk-
ing solutions will always exist because differential flatness
only guarantees existence of dynamically feasible periodic
trajectories but not necessarily trajectories feasible w.r.t
additional motion constraints such as ground clearance,
positive ground normal reaction etc. The key contribution
in this note is, planning and tracking control of feasible
walking trajectories based on the property of differential
flatness combined with numerical optimization for a higher
degree-of-freedom (DoF) biped having four links with a
knee joint in each leg. A full-state feedback controller
based on the differentially flat structure of the dynamics
is also shown to track the planned trajectories in presence
of initial errors.

q1

q2

l2

l1

l3

q3

Stance

Leg

Swing

Leg

Locked 

Joint

COM of Link (1) & (2+3)

COM 

of Link (3)

Fig. 1. A four-link planar bipedal robot with a knee joint
in each leg.

2. FOUR-LINK BIPED

In this section, the flatness based design methodology is
applied to a more complicated biped with knees shown in
Fig. 1. The knee and hip joints are actuated whereas the
ankle joints are unactuated. Besides actuators, knee joints
also have a solenoid actuated latch that is used to lock
these joints. At any given instant one of the legs (stance
leg) is in contact with ground and the other leg (swing
leg) is swinging freely in air. Although the biped has four
joints but the knee joint of the stance leg is always locked
and hence at any given instant the biped has a maximum
of three degrees-of-freedom. The swing and stance legs
interchange roles instantaneously when the swing leg hits
the ground at ground impact as shown in 2. Following the
design methodology presented in Sangwan and Agrawal
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Heel Impact Knee Impact
(Swing Leg 

Knee Locked)
(New Swing Leg 

Knee Unlocked)

Fig. 2. A four-link planar bipedal robot with a knee joint
in each leg.

(2007), COM of both legs is at the hip joint. This COM
placement is achieved by first placing the COM of shank
segment at the knee joint followed by the placement of
combined COM of shank and thigh at the hip joint by
means of counter-masses. A complete dynamic model of
the biped consists of four separate models (i) 3-DoF phase
(ii) 2-DoF phase (iii) the impact model for heel impact
and (iv) impact model for knee impact. All of these are
derived using energy method.

3. DIFFERENTIAL FLATNESS BASED
TRAJECTORY PLANNING

The dynamics for both continuous phases of this system
is such that flat outputs with total relative degree equal
to the number of states exist. There also exists difeomor-
phism between state space and flat output space. Outputs
for 3-DoF phase are as follows

y1 = q1 + m̄22q2 + m̄33q3, y2 = m̄33(q1 + q2 + q3). (1)

Parameters m̄22 and m̄22 are non-dimensionalized inertia
parameters appearing in the dynamic model. y1 with
relative degree four and y2 with relative degree two makes
the total relative degree of outputs equal to six i.e. equal
to number of states. Similarly, for the 2-DoF phase, flat
output is given by:

y1 = q1 + m̄22q2, (2)

with relative degree four. To satisfy the dynamic feasibility
and periodicity requirements, flatness framework is used to
generate a family of cyclic dynamically feasible trajectories
having a set of free parameters. Then an SQP based opti-
mization routine is used to modulate those free parameters
such that the motion constraints mentioned previously are
also satisfied. The planning has to be done for two distinct
phases the 3-DOF phase from heel impact to knee impact
and the 2-DOF phase from knee impact to next heel
impact as shown in Fig.2. Critical instances like pre-heel
and knee impact states, and post-heel and knee impact
states, were made the anchor points during the numerical
optimization. Then output’s collocation function of time
were chosen such that one part of the collocation function
is used to satisfy the anchor states and other is used in
modulating the trajectories to satisfy the constraints.

4. RESULTS AND CONCLUSIONS

Feasible walking trajectories shown in Fig. 3 are obtained
using SQP based numerical optimization over a family
of dynamically feasible periodic trajectories, with motion
constraints such as positive ground normal reaction, posi-
tive heal height. Solid blue lines in this figure are planned
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Fig. 3. [Left] Joint angle trajectories, [Right] various con-
straints imposed during optimization, (dash line -
planned trajectory, solid line - actual trajectory ).

trajectories and dashed lines are trajectories of the system
with the full state feedback controller having some initial
errors. Clearly, trajectories converge to the planned even
in presence of initial errors and joint angles stay within
reasonable range. Also Heel height and normal reaction
stay positive and coefficient of friction is within acceptable
range.

In conclusion, this work demonstrated construction of
feasible walking trajectories based on the property of
differential flatness for a biped with higher degrees-of-
freedom with a knee joint in each leg. These trajectories
were constructed using numerical optimization over a
family of dynamically feasible trajectories.The optimizer
only had to satisfy the motion constraints such as positive
ground normal reaction and ground clearance due to
guaranteed periodicity because of flatness and collocation
function. Simulations with a linear full-state feedback
controller is also shown to eliminate initial errors in the
trajectories.
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1. INTRODUCTION

Atrial fibrillation (AF) is a common comorbidity in left 
ventricular assist device (LVAD) patients and has been 

identified as a risk factor for stroke.  (Deshmukh et al., 2018).  

Clinical studies in heart failure patients have shown reduced 

thromboembolic risk after occlusion of the left atrial 

appendage (LAA) (Deshmukh et al., 2019). However 

potential benefits in LVAD patients are not yet fully 

understood. This study aims to investigate the effect of left 

atrial appendage occlusion (LAAO) on thrombosis-related 

parameters using LVAD patient-specific hemodynamic 

simulations.  

2. MATERIAL AND METHOD

2.1 Patient Model 

Left ventricular (LV) and left atrial (LA) models of an LVAD 

patient were obtained from computed tomography images 

using Mimics Research 20.0  and 3-matics Research 13.0 

(Materialise, Belgium NV)  (Fig. 1).  

2.2  Boundary Conditions 

Hemodynamics for LVAD patient were generated by lumped 
parameter model for AF patients and was applied for two 

CFD simulations with passive atrial contraction and active 

ventricular contraction for 8 cardiac cycles. 

The Navier-Stokes equations were solved with a finite 
volume approach and an Arbitrary Lagrangian-Eulerian 

formulation in the CFD solver (FLUENT, Ansys 19.3, 

Pennsylvania, USA). Blood flow was modelled using the 

Laminar method and considered to be a Newtonian fluid with 

a density of 1060 kg/m3 and a dynamic viscosity of 0.0035 

Pa s. The velocity and pressure boundary conditions were 

imposed at the inlet and outlet. 

