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1. INTRODUCTION

The investigation of very complex dynamical systems like
metabolism of an organism requires the comprehension
of important subsystems. Here, we investigate metabolic
resistances and in particular the link between the geometry
of the metabolic network to the impact of environmental
changes in the selection of resistant bio types.

2. SUPPLY CHAINS UNDER ENVIRONMENTAL
INFLUENCES

We introduce a supply chain consisting of different com-
partments A,B, .. whereas each of them can later be in-
terpreted as gen loci in an organism. Each chain posses
an inflow in form of jin into the first compartment and
an outflow jout off the last. Between each compartment
is an connection flow j. All flows are measured against
a reference point. Furthermore, we introduce an outer
influence k(z) which connects to j and is dependent on
a toxic xenophobic substance z. The factor z inhibits k,
i.e an increase in z results in a decrease of k(z).
In addition, we need more monotony behaviors for the
system. We demand that jin is monotonically decreasing
in A and also jout monotonically increasing in B, i.e

k ↘ j ↘ jin ↘ A↗ and k ↘ j ↘ jout ↘ B ↘ .

Therefor, we obtain for two compartments the system

Ȧ = jin(A)− j(A,B) (1)

Ḃ = j(A,B) + jout(B)

with the inflow jin(A) = kin(1−A) the outflow jout(B) =
koutB and the connecting flow j(A,B) = k(z)(A − B),
whereas kin and kout are reaction constants.
By scaling kout and kin to 1 we get from (1)

Ȧ = (1−A)− k(z)(A−B)

Ḃ = k(z)(A−B) +B.

The desired biological effect is that an increase of z leads
to an decrease in j and finally in an decreased jout.

The faster time behavior of a metabolic chain grants us
a quick adaptation and therefore in the stationary case
jin = jout = j. It is important to remark that this case
happens almost immediately in comparison to the heritage
and growth of an organism.
By looking at the stationary case and solving it we yield

A∗ = 1− k(z)

1 + 2k(z)
⇒ j∗out =

1

2 + k(z)−1
. (2)

Hence, an increase of the toxic substance z, i.e decrease of
k, leads to an decrease of the flow between the compart-
ments.

2.1 Different geometries

After getting insight about the basic behavior of a
metabolic supply chain we take the next step by analyzing
two different forms of connections between the compart-
ments: The ’AND’ and ’OR’ connections.

Fig. 1. Illustration of an
AND connection

Fig. 2. Illustration of an
OR connection

The AND connection is characterized by the continuous
sequence of compartments and connecting flows ji

Ȧ = jin(A)− j1(A,B)

Ḃ = j1(A,B) + j2(B,C)

Ċ = j2(B,C)− jout(B)

whereas the OR connection has two possible connection
between the compartments to simulate the fallback solu-
tion of an organism in times of shortage

Ȧ = jin(A)− j1(A,B)− j2(A,B)

Ḃ = j1(A,B) + j2(A,B)− jout(B).

Solving again the equations in the stationary case leads
similar to (2) to the outflows

j∗AND =
1

2 + k−1
1 + k−1

2

j∗OR =
1

2 + (k1 + k2)−1
. (3)

As a remark we see that the nature of (3) reminds us of
electric circlets, to be more precise: resistances in sequence
and parallel connection.

3. PROSPERITY OF AN ORGANISM

Next we model the prosperity of a population by the time
repented variable w(t). Each organism in the population
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earns an amount jout by the metabolism and has a basic
level of consumption b. So we denote (jout − b) for the
reproduction and growth of each organism. Under the
assumption of an exponential growth with parameter γ
we obtain

ẇ = γ(jout − b)w. (4)

The question is now which mortality s belongs to the
growth (4) and this can be solved by comparison to ideal
situation ẇid = γ(jout− b)wid =: f(wid). Hence, this leads
to

ẇ = f(w)− sw
and translates to

γ(jout − b)w = γ(jmax − b)w − sw (5)

which describes ideal growth minus the mortality of a
population. By solving (5) for s we obtain

s = γ(jmax − jout)
which is independent of the wealth w of a population.
Therefore we can interpret a lack of a metabolic product
jout as an increase of mortality s for the population.

4. CONNECTION OF METABOLIC OUTPUT TO
RESISTANCES

In analogy with Langemann (2013) we model a population
of biotypes with growth, mortality, and inheritance in a
closed domain. The occurrence of the biotypes with index
i in a certain domain is quantified by its population size ci
depending on the time t. Each biotype i is characterized by
its growth rate wi > 0, a mortality rate s > 0 depending
of a xenophobic substance z. In general, the biotype spe-
cific resistances are unknown and so s(z) were a heuristic
approach to the resistance development by Langemann
(2013). By using our accumulated results of metabolic
chains and their geometry can know give a reason for dif-
ferent resistant behaviors during environmental changes.
For better understanding, we will discuss two scenarios for
the population dynamic.
Case A is underlined by an AND connection between the
gen loci whereas Case B has an OR connection. We denote
that xixi is resistant ,xiXi is medium resistant andXiXi is
prone to a toxic treatment with kres = 1, kmed = 1

4 , kpr =
1
9 and i ∈ {1, 2}. We use the same parameters for both
cases and see at Table 2., im comparison to Table 1. that
the combination of a resistant and a susceptible link results
in agreatly decreased mortality rate for the OR connection.
We interpret this effect as an alternate solution of an
organism to deal with the shortage of a product. As last

Table 1. Mortality rates for an AND connec-
tion

s X2X2 X2x2 x2x2

X1X1 0.2 0.18 0.17
X1x1 0.18 0.15 0.09
x1x1 0.17 0.09 0

Table 2. Mortality rates for an OR connection

s X2X2 X2x2 x2x2

X1X1 0.25 0.19 0.05
X1x1 0.19 0.15 0.04
x1x1 0.05 0.04 0

we compute the behavior of the biotypes with different
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Fig. 3. Only the 3 resistant population gain an advantage
after the treatment
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Fig. 4. Better outcome for the medium resistant biotypes
after the treatment

mortality rates given by the Tables 1. and 2. As an visual
indicator we color the more resistant biotypes in a stronger
gray.

As result we remark that biotypes with an OR connection
survive better in a changing environment which we can see
at Figure 4. ,i.e the middle gray biotypes become larger
after the treatment in comparison to a AND biotype with
same values.

5. CONCLUSION

Through the usage of metabolic chains we were able to give
a mathematical reason for different resistances of certain
biotypes under environmental changes. A organism with
multiple ways to circumvent a shortage of nutrition can
fallback to other sources and therefore handles treatments
better than organism with single connections in their
metabolism.
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