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1. INTRODUCTION

Most processes in industry as well as in nature can be
rarely described with one simple model. Therefore vari-
ous modelling methods established in the last years deal
with implementations of complex structures. Two of this
methods are topic of this contribution. Due to increasing
availability of data from multiple resources research in the
field of neural networks increased exponentially. Neural
networks are used to imitate the human brain and enable
algorithms to make their own decisions. Also in the indus-
trial sector the importance of data increases. Therefore
the research field big data is also important in current
industrial research projects. Urban infrastructure is one
example: Cars driving on their own, gathering information
while driving to make decisions on human behalf. But
it would be careless to use only data-based models for
simulation of complex processes involving heavy machines.
Therefore first principle models are still important and the
base of modelling and simulation. In this contribution, a
comparison of these controversial approaches is discussed.

2. HYBRID DYNAMIC SYSTEMS

The term hybrid is often mentioned in connection with
the auto mobile industry. Apart from that there are many
different areas where hybrid is used and in all these cases
the wording stands for a combination of different methods
or approaches respectively. In terms of mathematical mod-
elling hybrid defines a combination of multiple modelling
approaches in one model. This contribution focuses on
hybrid dynamic models which consist of different discrete
submodels as well as continuous structures to implement
real life scenarios. Switching from one submodel to an-
other, state variables or even underlying mathematical de-
scriptions change at discrete points in time, called events.
In order to describe such hybrid systems different for-
malisms were introduced over the last decade. The usage
of automaton, as in Körner (2016) is very common because
it gives important information about the model structure.
A rough description of the submodels as well as the jump
conditions for switching can be included. This formalism
focuses on the mathematical modelling and the corre-
sponding mathematical definitions. A common alternative

and more simulation driven formalism would be DEVS&
DESS. This formalism was first introduced by Ziegler et al.
(2000) and was implemented in MATLAB by Deactu et. al
(2012). This formalism started with Discrete Event System
Specification (DEVS) and was later extended to include
dynamic processes (DESS). Furthermore linear affine sys-
tems are a widely used method to overcome challenges of
hybrid system simulation as well. Especially in the field of
control this approach is used to implement hybrid system
structures, as described in Potočnik et al. (2010).

3. NEURAL NETWORKS

Artificial neural networks are nowadays a commonly used
method, especially in the field of computer learning. In
general neural networks are based on the biological nerve
structure of human brains. The artificial neural network
imitates the reaction chain of a human neural network.
The basic structure consists of three layers: the input, the
hidden and the output layer. As the names suggest the first
and the latter function as input and output nodes. The
most interesting one is the hidden layer which contains a
specific activation function to process the incoming signal.
All three layers are connected by a pattern of edges. Each
of these edges carries a certain weight which amplifies or
damps the incoming signal before sending it to the next
node. In general a neural network gets an input and trans-
forms it according to the weights and activation function
until the final output is generated. The remaining question
is how to determine these weights and activation functions.
In literature one can find different possible definitions from
step and linear functions via logistic functions through
to sigmoid functions as activation function. This decision
depends on the application field of the artificial neural
network. The weights of the edges can only be specified
using training data consisting of input and correspond-
ing output data. There are different training options for
neural networks but a very common method is the back
propagation. This means that the available data sets are
partly used to tune the weights until the error of the neural
network output to the data set output is small enough.
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ḧ = −g
h(0) = h0
ḣ(0) = v0 .

(1)

Fig. 1. The equations and graph of a bouncing ball is given.

4. CASE STUDY: BOUNCING BALL

4.1 Model Description

In the following the bouncing ball, an academic example of
hybrid systems, is discussed. Considering a bouncing ball,
the question might be which part of this process defines
it as hybrid. As mentioned in section 2 hybrid models
combine continuous and discrete processes. Regarding the
bouncing ball the bounce itself represents the discrete part
of the model. The bounce only occurs for a single point
in time where two things happen: the ball changes its
direction and additionally, to take note of the underlying
physical damping process, decreases its total velocity. This
process can be described mathematically with height h
and velocity v. The relation of height and velocity is
of course v = ḣ and for the acceleration the relation
a = v̇ = ḧ is valid. To realise the discrete event of the
bounce the acceleration has to face opposite direction of
gravity. Therefore the model behaviour can be given as an
ODE of second order with initial conditions as shown in
equation (1).

4.2 Modelling and Simulation

Equation (1) can be transformed into an ODE system
applying basic transformations and therefore also be for-
mulated as state space description. As mentioned in the
model description the discrete event is defined as the
moment when the ball touches the ground. If the following
condition, further called jump condition, is fulfilled{

(h(t), ḣ(t)) : h(t) = 0 ∧ ḣ(t) = v(t) ≤ 0
}

the event is located and the ball’s direction changes as
defined in (2). The hybrid model description then consists
of the state space description, the jump (2) and the jump
condition.

J(v(te)) = −λv(te), λ ∈ (0, 1) (2)

In terms of neural networks hybrid is also a known term
and describes a mixture of first principle models and neural
networks, as seen in Psichogios et. al (1992). Due to the
fact that the bounding ball can be solved analytically, as
shown below, training data for the neural network can be
generated. Changing the initial condition constants c1 and
c2 varies and multiple data sets can be created.(

x1
x2

)
=

(
− g

2 t
2 + c2t+ c1
−gt+ c2

)

Fig. 2. Different possibilities to apply neural networks for
hybrid systems.

5. DISCUSSION

Which data should be used for the input and output
set? Are the initial conditions as input sufficient or is it
necessary to include the time line as well. Is one hidden
layer enough and which certain structure should be used.
How many neural networks are necessary to simulate the
bouncing ball. Is one neural network with several hidden
layers sufficient, as in Fig. 2(a) or is it necessary to es-
tablish a different neural networks each simulating one
flying phase of the ball, as seen in Fig. 2(b). The latter
could be seen as a hybrid model using neural networks
as submodels. Another possibility would be to use the
mentioned approach of hybrid neural networks. The in-
tuitive implementation takes initial values and timeline in
consideration using a fully connected neural network. This
of course might not be the best choice.

6. OUTLOOK

This contribution discusses the usage of neuronal networks
for simulating hybrid systems in the field of engineering.
The chosen case study, the bouncing ball, provides all
necessary data to implement and train a neural network.
Implementing the different possible structures of neural
networks and compare them with common Simulink c©

and MATLAB c© realisations determines if neural networks
are useful for simulating hybrid systems. In most cases,
the actual hybrid model can not be given in detail,
then the gained experiences of this comparison may be
applied. Another improvement of performance might be
the possibility to use hybrid neural network. Therefore
a more detailed analysis of these different approaches is
necessary.
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