2.3  Flow Parameter Evaluation 

Stasis volume (SV) was defined to highlight regions with a 

time-averaged velocity of less than 10 mm/s (Rayz et al., 

2008).  

Atrial and ventricular blood washout was quantified using a 

virtual ink technique (Rayz et al., 2010). The virtual ink was 

transported by the resultant flow. All fluid domains were 

initialized with an ink concentration of 0, with the value of 1 

at inlets, representing a flow of fresh blood. The rate of LA 

washout was calculated by the percentage of old blood in the 

LA, normalized by the LA volume. 

Fig. 1. Patient-specific left heart model (red geometry shows 

the atrium with LAAO) and CFD boundary conditions; PV: 

pulmonary vein, LA: left atrium, LV: left ventricle, MV: 

mitral valve, LAA: left atrial appendage, LAAO: left atrial 

appendage occlusion, AF: atrial fibrillation, LVAD: left 

ventricular assist device. 
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3. RESULTS 

Occlusion of the appendage increased the overall average 
velocity within the LA, while comparable values were 

observed within the LV pre and post-LAAO. A recirculation 

zone with low blood velocity was observed within the LAA 

(Figure 2 A) and therefore after occlusion average blood 

velocity increased by +5%. 

 

 

Fig. 2. Time-averaged flow streamline colored by mean 

velocity (V). 

Appendage occlusion results in significant reduction of the 

stagnation volume which mainly was observed within the 

LAA. The reduction of 64% in stasis volume (from 6.5 to 2.3 
cm

3
) was observed post-LAAO. 

 

 

Fig. 3. Time-averaged stagnation volume (SV). 

Occlusion of the appendage significantly accelerates the 

replacement of the old blood with the new blood within the 

LA. After 3 cardiac cycles the entire old blood within the LA 

was replaced with new blood for LAAO simulation (Fig. A 

and B), while without occlusion of the appendage 4.3% of the 

old blood remained in the atrial appendage for more than 8 

cardiac cycles. 

 

Fig. 4. Atrial blood washout A) over 8 cardiac cycles, and B) 

after third cardiac cycle 

4. CONCLUSIONS 

The results of this study showed a significant stasis volume 

within the left atrial appendage. These regions are known as 

potential sources for thrombus formation. Therefore, to 

reduce the stasis zones for LVAD patients with atrial 

fibrillation, occlusion of the appendage could be considered. 
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Abstract: We investigate the stability of the wave equation with spatial dependent coefficients
on a bounded multidimensional domain. The system is stabilized via a scattering passive
feedback law. We formulate the wave equation in a port-Hamiltonian fashion and show that
the system is semi-uniformly stable.

1. INTRODUCTION

In this paper we investigate the boundary control system

u(t, ζ) =
∂w

∂Tν
(t, ζ), ζ ∈ Γ1,

∂2w

∂t2
(t, ζ) =

1

ρ(ζ)
div (T (ζ)∇w(t, ζ)) , ζ ∈ Ω,

w(t, ζ) = h(ζ), ζ ∈ Γ0,

w(0, ζ) = w0(ζ), ζ ∈ Ω,

∂w

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

y(t, ζ) =
∂w

∂t
(t, ζ), ζ ∈ Γ1,

(1a)

with feedback law

u(t, ζ) = −k(ζ)y(t, ζ), ζ ∈ Γ1, (1b)

where t ≥ 0, Ω ⊆ Rn is a bounded domain with Lipschitz
boundary ∂Ω = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅, Γ0 and Γ1 are
open in the relative topology of ∂Ω and the boundaries of
Γ0 and Γ1 have surface measure zero. Furthermore, w(ζ, t)
is the deflection at point ζ ∈ Ω and t ≥ 0, and profile
h is given on Γ0, where the wave is fixed. Let Young’s
elasticity modulus T : Ω→ Cn×n be a Lipschitz continuous
matrix-valued function such that T (ζ) is a positive and
invertible matrix (a.e.) and T (·)−1 ∈ L∞(Ω)n×n. The
vector ν denotes the outward normal at the boundary and
∂
∂Tνw(t, ζ) = Tν ·∇w(t, ζ) = ν ·T∇w(t, ζ) is the conormal
derivative. The Lipschitz continuous mass density ρ : Ω→
R+ satisfies ρ, 1

ρ ∈ L∞(Ω). Further, k : Γ1 → R is a

measurable positive and bounded function such that also
its pointwise inverse is bounded, i.e. k, 1

k ∈ L∞(Γ1).
Finally, w0 and w1 are the initial conditions.

Strong stability of (1) has been investigated in Quinn
and Russell (1977). In Humaloja et al. (2019) this sys-
tem also appears in port-Hamiltonian formulation, but
with constant T and ρ and C2 boundary. Under these

? The authors are working in the ITN network ConFlex. This
project is funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant
agreement No 765579.

restrictions, they show that this system is exponentially
stable. However, semi-uniform stability, a notion which is
stronger than strong stability and weaker than exponential
stability, of (1) with spatial dependent functions ρ and T
on quite general domains has not been studied so far.

We aim to show semi-uniform stability of (1) using a port-
Hamiltonian formulation. Semi-uniform stability implies
strong stability, and thus we extend the results obtained
in Quinn and Russell (1977). To prove our main result
we use the fact that semi-uniform stability is satisfied
if the port-Hamiltonian operator generates a contraction
semigroup and possesses no spectrum in the closed right
half plane. Port-Hamiltonian systems encode the underly-
ing physical principles such as conservation laws directly
into the structure of the system structure. For finite-
dimensional systems there is by now a well-established
theory Maschke and van der Schaft (1992); Duindam
et al. (2009). The port-Hamiltonian approach has been
further extended to the infinite-dimensional situation, see
e.g. Villegas (2007); Jacob and Zwart (2012); Kurula and
Zwart (2015). In Kurula and Zwart (2015) the authors
showed that the port-Hamiltonian formulation of the wave
equation (1) possess unique mild and classical solutions.

