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1. INTRODUCTION

Proper Orthogonal Decomposition (POD) is a widely used
technique for constructing low-order approximation spaces
from high-dimensional input data. Apart from numerous
applications in the data sciences, POD is also a funda-
mental tool for the basis generation in projection-based
reduced order modelling methods. In these methods, POD
is used to construct low-dimensional state spaces that
capture with high accuracy the relevant dynamics of a
given high-dimensional discrete model. A quickly com-
putable low-dimensional surrogate model is then obtained
by projection of the governing equations of the original
model onto the POD approximation space.

The POD space is obtained from a given set of ‘snapshot’
vectors S by writing the elements of S as a matrix of
column-vectors, of which a truncated singular value de-
composition (SVD) is computed. The left-singular values
of this decomposition then form a basis (POD modes) of
desired POD space (cf. Sirovich (1987)).

For large-scale applications with an increasing amount of
input data vectors, however, computing the POD quickly
becomes prohibitively expensive, in particular when the
generated data is so large that the snapshot set S cannot
be stored entirely in memory.

In this contribution we introduce a generic, easy to im-
plement approach to compute an approximate POD based
on arbitrary tree hierarchies of worker nodes, where each
worker computes a POD of only a small amount of snap-
shot vectors s ∈ S. The tree hierarchy can be freely
adapted to optimally suit the available computational re-
sources. In particular, this hierarchical approximate POD
(HAPOD) allows for both, simple parallelization with
low communication overhead, as well as live sequential
POD computation under restricted memory capacities. We
present rigorous error estimates and numerical examples
which underline the performance and reliability of our
approach.
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Fig. 1. Tree structure for HAPOD computation with leaf
(input) nodes βi, intermediate nodes αi and root
(output) node ρ.

2. HIERARCHICAL PROPER ORTHOGONAL
DECOMPOSITION

The HAPOD algorithm is based on an abstract tree struc-
ture (cf. Fig 1) where each node of the tree corresponds to
a worker node performing computations on only a small
set of snapshot/POD data. The HAPOD computation
consists of the following steps:

(1) Distribute snapshot vectors s ∈ S among workers at
leaf nodes βi.

(2) At each node:
(a) compute POD of input vectors for given local

error tolerance.
(b) scale POD modes by corresponding singular val-

ues.
(c) communicate scaled POD modes to parent node.

(3) Return the POD modes at root node ρ as output.

Note that communication is only performed upwards in
the worker hierarchy from child to parent nodes. Local
PODs can be computed in parallel and asynchronously
as soon as all required input data is available. These
properties make the HAPOD ideally suited for complex
heterogeneous compute architectures and cloud comput-
ing, where frequent, synchronous communication of high-
dimensional data is not an option. The HAPOD can be
combined with any available algorithm for the local POD
computation, possibly taking advantage of (parallelized)
high-performance implementations specifically adapted to
the given problem and computing environment.
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2.1 Theoretical Analysis

POD is optimal in the sense that the POD space spanned
by the first N modes minimizes the mean square approxi-
mation error ∑

s∈S
‖s− PVN s‖, (1)

where PVN is the orthogonal projection onto a given N -
dimensional subspace VN . In Himpe, Leibner, and Rave
(2016) we show that for any given tree structure and snap-
shot set S, we can define local truncation error tolerances
for the mean error (1) such that for the resulting HAPOD
space Vρ the bound

1

|S|
∑
s∈S
‖s− PVρ(s)‖2 ≤ ε∗2 (2)

holds for any prescribed target error ε∗. Moreover, the
number of resulting HAPOD modes is bounded by∣∣∣HAPOD[S, εT ](ρ)

∣∣∣ ≤ ∣∣∣POD(S, ω · ε∗)
∣∣∣, (3)

where |POD(S, ω·ε∗)| denotes number of modes for a POD
of S with a target error of ω · ε∗ with arbitrary ω ∈ [0, 1].
At the same time, the number of HAPOD modes at the
intermediate nodes α is bounded by∣∣∣HAPOD[S, εT ](α)

∣∣∣
≤
∣∣∣POD(S̃α, (L− 1)−1/2 ·

√
1− ω2 · ε∗)

∣∣∣, (4)

with L being the depth of the considered tree and S̃α the
set of snapshot vectors assigned to the leaves below α.

Thus, while guaranteeing a prescribed approximation error
ε∗, the parameter ω allows us to control the trade off
between an optimal approximation space of minimal di-
mension (ω = 1) and reduction of computational effort,
i.e. smaller intermediate PODs (ω = 0).

2.2 Numerical Evaluation

In Fig 2 we show timing results for HAPOD and POD
computation on 2D solution trajectories of a P15 moment
closure/finite volume approximation of the Boltzmann
equation for neutron transport, considering the checker-
board test case from Brunner and Holloway (2005). The
trajectories were computed on uniform k × k-grids with
linearly increasing numbers of timesteps for 125 choices of
scattering and absorption coefficients, yielding for k = 200
about 2.5 terabytes of snapshot data.

The trajectories were computed in parallel on eleven
compute nodes of a distributed memory computer cluster 1

utilizing one processor core for each trajectory.

In all cases the computation time for the trajectories
was negligible in comparison to the required time for the
POD/HAPOD computation. Already for k ≥ 60, the POD
could no longer be computed due to memory limitations.
In addition, the HAPOD was twice as fast for k = 200 as
a standard POD for k = 40, even though the amount of
data that needed to be processed increased by a factor of
125.

1 Each node encloses two Intel Xeon Westmere X5650 CPUs (2 × 6
cores) and 48GB RAM.
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Fig. 2. Computational wall time for POD and HAPOD
as well as time for snapshot generation for increasing
state-space dimension and number of snapshots (ε∗ =
10−4, ω = 0.95).

For full details and further numerical experiments we
refer to Himpe, Leibner, and Rave (2016). A reference
implementation of the HAPOD algorithm can be found
under https://git.io/hapod.
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