
Taylor series based solution of
nonlinear-quadratic ODE systems
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1. INTRODUCTION

The “Modern Taylor Series Method” (MTSM) is the nu-
merical integration method that can numerically solve
ordinary differential equations (ODEs). The method cal-
culates terms of the Taylor series recurrently for each
integration step. The number of calculated terms is gen-
erally different for every step and it depends on a de-
fined accuracy of the calculation. Model implementation
of MTSM (TKSL software package, Kunovský (1994)),
is limited by maximal number of equations and double
accuracy.Therefore the method is currently being tested
and reimplemented in MATLAB.

Several papers focus on computer implementation of the
Taylor series method in a variable-order and variable-step
context (see, for instance, Abad et al. (2015), the TIDES
software or in Jorba and Zou (2005)). The reduction of
rounding errors Rodŕıguez and Barrio (2012) and utiliza-
tion of multiple arithmetic Barrio et al. (2011) improves
the applicability of Taylor series based algorithms.

This paper demonstrates that the MTSM, specialized to
directly solving nonlinear-quadratic ODE systems, solves
non-stiff and in some cases stiff systems very fast (in
comparison with MATLAB implementation of explicit and
implicit ode solvers) and outperforms standard solvers in
the considered benchmark problems. This paper is closely
connected with Šátek et al. (2015) where effective solution
of linear ODE systems using MSTM was introduced.

2. SCHEME FOR QUADRATIC ODES

In this article, we have focused on effective solution of
special case of nonlinear-quadratic systems of ODEs. The
nonlinear-quadratic systems of ODEs is any first-order
ODE that is quadratic in the unknown function. For
such system Taylor series based numerical method can be
implemented in very effective way.

The best-known and most accurate method of calculating
a new value of a numerical solution of ordinary differential
equation y′ = f(t, y), y(0) = y0 is to construct the Taylor
series Hairer et al. (1987).

The n−th order method uses n Taylor series terms in the
explicit form

yi+1 = yi + hf(ti, yi) +
h2

2!
f [1](ti, yi) + · · ·

+
hn

n!
f [n−1](ti, yi).

(1)

Equation (1) for nonlinear-quadratic systems of ODEs can
be rewritten in the form

y′ = Ay2 + Byjk + Cy + b , (2)

where A ∈ Rne×ne is the matrix for pure quadratic
term, B ∈ Rne×ne(ne−1)/2 is the matrix for mixed
quadratic term, C ∈ Rne×ne is the Jacobian matrix for
linear part of the system and b ∈ Rne is the right-
hand side for the forces incoming to the system. The
unknown function y2 represents the vector of multipli-
cations (y1y1, y2y2, . . . , yneyne)

T ; the unknown function
yjk represents the vector of mixed terms multiplica-
tions (yj1yk1

, yj2yk2
. . . , yjne(ne−1)/2

ykne(ne−1)/2
)T . The in-

dices j, k come from combinatorics C(ne, 2) and symbol
ne stands for the number of equations in ODE system.
For simplification we suppose that the constant matrices
A,B,C and the constant vector b are used in system (2).

Higher derivatives of such systems (2) can be effectively
computed in MATLAB software MathWorks (2017) using
matrix-vector multiplication, e.g. higher derivative y[p] for
pure quadratic term with matrix A should be expressed
as

y[p] = A

(
p−2∑
i=0

y[p−1−i]. ∗ y[i]

(
p− 1

i

)
+ y. ∗ y[p−1]

)
, (3)

where the operation ‘.∗’ stands for element-by-element

multiplication, i.e. y[p1]. ∗ y[p2] is vector (y
[p1]
1 y

[p2]
1 , . . . ,

y
[p1]
ne y

[p2]
ne )T . The binomial coefficients

(
p−1
i

)
can be effec-

tively precomputed using Pascal triangle, for more infor-
mation see pascal function in MATLAB software.

3. NUMERICAL EXPERIMENTS

All algorithms are implemented in Matlab 2015a and com-
putations are partially performed on SALOMON super-
computer at IT4Innovations VŠB-TU Ostrava
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Fig. 1. Order of MTSM for B1 non-stiff problem
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Fig. 2. Order of MTSM for D4 stiff problem

IT4Innovations (2017). Relative and absolute tolerance
for all computations was set to 10−7. Classical double
precision arithmetic has been used in our examples and
maximum order of Taylor series was set to ORD = 60.

Vectorized MATLAB code of explicit Taylor series exp-
Tay with a variable order and variable step size scheme
for nonlinear-quadratic systems of ODEs (2) has been im-
plemented. This algorithm was compared on a set of “non-
stiff” nonlinear-quadratic systems (see Enright and Pryce
(1987)) with vectorized MATLAB explicit ode solvers.
Benchmark results are shown in table 1 (each reported
runtime is taken as a median value of 100 computations).
Ratios of computation times ratio = ode/expTay > 1
indicate faster computation of the MTSM in all cases (see
used orders in Fig. 1).

Table 1. Time of solutions (non-stiff systems):
explicit Taylor expTay and MATLAB explicit

ode solver comparison

ode23 ode45 ode113 expTay
problem ratio ratio ratio [s]

B1 30.67 2.05 1.57 0.0323
B3 14.79 1.65 1.34 0.00965
B5 29.54 2.17 1.28 0.0201
E4 17.1 2.12 2.19 0.00276

The MTSM, due to the higher order, has some positive
properties for stability of the solution. Thanks to these
properties it can be effectively used for solution of moder-
ately stiff problems. In table 2 one can see the comparisons
expTay method with implicit MATLAB ode solvers (see
used orders in Fig. 2).

Table 2. Time of solutions (stiff systems): ex-
plicit Taylor expTay and MATLAB implicit

ode solver comparison

ode15s ode23s ode23t ode23tb expTay
problem ratio ratio ratio ratio [s]

C1 1.07 21.21 14.99 14.53 0.0849
C2 1.03 20.05 14.05 13.34 0.0823
D1 0.23 24.75 2.9 2.33 0.569
D3 2.12 19.55 19.4 17.28 0.065
F3 1.2 15.31 13.14 11.75 0.0359

4. CONCLUSION

The Taylor series scheme (after MATLAB vectorization)
seems to be very efficient for solution of some types of
nonlinear-quadratic ODEs. In many cases it significantly
outperforms standard solvers on the considered bench-
mark problems.

Detailed information and more results will be presented at
the conference.

ACKNOWLEDGEMENTS

This research was financially supported by the Ministry
of Education, Youth and Sports from the National Pro-
gram of Sustainability (NPU II) project IT4Innovations
excellence in science LQ1602. The paper also includes
the results of the international AKTION research project
Number 76p11 and the internal BUT FIT project FIT-S-
17-4014.

REFERENCES

Abad, A., Barrio, R., Marco-Buzunariz, M., and
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