2. PORT-HAMILTONIAN FORMULATION OF THE
SYSTEM

We split the system (1) into a time independent system

div T (ζ)∇we(ζ) = 0, ζ ∈ Ω,

we(ζ) = h(ζ), ζ ∈ Γ0,

∂we

∂Tν
(ζ) = 0, ζ ∈ Γ1,

(2)

and a dynamical system

∂2wd

∂t2
(t, ζ) =

1

ρ(ζ)
div(T (ζ)∇wd(t, ζ)), ζ ∈ Ω,

wd(t, ζ) = 0, ζ ∈ Γ0,

wd(0, ζ) = w0(ζ)− we(ζ), ζ ∈ Ω,

∂wd

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

∂wd

∂Tν
(t, ζ) = −k∂wd

∂t
(t, ζ), ζ ∈ Γ1

(3)
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where t ≥ 0. The original system is solved by w(t, ζ) =
we(t, ζ)+wd(ζ). As in Kurula and Zwart (2015) the system
in (3) can be described in a port-Hamiltonian manner by

choosing the state x(t, ζ) =
[
ρ(ζ) ∂∂twd(t,ζ)

∇wd(t,ζ)

]
. By using the

convention [
x1(t)
x2(t)

]
:= x(t) := x(t, ·)

we can write the system (3) as

d

dt
x(t) =

[
0 div
∇ 0

] [
1
ρ 0

0 T

]
x(t),

x(0) =

[
ρw1

∇(w0 − we)

]
,

γ0
1
ρx1(t)

∣∣
Γ0

= 0,

γνTx2(t)
∣∣
Γ1

= −kγ0
1
ρx1(t)

∣∣
Γ1

By γ0 and γν we denote the boundary trace (extension
of f 7→ f

∣∣
∂Ω

) and the normal trace (extension of f 7→
ν · f

∣∣
∂Ω

), respectively. Kurula and Zwart (2015) choose

the state space L2(Ω)n+1 equipped with the energy inner
product

〈x, y〉 :=
〈
x,
[

1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

,

which is equivalent to the standard inner product of
L2(Ω)n+1 thanks to the assumptions on T and ρ. They
then show the existence of mild and classical solution via
semigroup methods. For well-posedness this is a suitable
state space, but when it comes to stability this state space
is too large as it does not reflect the fact that the second
component of the state variable x2 is of the form ∇v, for
some function v in the Sobolev space H1

Γ0
(Ω). Thus, we

choose the state space XH as L2(Ω) × ∇H1
Γ0

(Ω), instead

of L2(Ω)n+1. Note that ∇H1
Γ0

(Ω) is closed in L2(Ω)n by
Poincaré’s inequality. Hence, XH is also a Hilbert space
with the L2-inner product. Nevertheless, we also use the
equivalent energy inner product on XH, that is

〈x, y〉XH :=
〈
x,
[

1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

.

Furthermore, we define

A :=
[

0 div
∇ 0

] [ 1
ρ 0

0 T

]
with D(A) :=

[
1
ρ 0

0 T

]−1 (
H1

Γ0
(Ω)× H(div,Ω)

)
as densely defined operator on L2(Ω)n+1. Note that we
have already packed the boundary condition γ0

1
ρx1 = 0

on Γ0 into the domain of A. Moreover, by construction
ranA = XH. Taking the state space and the remaining
boundary conditions (feedback) into account gives

A := A
∣∣
D(A)

, where

D(A) :=
{
x ∈ D(A)

∣∣∣ γνTx2 = −kγ0
1
ρx1 on Γ1

}
∩ XH

(4)

as an operator on XH.

Proposition 1. The operator A given by (4) is a generator
of contraction semigroup.

3. STABILITY RESULTS

Definition 2. We say a strongly continuous semigroup
(T (t))t≥0 on a Hilbert space X is strongly stable, if for
every x ∈ X we have limt→∞‖T (t)x‖X = 0.

We say a continuous semigroup (T (t))t≥0 on a Hilbert
space X is semi-uniformly stable, if there exists a con-
tinuous monotone decreasing function f : [0,∞) → [0,∞)
with limt→∞ f(t) = 0 and

‖T (t)x‖X ≤ f(t)‖x‖D(A), x ∈ D(A).

Note that semi-uniform stability is also defined by
‖T (t)A−1‖ → 0 or ‖T (t)(1 + A)−k‖ → 0 as in Batty
and Duyckaerts (2008). However, this is equivalent to our
definition. Semi-uniform stability implies strong stability.

We denote by A the operator given by (4) which is
associated to the port-Hamiltonian formulation of (1). Our
main result is the following theorem.

Theorem 3. The semigroup generated by A is semi-
uniformly stable.

For the original system (1) strong stability of A translates
to: There is a we ∈ H1(Ω) such that for every initial values
w0 ∈ H1(Ω), w1 ∈ L2(Ω) the solution w satisfies

lim
t→∞
‖w(t, ·)− we(·)‖H1(Ω) = 0.

4. CONCLUSION

In this paper we showed semi-uniform stability of the mul-
tidimensional wave equation equipped with a scattering
passive feedback law.
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1. INTRODUCTION

In this discussion paper we consider the (boundary) con-
trol of irreversible thermodynamic systems using the ir-
reversible port Hamiltonian framework. We first show
how infinite dimensional port-Hamiltonian formulations
initially derived for reversible systems (Le Gorrec et al.,
2005) have been extended to the modelling of irreversible
thermodynamic systems controlled at the boundaries of
their spatial domains (Ramı́rez et al., 2022). In a second
instance we show, on the heat equation example, how
to adapt the well known control by interconnection and
damping injection method to the boundary control of this
particular class of systems.

2. IRREVERSIBLE PORT HAMILTONIAN SYSTEMS

Thermodynamic systems are systems for which the ther-
mal domain plays a central role and the energy goes from
one physical domain to the thermal domain in an irre-
versible way. It is the case for example of chemical reactors,
diffusion systems, smart materials, and all temperature
dependent systems. This class of irreversible systems does
not fit in the port Hamiltonian framework. In order to
overcome this issue, and nevertheless exploit as far as
possible the physical properties of the system, many al-
ternative approaches such as contact formulations, pseudo
port Hamiltonian formulations and GENERICs (Grmela

and Öttinger, 1997) have been proposed in the litterature.
Among them the irreversible port Hamiltonian (IPH) for-
mulations (Ramı́rez et al., 2013) have shown to be very
useful for analysis and control design (Ramı́rez et al., 2016)
in the finite dimensional case. These formulations have
been recently extended to the modelling of infinite dimen-
sional irreversible thermodynamic systems controlled at
the boundaries of their spatial domains, leading to the
following definition (Ramı́rez et al., 2022).

