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1. INTRODUCTION

In order to describe the transient thermal behavior of an 

automotive cabin, we need to model the energy and mass 

exchanges between the cabin system and the environment as 

well as these exchanges inside the cabin system itself. 

Given that the cabin model and its environment are intended 

to be integrated into a control loop, we have adopted a system 

level modelling (0D) based on the Bond Graph approach 

[Paytner 1961]. The simulator, thus built, results in a set of 

nonlinear Differential Algebraic Equations (DAE). As part of 

this work, we will use the Discrete Empirical Interpolation 

Method (DEIM) [Chaturantabut 2010] to solve DAE only for 

a selection of explanatory variables. This is a way to build a 

Reduced Bond Graph by decreasing the number of solved 

differential equations. 

2. CABIN THERMAL MODEL AND REDUCTION

METHODOLOGY 

2.1 Cabin thermal model 

In bond graph approach applied to thermal domain, two 

elements exchanging an energy are linked by a line (Bond). 

The heat flux exchanged between the two elements is 

expressed as the product of the temperature   (effort 

variable) and the entropy flux s  (flow variable). The line is 

also completed with a half-headed arrow indicating the 

positive direction of heat transfer, and a causal line indicating 

which of the two elements receives the effort variable and 

returns the flow one. 

Figure 1 shows the bong graph associated to the thermal 

conduction through a wall represented by an internal and an 

external thermal capacitance connected through an equivalent 

thermal conductance. 
wi

 and
we

 are respectively the

temperatures of the internal and external surfaces of the wall. 

int
s  and 

ext
s  are respectively the internal and external entropy 

fluxes. 

Fig. 1. Bond graph modelling of thermal conduction through 

a wall. 

For a cabin system containing a number Nw  of walls and a 

number Na  of air zones, the global thermal bond graph leads 

to the nonlinear first order DAE system (1):  
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 (2) 

Where  2N Nw Na  , θ
N is the unknown 

temperatures and absolute humidities vector defined by (2), 

 φ θ,u; μ
N  is a nonlinear function deduced from energy 

and mass balances, u Nu  contains the bong graph input 

variables, μ N  is a set of the bond graph parameters, 

2

w
θ

Nw  is the vector of all walls internal 
wi

 and external

we
 temperatures, and 2

a
θ

Na  is the vector of all air zones 

temperatures 
a

 and absolute humidities x.

2.2  Reduction Approach 

In order to build a Reduced Order Model (ROM), we need to 

construct a matrix of all possible responses of the studied 

system, and then extract some empirical modes from this 

matrix. However, such a matrix requires an infinite memory 
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storage size if all possible parametric and input predictions 

are considered. 

The model reduction approach, proposed here, begins with an 

unsupervised machine learning phase to develop the Reduced 

Order Model (ROM), followed by an online phase to use the 

reduced model already built. During the machine learning 

phase, a reduced basis N  n
V

  is constructed using an n-

order Truncated Singular Value Decomposition (Truncated 

SVD), also called Principal Component Analysis (PCA), 

applied to a matrix of L different input and parameter sets 

simulations, randomly selected. This matrix
 N   

A
L m

 , 

where m is the time points number for each simulation, is 

defined by:  
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Where  l

i k
t ( ) represents the ith element of the unknown 

vector at time tk using the system inputs and parameters 

 ( ) ( )
;

l l
u   which are generated from a Design Of Experiment

(DOE). We point out that subtracting the initial temperature 

in (3) is a trick that we propose to make the initial error null. 

The reduced basis construction is then completed by a 

selection of state variables: using the DEIM, we obtain a list 

of interpolation indexes that we complete with some air zones 

indexes to form thereby the list 𝒫. Our reduction approach 

consists of choosing the temperatures  θ  as the ROM

explanatory variables. We write 
r
θ  these variables, which 

satisfy the following equations: 

r
 ˆθ V (4) 

  V̂ ,: I (5) 

            
1

T T


     V̂ ,: V ,: V ,: V ,: V ,: (6) 

 1, ..., \N  (7) 

Where (6) is given by the Gappy POD method [Everson 

1995] which allows to reconstruct a field by measuring it 

only in some explanatory points that form the Reduced 

Integration Domain (RID) [Ryckelynck 2005]. 

In practice, this approach is non-intrusive for bond graphs 

since we just need to add the linear constraint 

     t t   ˆθ ( ) V θ ( ) .

The ROM DAE system (8) is then obtained by projecting the 

original DAE system (1) onto the subspace   V̂ ,: I : 
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If we want to build a Reduced Bond Graph at this stage, we 

will need to reconstruct all walls internal temperatures, which 

limits the ROM speedup. In fact, these temperatures are 

necessary to calculate the total internal convective heat flux 

received by walls-adjacent air zones, and then determine their 

temperatures. In a perspective similar to [Ryckelynck 2015] 

where displacements as well as stresses fields are used to 

build a hyper-reduced model, we propose to perform, in 

addition to temperature variables reduction based on the 

matrix A, a similar treatment on internal convective heat flux 

variables in order to reduce the computational time related to 

internal convective heat fluxes calculation. 

3. APPLICATION

We apply here the reduction approach to a cabin thermal 

model with 18Nw  , 1Na  , n = 6, tf = 14400 s, and by 

varying 8 continuous inputs and parameters: vehicle speed, 

ambient temperature, vehicle initial temperature, ambient 

humidity, solar irradiance as well as the mass flow rate, 

humidity and temperature of the air supplied by AC system. 

We note that, for this application, only internal and external 

walls temperatures were exported to form the matrix A. 

We obtain a CPU time reduction by 30 %. Concerning the 

accuracy of the ROM, we generate a new DOE of 500 points, 

and then draw a histogram of simulations mean squared 

errors on air zone temperature, which is shown in Figure 2. 

Fig. 2. Simulations mean squared errors histogram 

Among the 500 simulations launched, 477 simulations are 

characterized by a mean squared error of less than 12.5%     

(equivalent to 1K), which is sufficient for air zone 

temperature regulation scenarios. 
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