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∗ Institute for Analysis and Scientific Computing, Technische Universität
Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna (e-mail:

karl.hollaus@tuwien.ac.at)

Keywords: Eddy current problem, model order reduction, multiscale finite element method.

1. INTRODUCTION

The simulation of the eddy currents in electrical devices with
the finite element method (FEM) is satisfactory. However, the
large systems to be solved result in high computational costs,
i.e. memory requirement and computation time. Although the
multiscale finite element method (MSFEM) can be exploited to
simulate eddy currents in laminated iron more efficiently the
complexity of the problems are still too large to solve them
conveniently. The computational costs are a multiple of the
costs of anisotropic models in brute force methods according
to the components used in the multiscale formulation, compare
with Hollaus and Schöberl (2017).
Model order reduction (MOR) has proven to be a powerful
methodology to reduce the costs and is well established for
linear problems. MOR with proper orthogonal decomposition
(POD) has been applied to solve large scale linear problems in
computational electromagnetics very successful. Strategies to
select an optimal number of snapshots except those with the
largest singular values can be found in Sato and Igarashi (2013)
and Klis et al. (2016). Those MOR methods are interesting
which exploit properties of specific problems. Splitting of the
domain into a region where the solution changes strongly due
to a parameter variation and the rest, MOR is applied to the
rest with almost constant solution in Sato et al. (2016). For
example, the speedup factor is about 1.6 for quasitatic problems
in 2D by MOR with POD applied only to the linear domain
in Schmidthäusler et al. (2014). MOR is frequently used to
facilitate the simulation of electrical machines, see for example
[Farzamfar et al. (2017)].
In the present work, the idea is to exploit the specific structure
of systems coming from the MSFEM for the eddy current prob-
lem (ECP) in laminated media for MOR. For example, the en-
tire problem region can be subdivided into air and the laminated
media on the one hand and, on the other, the total solution is
composed of a large scale and fine scale part. This work focuses
on the second aspect which will be called structural model order
reduction (SMOR), see also Klis et al. (2016).
The aim is to study the feasibility to exploit the structure of
specific systems arising out of MSFEM of ECPs with laminated
media for MOR. Much more accurate results are expected by
MSFEM with MOR than by FEM with MOR with the same
effort.
First, the basic ECP studied in the present work uses a single
component current vector potential (SCCVP) T and is dis-
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Fig. 1. Eddy current problem in 2D.

cussed in Sec. 2. Then, MSFEM for T is introduced. Next,
MOR and structural model order reduction (SMOR) are ex-
plained briefly in Sec. 3. A comparison of numerical results
obtained by MOR and SMOR are presented in Sec. 4.

2. HIGHER ORDER MSFEM WITH THE SINGLE
COMPONENT CURRENT VECTOR POTENTIAL T

2.1 Boundary value problem with T

A current vector potential T can be introduced by J = curl T
fulfilling div J = 0 exactly. This work deals with the sin-
gle component current vector potential T , e.g., pointing in z-
direction T = Tez in the frequency domain. A simple boundary
value problem (BVP) of the ECP in the frequency domain
reads, see Fig. 1:

curl
1
σ

curl T + jµωT = 0 in Ω ⊂ R2 (1)

T = T0 on Γ (2)

2.2 Weak form with T

The weak form for the FEM in the frequency domain reads:
Find Th ∈ Vh,T0 := {Th ∈ Uh : Th = T0 on Γ}, such that∫

Ω

1
σ

curl Th · curl th dΩ + jω
∫

Ω

µThth dΩ = 0 (3)

for all th ∈ Vh,0, whereUh ⊂ H1(Ω).

2.3 Higher order multiscale finite element method with T

The multiscale approach up to the order 4 for the single com-
ponent current vector potential
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T̃ (x, y) = T0(x, y) + φ2(x)T2(x, y) + φ4(x)T4(x, y) (4)
is considered with even micro-shape functions φ2 and φ4 shown
in Fig. 2. Simply speaking T corresponds to the magnetic
field strength H which is an even function in the lamination,
therefore the micro-shape functions φ2 and φ4 are used in (4).

Fig. 2. Even micro-shape functions φ2 and φ4.

2.4 Weak form of MSFEM with T

The weak form reads as:
Find (T0h,T2h,T4h) ∈ Vh,T0 := {(T0h,T2h,T4h) : T0h ∈ Uh,T2h
and T4h ∈ Vh,T0h = T0 on Γ and T2h = 0 and T4h =
0 on Γm0,1 ⊂ Γm0}, such that∫

Ω

1
σ

curl T̃h · curl t̃h dΩ + jω
∫

Ω

µT̃h t̃h dΩ = 0 (5)

for all (t0h, t2h, t4h) ∈ Vh,0, where Uh is a subspace of H1(Ω),
Vh of H1(Ωm) and φ2 and φ4 ∈ H1

per(Ωm).

3. MOR AND SMOR

Assume that the MSFEM (5) results in the linear equation
system

Ax = f . (6)
Furthermore, m snapshots xi, i.e. solutions of Aixi = f by
modifying a parameter are calculated and inserted as column
vectors in the snapshot matrix S with dimension n × m, where
usually n � m holds. The present work uses the relative
permittivity µr as parameter. Next, for the POD based MOR
a singular value decomposition (SVD)

S = UΣV∗, (7)
the star marks conjugate transpose of V , is carried out. Matrices
U (n × n) and V (m × m) are Hermitian matrices. The singular
valuesσi are arranged in the diagonal of Σ withσi ≥ σi+1. Now,
an appropriate reduced basis

W = [u1σ1, u2σ2, ..., urσr], (8)
matrix W represents the projection matrix, is selected consider-
ing the essential singular values σi, where r ≥ m is valid. With
x = Wy the reduced order model

WT AWy = WT f = Ky = g (9)
is obtained. Similarly, SVDs are carried out of all partitions S i,
where S = (S 0, S 2, S 4)T , according to the unknowns T0,T2
and T4 in the approach (4). Therefore, SMOR yields a larger
reduced order model than MOR.

4. NUMERICAL RESULTS

The model shown in Fig. 1 consists of 10 laminates, d =
1.8mm, and air gaps in between, d0 = 0.2mm. The dimensions
of the domains are |Ωm| = 20×20 mm2 and |Ω| = 40×40 mm2.
The frequency f was chosen with 50Hz and the conductivity σ

Fig. 3. Comparison of model order reduction (MOR) with
structural model order reduction (SMOR).

with 2 · 106S/m.
The relative error presented in Fig. 3 is defined by comparing
the eddy current losses P obtained by MOR or SMOR with
those of MSFEM:

Relative error in % =
P(S )MOR − PMS FEM

PMS FEM
· 100 (10)

For the snapshots, µr has been selected with 125, 625, 3125,
15625 and 78125. The solutions in Fig. 3 are calculated at µr
equals 375, 1875, 9375 and 46875, i.e. m = 5. The number of
basis vectors used in the reduced basis is denoted by k. SMOR
provides already for a very small reduced basis reasonable
results. The error of MOR decreases for increasing µr clearly.
MOR and SMOR reduce the MSFEM system by factor of about
100.

5. CONCLUSION

SMOR seams to be working properly already with very few
basis vectors, i.e. low dimension of the reduced basis. An
extension of SMOR to large and nonlinear problems in 3D will
be studied in the future.
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