Definition 1. A boundary controller irreversible port Hamil-
tonian system is a system defined by the following set of
PDEs:

∂

∂t

[
x(t, z)
s(t, z)

]
=

[
P0 G0R0(x)

−R0(x)>G>0 0

]δHδx (t, z)

δH

δs
(t, z)

+

 P1
∂(.)

∂z

∂ (G1R1(x).)

∂z

R1(x)
>
G>1

∂ (.)

∂z
gsrs(x)

∂ (.)

∂z
+
∂ (gsrs(x).)

∂z


δHδx (t, z)

δH

δs
(t, z)


(1)

with z ∈ [a, b], x ∈ Rn the set of energy variables, s ∈ R
the entropy, H(x, s) the total energy. P0 = −P>0 ∈ Rn×n,
P1 = P>1 ∈ Rn×n, gs ∈ R, G0 ∈ Rn×m, G1 ∈ Rn×m
with m the number of states involved in the entropy
production. R0 ∈ Rm×1, R1 ∈ Rm×1 and rs ∈ R
stand for the vectors of modulated driving forces with 1

Rk,i = γk,i
(
x, z, δHδx

)
{S|Gk(:, i)|H} , k ∈ {0, 1} and rs =

γs
(
x, z, δHδx

)
{S|H} with γk,i

(
x, z, δHδx

)
, γs
(
x, z, δHδx

)
: Rn →

R, γk,i, γs ≥ 0, non-linear positive functions. The in-
put/output are given by

u(t) = WB

[
ee(t, b)
ee(t, a)

]
, y(t) = WC

[
ee(t, b)
ee(t, a)

]
(3)

where

ee(t, z) =

 δH

δx
(t, z)

R(x)
δH

δs
(t, z)

 with R(x) =

[
1

R1(x)
rs(x)

]
(4)

and

WB =

[
1√
2

(Ξ2 + Ξ1Pep)Mp
1√
2

(Ξ2 − Ξ1Pep)Mp

]
,

WC =

[
1√
2

(Ξ1 + Ξ2Pep)Mp
1√
2

(Ξ1 − Ξ2Pep)Mp

]
,

where Mp =
(
M>M

)−1
M>, Pep = M>PeM and

M is spanning the columns of Pe, defined by 2 Pe =
1 The following pseudo (locally defined) brackets are used to define
the thermodynamic driving forces of the system

{Γ|G|Ω} =

[
δΓ

δx

δΓ

δs

] [
0 G
−G∗ 0

] δΩδx
δΩ

δs

 ,
{Γ|Ω} =

δΓ

δs

> ( ∂

∂z

δΩ

δs

) (2)

for some smooth functions Γ, Ω and G.
2 0 has to be understood as the zero matrix of proper dimensions.
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P1 0 G1 0
0 0 0 gs
G>1 0 0 0
0 gs 0 0

 and where Ξ1 and Ξ2 satisfy Ξ>2 Ξ1 +

Ξ>1 Ξ2 = 0 and Ξ>2 Ξ2 + Ξ>1 Ξ1 = I.

As an example the heat equation defined on a one di-
mensional spatial domaine (z ∈ [0, L]) can be formulated
as an irreversible port Hamiltonian system choosing the
entropy s(z, t) as state variable and the total internal

energy U(t) =
∫ 1

0
u(z, t)dz where u(z, t) is the internal

energy density as Hamiltonian. From the balance equation
on the internal energy and Gibb’s equation one can write
the IPH formulation

∂s

∂t
=

∂

∂z

(
λ

T

∂T

∂z

)
+

λ

T 2

(
∂T

∂z

)2

(5)

where λ denotes the heat conduction coefficient. From (3)
the boundary inputs and outputs of the system are

v(t) =


(
λ

T

∂T

∂z

)
(t, L)

−
(
λ

T

∂T

∂z

)
(t, 0)

 , y(t) =

[
T (t, L)
T (t, 0)

]
, (6)

respectively the entropy flux and the temperature at each
boundary.

3. BOUNDARY CONTROL OF THE HEAT
EQUATION

We consider now the boundary control of the 1D heat
equation. The idea is to use the Thermodynamic avail-

ability function A =
∫ 1

0
a(z, t)dz, defining the distance

between the energy and the tangent plane at the desired
equilibrium point as shown in Figure 1 as closed loop Lya-
punov function (Availability Based Interconnection (ABI))
and to use Entropy Assignment (EA) to guarantee the
convergence of trajectories to the desired equilibrium.

s∗(ζ)

u(s∗)

a(ζ, t)
u(s)

ua(s, s
∗)

s(ζ, t)

J/m

Fig. 1. Thermodynamic availability function.

In this respect the boundary control feedback v = β(y) +
v′, with v′ an auxiliary boundary input, is chosen to map
(6), (7) into the target system

∂ts =rs∂ζ (δsH) + ∂ζ (rsδsH) (7)

ũ =Ξv′ (8)

where H = U and

Ξ =


δsA
T

∣∣∣∣
L

0

0
δsA
T

∣∣∣∣
0

 and v′ =

λ
(
∂ζ (δsA)

T

)∣∣∣∣
L

λ

(
∂ζ (δsA)

T

)∣∣∣∣
0

 (9)

and rs = γs{S|A}. It is the case if the following matching
conditions are satisfied

γs{S|Ha}∂ζ (δsH) + ∂ζ (γs{S|Ha}δsH) =0 (10)

β(y) +

λ
(
∂ζ (δsHa)

T

)∣∣∣∣
L

λ

(
∂ζ (δsHa)

T

)∣∣∣∣
0

 =0 (11)

A target temperature profile of the form T ∗e = m∗ζ +

b∗,∀ζ ∈ [0, L] leads to the solution β(y) =

[
km∗

T |L
km∗

T |0

]T
.

We consider now the additional feedback on (8)-(9)

ũ = −Γy (12)

with Γ = ΞΦΞ>, and Φ = Φ> > 0, then the sys-
tem is asymptotically stable. If Φ is defined by Φ =

diag
(
φL

T |L ,
φ0

T |0

)
where φL and φ0 are strictly positive, the

target temperature profile is achievable from any initial
condition T0. At the end the control is

u = β(y)− ΦΞ>y (13)
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Fig. 2. Behavior of the absolute error of temperature
response with respect to desired equilibrium profile,
using ABI (left) control and ABI-EA (right) control.

