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1. INTRODUCTION

In rotating electrical machines, it is reasonable to assume
that each iron sheet is exposed to the same field, thus
it suffices to simulate only one sheet. In the case of
the thickness of the sheet being small compared to the
other dimensions, the three dimensional problem may
be further reduced to a two dimensional one, coupled
with a separate one dimensional problem in the direction
of the thickness, which will be assumed to be the z
axis throughout this contribution. Examples of such an
approach have been presented in Bottauscio and Chiampi
(2002) and J. Pippuri and Arkkio (2010), where the
coupling is realized via a nested iteration, and F. Henrotte
and Geuzaine (2015), where this principle was used in the
context of homogenization.

This contribution presents a novel approach to this idea
utilizing a multiscale finite element method (MSFEM, Hol-
laus and Schöberl (to be published)). The main principle
is to express the behavior of the solution along the z axis
via a polynomial ansatz which directly couples into the
two dimensional problem, thereby eliminating the need to
repeatedly solve two dependent problems. Such a method
will be developed and tested for both the A formulation
and the T formulation. All models assume a linear, time-
harmonic setting.

2. A FORMULATION

In three dimensions, the weak form of the eddy current
problem is given as: Find the magnetic vector potential
A ∈ H(curl ), satisfying suitable boundary conditions, so
that ∫

Ω

µ−1curlA · curl v + iωσA · v dΩ = 0 (1)

for all test functions v ∈ H(curl ). In (1) µ denotes the
magnetic permeability, i the imaginary unit, ω the angular
frequency and σ the electric conductivity.

For the 2D1D model the ansatz

A =

(
A1,1(x, y)φ1(z)
A1,2(x, y)φ1(z)

0

)
(2)
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is chosen. Here the dependency on the coordinate z,
aligned with the sheet thickness, is modeled by the linear
polynomial function φ1, which is normalized to vary be-
tween 1 and −1 along the thickness of the sheet. A1,1 and
A1,2 stand for the two components of one two dimension
unknown A1 := (A1,1, A1,2)T ∈ H(curl ). Here and in the
following the space H(curl ) in two dimensions is defined
via the two dimensional curl operator, which is given as

curlA1 :=
∂A1,2

∂x
− ∂A1,1

∂y
. (3)

To derive the 2D problem, the ansatz (2) is used in the
three dimensional relation (1) for the trial function and
the test function, which leads to∫

Ω

µ−1

−φ′1A1,2

φ′1A1,1

curlA1

 ·
−φ′1v1,2

φ′1v1,1

curlv1

+

iωσ

(
A1,1φ1

A1,2φ1

0

)
·

(
v1,1φ1

v1,2φ1

0

)
dΩ = 0.

(4)

Decomposing the iron sheet Ω in the form Ω = Ω2D ×
[−d

2 ,
d
2 ] with the sheet thickness d, in (4) the integration

over the z coordinate can be carried out, using basic
analysis for the integrals involving the known function
φ1. This results in the two dimensional problem: Find
A1 ∈ H(curl ) so that∫

Ω2D

µ−1

(
4

d
A1 · v1 +

d

3
curlA1curlv1

)
+

iωσ
d

3
A1 · v1 dΩ2D = 0

(5)

for all v1 ∈ H(curl ).

Because it is not straightforward to use physically mean-
ingful boundary conditions in this setting, the problem
is driven by first solving a corresponding magnetostatic
problem, which is then used as a right hand side for (5).

3. T FORMULATION

For the T formulation the three dimensional problem is
given as: Find the current vector potential T ∈ H(curl )
so that ∫

Ω

ρcurlT · curlv + iωµT · v dΩ = 0 (6)
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Fig. 1. The iron sheet in the numerical example. Its
dimensions are a width of 6mm, a length of 30mm
and a thickness of 0.5mm. At the center of the sheet
there is a hole of dimension 1.2mm times 3mm. The
material parameters are given as µ = 1000µ0 and
σ = 2.08× 106S/m.

for all test functions v ∈ H(curl ), with given Dirichlet
boundary conditions for T. Here ρ = σ−1 denotes the
electric resistivity.

For the 2D1D model, a similar ansatz as in the case of the
A formulation is chosen:

T =

(
T2,1(x, y)φ2(z)
T2,2(x, y)φ2(z)

0

)
(7)

Here the behavior in the direction of the thickness is
modeled using the even function φ2, which is a quadratic
polynomial in z.

Analogous to the process for the A formulation, the
ansatz (7) is plugged into (6) and the integration over
the z direction is carried out analytically, leading to the
problem: Find T2 ∈ H(curl ) so that∫

Ω2D

µ−1

(
16

3d
T2 · v2 +

8d

15
curlT2curlv2

)
+

iωσ
8d

15
T2 · v2 dΩ2D = 0.

(8)

for all v2 ∈ H(curl ). The problem is again driven using
the solution of an auxiliary problem for the right hand
side.

4. A NUMERICAL EXAMPLE

In order to test the models developed in sections 2 and 3,
a simple numerical example is carried out. The dimensions
of the problem and the used material parameters can be
taken from figure 1.

Figure 2 shows the relative error in the calculated losses.
The reference solution was calculated by solving the orig-
inal problems, (1) and (6), on a three dimensional mesh,
respectively. It can be seen that the error increases with
higher frequencies, as expected. Out of the given 2D1D
models, the one for the T formulation performs better,
because it is able to simulate the boundary effects, as can
be seen in figures 3 and 4.

5. CONCLUSION

The presented method allow for a reasonably precise
calculation of the eddy current losses for low frequencies.
An extension into a higher frequency range is possible by
including additional ansatz functions. Future work will

Fig. 2. The relative error in the calculated losses for both
formulations.

Fig. 3. Absolute value of the magnetic vector potential A
in a cross section of the sheet for the reference solution
(top) and the 2D1D model (bottom) at 100Hz.

Fig. 4. Absolute value of curlT in a cross section of the
sheet for the reference solution (top) and the 2D1D
model (bottom) at 100Hz.

include testing the applicability of these models in the
nonlinear setting. An additional extension will be the
development of a modification for theA formulation, which
is able to resolve the boundary effects.
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