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∗ CentraleSupélec, LMI department, Gif-sur-Yvette, France (e-mail:
{valentin.baillard; alexandre.goy; nicolas.vasselin}@student.ecp.fr).
∗∗ Laboratoire des Signaux et Systèmes, CentraleSupélec-CNRS-Univ.
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1. INTRODUCTION

The field of multi-agents systems (MAS) is marked out by
various methods and approaches (Ren and Cao (2011)).
For formation control, graph theory (Mesbahi and Egerst-
edt (2010)) is a natural paradigm for systems with im-
perfect information coupled to agents’ dynamics, while
set-theoretic methods (Blanchini and Miani (2007)) are
suitable for addressing uncertainty and implementing con-
strained control for MAS (Nguyen (2016)). Intelligent con-
trol, including Artificial Intelligence (AI) and game theory
(Vrancx et al. (2007)) capabilities, is a way to investi-
gate individual behavior effects on collective processes.
Potential fields (Leonard and Fiorelli (2001)) are used for
formation tracking (Ren and Cao (2011)), but scarcely
used to the best of the authors’ knowledge for formation
producing.

In this context, this work is part of an educational project
on multi-agent systems for the analysis of the dynam-
ics of a swarm of mobile agents. This paper proposes a
framework for the optimization of adversarial potential-
based prey-predator-like problems. The adversarial po-
tentials are decomposed onto a basis set with different
weights. Each weight is individually optimized in a Particle
Swarm Optimization-like manner using a Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES). The first
contribution of this paper is related to the partitioning of
the potentials followed by a global cost function optimiza-
tion step, allowing for a topology-based, parameter-based
or constraint-based behavioral analysis of a MAS, in a
problem with multiple variables. The second contribution
is a proof of concept on a ”Cops & Robbers” case study,
relying both on optimization and environmental variables.

The paper is organized as follows. Section 2 introduces
the mathematical tools and methods. Section 3 presents
the considered scenario and assumptions, as well as an
analysis of the simulation results. Concluding results and
current work are drawn in Section 4.

Notation. Let x, y ∈ Rn. Their euclidean distance is
denoted by d(x, y) and the i-th component of x by x(i).
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2. THEORETICAL BACKGROUND

The general framework of this paper considers interactions
between two adversarial teams of agents (teamA and team
B) evolving in an environment E ⊆ Rn, at speed vA and
vB resp., along with a set of objectives O. With respect to
a given objective function F , team A minimizes F and
team B minimizes the opposite objective function −F .
The behavior of both teams is achieved by optimizing a
potential field decomposed according to its sources.

2.1 Potential fields

A potential is a differentiable function U : E → R. Let
c ∈ A ∪ B be an agent. It generates a potential UAc
towards team A and a potential UBc towards team B. For
any objective o ∈ O there are similar potentials UAo , U

B
o .

Moreover, the borders of the ambient environment gener-
ate additional potentials UAE and UBE . By the principle of
superposition, any agent c ∈ C (where C is either A or B)
is thus subject to a potential of the form

Uc =
∑
a∈A

UCa +
∑
b∈B

UCb +
∑
o∈O

UCo + UCE (1)

In order to restrict the dimensionality of the problem, only
potentials of the following shape are allowed

U : x 7→
∑
k∈Z

uk · d(x, y)k, with y ∈ E (2)

where (uk)k∈Z is a finitely supported real sequence of
optimization parameters. The environment potential takes
into account the distance from x to the borders of the
environment (considered as a hyperrectangle parallel to
the x, y axes). In this setting, the environment potential
is a finite sum of terms of the shape

U : x 7→
∑
k∈Z

u
(i)
k |x

(i) − α|k (3)

for i ∈ J1, nK and some α ∈ R. The system starts from
arbitrary initial positions for the teams A and B and
evolves in a discrete time. At time t+ 1, each agent c ∈ C
(with C either A or B) is moving in the opposite direction
of the gradient −∇Uc at speed vC , with Uc computed at
time t. After a specified number of steps, or when it meets
a stopping criterion, the value of F is returned.
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2.2 Parameters optimization

For the proposed model, all the behavioral information is

contained into the parameters uk defined in (2) and u
(i)
k

defined in (3). A CMA-ES algorithm (Hansen (2007)) is
used to optimize the parameters regarding the objective
function F . CMA-ES is a stochastic optimization strategy
best applied to real functions of which only evaluations are
known (e.g. simulation results).

3. CASE STUDY

This section presents numerical simulations in a specific
case based on a true story (Williams (2015)). This case
study (Fig. 1) considers nA policemen drones (light blue
dots) and nB yakuzas drones (green dots), moving with
equal speeds in a rectangle defined by the 2 dark blue
dots. The yakuzas have 2 physical objectives (yellow dots):
one supply objective s (center) and 4 delivery objectives
d (sides). A delivery is a completion from s to d. Initially,
each yakuza seeks out objectives d. If it reaches a d, the
new objective becomes s. If it reaches s, it seeks objectives
d again. A yakuza is removed from the simulation if
it encounters a policeman. Any drone colliding with a
rectangle border is also removed. The objective function
F is the total number of deliveries made by the yakuzas
during the simulation.

Fig. 1. Extract of a Matlab simulation (nA = 4, nB = 8)

Policemen have no information about the yakuzas’ ob-
jectives. The potentials are decomposed on the basis
described in (1) and (3) restricted to the powers k ∈
{−2,−1} for computational reasons. This leads to 14 pa-
rameters entering the CMA-ES algorithm, which are then
optimized regarding a single team’s objective function. A
video illustration of the simulation results is provided at
www.youtube.com/watch?v=GscU1e3sc04.

Repulsive interaction corresponds to uk > 0, while uk < 0
yields an attractive interaction. The potential coefficients
corresponding to k = −1 are associated to a long-range
interaction. The long-range attractive potential of the
objectives is observed to be larger than the other long-
range potentials. The k = −2 coefficients (corresponding
to a short-range action) are displayed in Fig 2, for a
number of policemen nA = 4. Each plot represents the uk
parameter of a component of the potential UB, according
to (1)-(3). Three phases are identified. After a highly
non-beneficial situation for a single yakuza, the behavior
becomes strongly objective-oriented for nB > 2 (i.e. u−2
of the objectives goes to the normalized value −1 in Fig.

2). A drastic behavior change can be seen from nB ≈ 6:
for more yakuzas, the winning strategy goes from full
to mitigated inter-yakuza and yakuza-policemen repulsion
(the blue and orange curves scale down towards 0 in Fig.
2). This can be understood as a trade-off between safety at
low nB and high-pay risk from collective action inducing
easier workaround at higher nB. The borders intuitively
remain strongly repulsive all along.

Fig. 2. Team B potential coefficients uk w.r.t. nB yakuzas

4. CONCLUSION AND FUTURE WORK

This paper proposed a potential-based framework using a
decomposition basis for the optimization of the behaviors
in a prey-predator-like problem. The simulation results
highlighted a change of strategy for different numbers of
agents in a ”Cops & Robbers” scenario.

Future investigations on the F (nA, nB) map will define
the advantage regions for each team. Analyzing the op-
timized behaviors from a refined model could unveil new
strategies and confirm existing ones: by allowing new envi-
ronment topologies (e.g. objectives numbers and locations,
obstacles), by allowing lower k-values or by implementing
adversarial optimization.
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