As numerical application let’s consider the heat equation
with initial condition T0 = 303.15,∀ζ ∈ [0, 0.1] and target
profile T ∗e = 150ζ + 313.15, ζ ∈ [0, 0.1]. The closed
loop performances using Availability based interconnec-
tion with or without Entropy assignment are given in
Figure 2. It shows that the use of the availability based
interconnection allows to reach an equilibrium but that
EA is necessary to avoid bias.
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1. INTRODUCTION

Consider a collection of d Hermitian matrices X1, . . . , Xd

in Rn×n and a d-tuple λ = (λ1, . . . , λd) ∈ Rd. Let us
consider the problem determined by the computation of
a collection of joint approximate eigenvectors that can
be represented as a rectangular matrix W ∈ Cn×r with
orthonormal columns such that

W = arg min
Ŵ∈Rn×r

d∑
j=1

∥∥∥XjŴ − ŴΛj

∥∥∥2
F
. (1)

Solutions to problem (1) can be used for model order
reduction as will be illustrated in §4.

Given one Hermitian matrix X we are only interested
in the real part of the pseudospectrum. By the usual
definition, real λ is in the ϵ-pseudospectrum of X if∥∥(X − λ)−1

∥∥−1 ≤ ϵ.

One can easily see this is equivalent to the condition

∃v such that ∥v∥ = 1 and ∥Xv − λv∥ ≤ ϵ.

We will call ∥Xv − λv∥ the eigen-error. This comes up all
the time in applications, and the less matrices commute
the more it must be considered.

For Hermitian matrices X1, X2, . . . , Xd we often want a
unit vector with the various eigen-errors small. There are
many ways to combine d errors, such as their sum or
maximum. Not surprisingly, a clean theory arises when
we consider the quadratic mean of the eigen-errors.

Here then is a definition of a pseudospectrum. In the
noncommutative setting, there are several notions of joint
spectrum and joint pseudospectrum that compete for our
attention, such as one using Clifford algebras (Loring,
2015). None is best is all settings.

Definition 1. Suppose we have finitely many Hermitian
matrices X1, X2 , . . . , Xd. Suppose ϵ > 0. A d-tuple λ is
an element of the quadratic ϵ-pseudospectrum of (X1, X2

, . . . , Xd) if there exists as unit vector v so that√√√√ d∑
j=1

∥Xjv − λjv∥2 ≤ ϵ. (2)

⋆ Loring acknowledges partial support from the National Science
Foundation #2110398. Vides acknowledges partial support from the
Scientific Computing Innovation Center of UNAH under project PI-
174-DICIHT.

If (2) is true for ϵ = 0 then we say λ is an element of the
quadratic spectrum of (X1, X2 , . . . , Xd). The notation
for the quadratic ϵ-pseudospectrum of (X1, X2 , . . . , Xd)
is QΛϵ(X1, X2, . . . , Xd).

Remark 2. Very simple examples show that the quadratic
spectrum can often be empty.

It should be said that the more interesting examples of
this tend to require calculation, or at least approximation,
by numerical methods. Often the best way to display the
data is via images of 2D slices through the function

λ 7→ µQ
λ (X1, . . . , Xd)

where we define

µQ
λ (X1, . . . , Xd) = min

∥v∥=1

√√√√ d∑
j=1

∥Xjv − λjv∥2. (3)

That is, we have a measure of how good of a joint approx-
imate eigenvector we can find at λ. Then, of course, the
more traditional interpretation of QΛϵ(X1, X2, . . . , Xd) as
the sublevel sets of this function.

Remark 3. We will make frequent use of the following
notation:

Qλ(X1, . . . , Xd) =
d∑

j=1

(Xj − λj)
2
,

Mλ(X1, . . . , Xd) =

X1 − λ1

...
Xd − λd


Finally we use σmin to indicate the smallest singular value
of a matrix.

As a particular application of quadratic pseudospectrum
based techniques, for the computation of truncated joint
approximate eigenbases, in section §4 we will present
an application of these quadratic pseudospectral based
methods to the computation of a reduced order model for
a discrete-time system related to least squares realization
of linear time invariant models (De Moor, 2019).

2. MAIN RESULTS

We now list the main results that corresponding to some
important properties of the quadratic pseudospectrum.
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Proposition 4. Suppose that X1, X2, . . . , Xd are Hermi-
tian matrices, that ϵ > 0 and λ is in Rd. The following
are equivalent.

(1) λ is an element of the quadratic ϵ-pseudospectrum of
(X1, X2, . . . , Xd);

(2) σmin (Mλ(X1, . . . , Xd)) ≤ ϵ;
(3) σmin (Qλ(X1, . . . , Xd)) ≤ ϵ2.

The following technical result is very helpful for numerical
calculations. Assuming that one does not care about the

exact value of µQ
λ (X1, . . . , Xd) once this value is above

some cutoff, then knowing Lipschitz continuity allows one
to skip calculating this values at many points near where
a high value has been found.

Proposition 5. Suppose that X1, X2, . . . , Xd are Hermi-
tian matrices. The function

λ 7→ µQ
λ (X1, . . . , Xd),

with domain Rd, is Lipschitz with Lipschitz constant 1.

For details on the proofs of Propositions 4 and 5, the reader
is kindly referred to (Cerjan et al., 2022).

3. ALGORITHM

Combining the ideas and methods presented in (Eynard
et al., 2015) and (Cardoso and Souloumiac, 1996), with the
ideas and results presented in §2, we obtained Algorithm
1.

Algorithm 1: Approximate Joint Eigenvectors Com-
putation

Data: Hermitian matrices: X1, . . . , Xd ∈ Rn×n,
d-tuple λ ∈ Cd, Integer: 1 ≤ k ≤ n,
Threshold: δ > 0, Selector: ϕ

Result: Partial isometry V ∈ O(n, k)
0: Set the choice indicator value ϕ: ϕ = 0 for smallest

eigenvalues or ϕ = 1 for largest eigenvales;

1: Set L :=
∑N

j=1(Xj − λjIn)
2;

2: Approximately solve LV = V Λ for
V ∈ Cn×k,Λ ∈ Ck×k according to the flag value ϕ;
for j ← 1 to d do
3.0: Set Yj := V ⊤(Xj − λjIn)V ;

3.1: Set Yj := (Yj + Y ⊤
j )/2;

end

4: Solve W = argminU∈O(n)

∑d
k=1 off(U

⊤YkU) using
complex valued Jacobi-like techniques as in Cardoso
and Souloumiac (1996) with threshold= δ.;

5: Set V := VW ;
return V

In this document, the operation A⊤ represents the trans-
pose of some given matrix A.

4. EXAMPLE

Consider the discrete-time system with states x1(t) and
x2(t) in R400:

x1(t+ 1) = A1x1(t), x2(t+ 1) = A2x1(t+ 1), (4)

y1(t) = ê⊤1,400x1(t), y2(t) = ê⊤2,400x2(t),

for some given matrices A1, A2 ∈ R400×400 such that
A1A2 = A2A1 that are generated with the program

Fig. 1. Original system and ROM outputs.

QLMORDemo.py available at (Vides, 2021)., here ê1,400 and
ê2,400 denote the first and second columns of the identity
matrix in R400×400, respectively. Let us consider the ma-
trices

H1 = A⊤
1 A1,

H2 = A⊤
2 A2,

H3 = A⊤
1 A2 +A⊤

2 A1

We can apply Algorithm 1 toH1, H2, H3 with δ = 10−5 ob-
taining the matrix V ∈ R400×6 with orthonormal columns,
that can be used to compute a model order reduction for
(4), determined by the following equations.

x̂1(t+ 1) = V ⊤A1V x̂1(t), x̂2(t+ 1) = V ⊤A2V x̂1(t+ 1),

ŷ1(t) = ê⊤1,400V x̂1(t), ŷ2(t) = ê⊤2,400V x̂2(t).

The outputs corresponding to the original and reduced
order models are plotted in Figure 1.
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1. INTRODUCTION

Radiofrequency (RF) catheter ablation is a minimally
invasive procedure commonly used for the treatment of
cardiac arrhythmias. Though it has been effectively prac-
ticed for many years, this procedure is not exempt from
complications, including charring formation due to blood
overheating at temperatures higher than 80oC and the
occurrence of steam pops for tissue temperatures around
100oC. Several models have been introduced to simulate
the RF ablation procedure, which provide lesion size esti-
mations at the end of the ablation. Typically, either the
50oC isotherm is considered as an estimation for the lesion,
or an Arrhenius type model, which accounts for the time at
which the tissue is at an altered state. In this work a three-
state cell death model is considered for the estimation of
the lesion, which captures the shrinkage of the damage
region after the completion of the ablation.

2. METHODS

2.1 Three-state cell death model

The model introduced in Park et al. (2016) considers three
states for the proteins within the cell: Native (N), Unfolded
(U) and Denaturated (D). The dynamics are described as
follows:

N
k1−−⇀↽−−
k3

U
k2−−→ D,

dN

dt
=−k1N + k3U,

dU

dt
= k1N − k3U − k2U, (1)

dD

dt
= k2U,

where k1, k2 and k3 follow the Arrhenius model
? AP, ML and LGG were partially supported by the State of Upper
Austria.

ki = Aie
−∆Ei/(RT ), i = 1, 2, 3,

with Ai being the frequency factor, ∆Ei the activation
energy, R the universal gas constant and T the tempera-
ture. Note that at all times N + U + D = 1. The system
(1) is solved numerically using the Runge-Kutta third-
order method and ∆t = 0.01. This scheme allows for the
conservation the quantity N + U + D at all times.

2.2 Slow cell death dynamics

While for fast cell death dynamics equation (1) is capa-
ble of capturing the denaturation behavior for the rapid
changes that occur during thermal ablation treatments,
experimental data show that the cell viability decreases
at a much slower pace in comparison to the duration of
the procedure. In particular, experimental evidence on hu-
man liver hepatocellular carcinoma cells and human lung
fibroblasts show that once cells receive thermal damage
beyond some given threshold (i.e. the native proteins are
below a threshold Nthr), they progressively reach a denat-
urated state. Following ONeill et al. (2011), we consider a
threshold value of Nthr = 80%.

3. RESULTS

3.1 Calibration

While experimental results exist for different types of cells,
including bovine chordae tendineae (Park et al. (2016)),
human liver hepatocellular carcinoma and human lung
fibroblasts (ONeill et al. (2011)), no data are available for
the estimation of the 6 parameters for the hyperthermic
death of cardiac myocytes. To tune the parameters for
such cells, we consider that thermal damage occurs at tem-
peratures higher than 43oC, however the tissue damage is
reversible for heating up to 48oC and exposure time of 60s
(Zaltieri et al. (2021)). Additionally, the mean frequency
A and activation energy ∆E defined as

∆E = ∆E1 + ∆E2 −∆E3 and A =
A1A2

A3
,
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should lie within the physiological ranges of 100 −
800 kJ/mol and 109−10129s−1 found in the literature and
the values given in Park et al. (2016) for proteins.

3.2 Application to RF ablation

Next, we apply the computational model to the simulated
results obtained in Petras et al. (2019) using a 3D com-
putational framework. The simulation protocol employs
30s of ablation followed by 30s of relaxation, where no
ablation is performed and the saline irrigation rate drops
to standby mode of 2mL/min. We consider the three abla-
tion protocols that have been used for validation, namely
(10g, 20W ), (10g, 35W ) and (20g, 20W ), indicating the
contact force in g and the applied power in W . The results
after the completion of 60s appear in Figure 1 for the
parameter set in Table 1 (Ai in s−1 and ∆Ei in kJ/mol,
i = 1, 2, 3).

Table 1. The parameter set chosen for the
three-state model.

A1 ∆E1 A2 ∆E2 A3 ∆E3

3.68×1030 200.1 5.68×103 40.6 2.85×105 43

We get a good agreement with the experimental data
shown in Petras et al. (2019) for the depth (D) and the
depth at the maximum width (DW), while the simulated
lesion underestimates the width (W), which is consistent
with the observations in Petras et al. (2019) for the
ablation protocols (10g, 20W ) and (20g, 20W ) using the
50oC isotherm. On the other hand, the D and DW are
slightly outside the experimental ranges in the case of
(10g, 35W ). This is consistent with the 50oC isotherm
lesion estimation, since the measurements were close to the
limits of the range of the observed experimental data. This
might possibly happen due to the underestimation of the
thermal conductivity of the tissue for large temperature
values (maximum tissue temperature T = 87oC), due to
the lack of data available in the literature (available data
appear only for temperatures lower than 76oC).

4. CONCLUSION

The calibrated three-state hyperthermic cell death model
is capable of capturing the shrinkage of the damaged tissue
area after the ablation, simulating the reversible damage
that occurs, while accounting for the slow cell death.
Additionally, our results indicate that the 50oC isotherm
is overestimating the lesion size.

5. LIMITATIONS

Limitations of this study include the lack of experimental
data for the validation of the thermal cell death for
cardiac myocytes. While other parameters might satisfy
the model calibration, we considered a parameter set
that is producing lesions that are within the experimental
measurements provided by Petras et al. (2019).
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1. INTRODUCTION

Mathematical models have been used to model epidemics
since decades. For instance, compartmental models, where
people are characterised by their state of infection, are
used to describe the spread of the disease, see, e.g., Het-
hcote (2000). Due to the ongoing COVID-19 pandemic
researchers proposed a variety of compartmental models
tailored to model particular characteristics of the dis-
ease, see e.g. Grundel et al. (2022). Here, optimal control
problems (OCPs) are formulated with countermeasures
as control inputs and solved to determine a reasonable
(theoretically optimal) strategy. Here, the main goal is to
maintain a hard infection cap while keeping drawbacks
resulting from the enforced countermeasures as low as
possible. However, besides COVID-19, a couple of vector-
borne diseases seriously endangering public health are re-
emerging in Europe. Hence, we aim at transferring recently
proposed methods, see e.g. Grundel et al. (2021), to de-
termine (near) optimal intervention strategies to a dengue
fever model, see e.g. Fischer et al. (2019). In particular, we
propose an MPC scheme to solve the problem and study
the impact of the choice of the prediction horizon length
and weights in the objective function on the total number
of infections.

2. MODEL AND PROBLEM FORMULATION

We consider the model studied in Fischer et al. (2019)
consisting of two species: humans and mosquitos (vectors).
Transmission may occur if a susceptible mosquito bites
an infectious human or if an infectious mosquito bites a
susceptible human.

2.1 System dynamics

Let Sh, Vh, Ih, and Rh denote the total number of
susceptible, vaccinated, infected, and recovered people and
Am, Sm, and Im denote the aquatic (larves), susceptible,

and infected mosquitos, respectively. Then, the dynamics
for the humans and mosquitos are given by

Ṡh = µhNh + θVh −
(
Bβmh

Nh
Im + ψ + µh

)
Sh

V̇h = ψSh −
(
θ + σ

Bβmh

Nh
Im + µh

)
Vh

İh =
Bβmh

Nh
Im (Sh + σVh)− (ηh + µh)Ih

Ṙh = ηhIh − µhRh

Ȧm = φ

(
1− Am

3Nh

)
(Sm + Im)− (ηA + µa + ca)Am

Ṡm = ηaAm −
(
Bβhm
Nh

Ih + µm + cm

)
Sm

İm =
Bβhm
Nh

IhSm − (µm + cm)Im.

The control u = (ψ, ca, cm) ∈ L∞
loc([0,∞), [0, 1]m), m = 3,

consists of the vaccination rate ψ as well as the rates
of larvicide ca and adulticide cm, respectively. In the
remainder, we collect all states in x(t) ∈ Rn, n = 7, and
write ẋ(t) = f(x(t), u(t)).

2.2 Optimal control problem

Our goal is to maintain a hard infection cap, i.e.,

Ih(t) ≤ Imax ∀ t ≥ 0,

with as little control effort as possible. This motivates the
following OCP

min
u

J(x0, u) =

∫ tf

0

ℓ(x(t;x0, u), u(t)) dt (1a)

s.t. ẋ(t) = f(x(t), u(t)), x(0) = x0 (1b)

Ih(t) ≤ Imax ∀ t ≥ 0 (1c)

with stage costs ℓ : Rn × Rm → R,

ℓ(x, u) := ω

(
Ih
Imax

)2

+
1− ω
m
∥u∥22
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and non-negative weights ω ∈ [0, 1].

We enforce the controls to be constant over one week
reflecting the fact that it takes time to implement the
countermeasures. Moreover, we use model predictive con-
trol (MPC) to mimic real-life decision making by updating
the control variables when novel data is available. Given
step size ∆t > 0, prediction horizon length N ∈ N≥2, and
the current time instant k ∈ N0, the three main steps of
MPC are

(1) measure current state x̂ = x(k∆t),
(2) solve the OCP (1) on [k∆t, (k + N − 1)∆t) to get

optimal control uk : [k∆t, (k +N − 1)∆t),
(3) implement solution µ(k) = uk(k∆t) and increment

k ← k + 1.

3. NUMERICAL RESULTS

In our simulations we set Nh = 100, 000 as well as

S0
h = 99, 990, V 0

h = 0, I0h = 10, R0
h = 0,

A0
m = 300, 000, S0

m = 300, 000, I0m = 0.

The values of the system parameters are listed in Table 1.
We solve the OCP (1) both in open and closed loop over
a time window of one year.

Table 1. Overview of all parameters

symbol description value

Nh total human population 100, 000
B average biting rate 0.8

βmh infection rate from vector to human 0.375
βhm infection rate from human to vector 0.375

µ−1
h

average life expectancy of humans 80 · 365
η−1
h

average infectious time of humans 3

µ−1
m average life expectancy of mosquitoes 10
ηa maturation rate of larvae 0.08
φ amount of eggs per breeding place 6
µa natural death rate of larvae 0.25
σ efficacy of the vaccine 0.2
θ waning immunity 0.05

We study the impact of the different choices of the weight-
ing parameter ω ∈ [0, 1] and the prediction horizon length
N ∈ N≥2 on the total nunber of infections within one
year. Results can be found in Figure 1. Note that in all
scenarios the hard infection cap is maintained. If we do
not penalise the number of infections (ω = 0) the infection
cap is reached and the outbreak evolves faster. The higher
the weight on penalising infections, the more people are
vaccinated (top to bottom). Moreover, the total number
of infections for different combinations of ω and N is
listed in Table 2. Both, in open and closed loop, increasing

Table 2. Total number of infections within one
year depending on weighting ω and horizon N .

N
ω

0 0.001 0.005 0.01 0.5

2 95422 91194 87334 77446 10036
4 95359 89693 58552 41937 4389
6 95313 87914 43004 29524 2959
8 95382 87769 36919 24284 2311
12 95318 89256 35951 20859 1681

open loop 95296 89715 76131 50060 1552
∥u∥∞ 0.0557 0.0626 0.0738 0.0771 0.1116

Fig. 1. Results with cap Imax = 5, 000 for increasing
weight ω from top to bottom: Ih (left), Vh (right).

the weight ω yields a reduction of the total number of
infections for a fixed prediction horizon length N (left to
right).

For fixed weight ω, we observe that in most cases, increas-
ing the horizon length N also results in lower case num-
bers. However, there is an exception for ω = 0.001: If we
increase the prediction horizon from N = 8 to N = 12, the
total number of infections slightly increases. However, the
weight ω = 0.001 for penalising the number of infections
is very small. Thus, it is cheaper to accept more infections
for the trade-off of less control effort. This becomes partic-
ularly prominent in open loop with ω = 0.01. In Figure 1
(bottom left), the infection numbers rise towards the end of
the prediction horizon since we cannot reduce the control
effortwithout causing the number of infections to explode
within the considered time window.

4. CONCLUSIONS AND OUTLOOK

We studied an OCP for maintaining a hard infection cap
in case of an outbreak of dengue fever. We found that
the choice of both the weights in the objective function
and the prediction horizon length are crucial to reduce the
total number of infections. Future research will consider
several serotypes to model vaccination more accurately.
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Abstract: Seasonal influenza is an acute respiratory infection caused by several types of
influenza viruses worldwide. Its outbreak exhibits a seasonal cycle in temperate climates.
For public health decision-making and medical resource management during the time course
of seasonal epidemics, a reliable real-time forecasting system is necessary. In this study, we
introduce a novel approach combining two different data assimilation techniques to produce a
real-time prediction of seasonal influenza governed by the standard SIR model. When applying
our developed approach to Influenza-Like-Illness(ILI) data collected in Korea for 2016–2021, it
successfully near-casted the upcoming week’s flu incidence.
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1. INTRODUCTION

Influenza-like-illness is an acute respiratory infection ap-
pearing with cough and fever. As it shows up in seasonal
cycles in South Korea, supporting the infected individuals
with proper treatment and care using the existing medical
resources becomes a challenge during the outbreak.
Data fitting techniques along with cutting edge machine
learning algorithms are commonly used to forecast epi-
demic trend of an outbreak. During Covid-19 pandemic,
several machine learning techniques approaches are raised
and provided fairly accurate prediction of the epidemic
trends [Wang et al. (2020); Tuli et al. (2020)]. In general,
the machine learning models are not interpretable from
public health perspective and hence comes with limitation
in applicability. Instead, SIR-type of compartment models
which incorporates the mechanisms of disease transmission
and controls are often used in analyses which requires
specific interpretation, such as in scenario analysis [Osthus
et al. (2017); Law et al. (2021); Bjørnstad et al. (2002);
Law et al. (2020)]. Although SIR-type of models resolve
the issue of interpretablity, it is often studies with con-
stant values of the parameters over the whole period of
interest which however changes with time due to many
associated factors like environmental conditions, public
health measures, etc. Markov Chain Monte Carlo derived
techniques though produce time dependent estimates, its
accuracy is low in the beginning. To address this issue, we
use variational data assimilation technique to predict the

initial states of SIR model and then use Bayesian filtering
to forecast the flu incidence of the upcoming weeks.

2. METHODS

We assume the following simple SIR model with constant
population N = S(t) + I(t) +R(t).

dS(t)

dt
=−βS(t)

I(t)

N
dI(t)

dt
= βS(t)

I(t)

N
− σI (1)

dR(t)

dt
= σI

where, β is the transmission rate and σ is the recovery
rate. Firstly, we estimate β and initial states using ICC
curves and data assimilation techniques. As introduced in
Lega (2021), for a total susceptible population of size N

and each initial condition k = S(0)
N = 1 − C(0)

N , the ICC
curve of the model (1) is given by,

Gk,N = β

(
C +

N

R0
ln

(
1− C

N

)
− N

R0
ln(k)

)(
1− C

N

)
(2)

where, C = I + R ∈ [0, C∞] and C∞ the final number of
cases is the positive solution of the transcendental equation

C∞ +
N

R0
ln

(
1− C∞

N

)
− N

R0
ln(k) = 0 (3)
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Fig. 1. Blue circles represent the pairs of cumulative cases
and incidences of ILI data. Red curve is SIR model-
derived ICC curve with parameters that best fits the
cumulative cases – incidence data.

Fig. 2. Predicted numbers of weekly ILI cases using VDA
method based on SIR model.

where R0 is the basic reproduction number, which is one
of the important quantities in dynamics, and is obtained
as R0 = β/σ. It is the expected number of secondary
cases generated by one case in a population where no other
individuals are infected or immunized.
We estimate the values of C(0) and σ using cumulative in-
cidence data of the first week and empirically observed du-
ration of infectiousness, respectively. Then, the unknown
value of the transmission rate β is determined to be the
one which best-fit ICC to the observed incidence data, see
Fig. 1.
Next, using the Variational data assimilation(VDA) intro-
duced by Rhodes and Hollingsworth (2009), we find the
initial states of SIR model which yield the best-fit of the
model to the observed data. Fig. 2 shows that the number
of ILI patients at 51 weeks can be predicted through initial
state estimates. In the numerical optimization process, we
used the adjoint method to compute gradients of the pre-
defined cost function. In order to forecast the flu incidence
in real-time, we adapt the technique of Bayesian filtering.
Starting with the estimated initial states, we use Particle
filtering in each time step to forecast the states in the next
time step. Upon receiving the observed data in the next
time step the forecast is updated to produce the estimate,
which is further used to forecast in the next time step.
And the cycle goes on until the end.

3. RESULTS

We implement the above mentioned approach to weekly
incidence ILI data of South Korea over the period 2016-
2021. The Fig. 3 shows good agreement of forecast with
the trend observed in the data for two consecutive peaks

Fig. 3. Weekly forecasting of ILI cases. The red circles
represent the weekly data and the solid lines shows
weekly forecast.

during 2016-2017. A limitation of the suggested technique
is that there is no established method in determining the
time of season onset and it has to be changed each year for
the accurate prediction of the epidemic curve. As a future
work, we aim to develop a method which determines the
time of season onset using Markov Switching.
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