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1. INTRODUCTION

The finite element method has grown to the standard way
to solve partial differential equations numerically. In the
area of structural dynamics this method discretizes the
partial differential equation

∇ · σ + b̂− % ü = 0 on Ω

with boundary and initial conditions u = û on ∂ Ωu,
σ · n = t̂ on ∂ Ωσ, u(t0) = u0 and u̇(t0) = u̇0. u are
the displacements of the structure. If the analyzed struc-
ture undergoes large deflections, the outcoming discretized
equation of motion

M ü(t) + f(u(t)) = BF (t) (1)

is nonlinear with respect to the restoring force f(u).

In applications such as design or control, the equation of
motion can depend on parameters that concern the shape,
material and boundary conditions as illustrated in Fig. 1.
These parameters can either be changed by the engineer
during construction (usually shape and material) or due
to operation conditions and control (usually boundary
conditions).

The dependence of Eq. (1) on these parameters can be
expressed by

M(p) ü(t) + f(p,u(t)) = B(p)F (t) (2)

where p ∈ P is a set of variable parameters.

Finite element models of complex geometries that appear
in engineering can have million degrees of freedoms which

Fig. 1. Parameterization of Structural Finite Element
Models.

Fig. 2. Computational savings with model reduction.

can lead to high computation costs when solving Eq. (1). In
applications such as design iterations or realtime control
where the equation of motion have to be solved several
times, a short simulation time is highly demanded. One
approach to satisfy this demand is model reduction. It
reduces the computation time by reducing the problem
dimension in a reduction step (offline) and then computing
the reduced smaller model (online). After a certain number
of simulations or calculated timesteps the total simulation
time can be reduced as illustrated in Fig. 2.

2. MODEL REDUCTION FOR FINITE ELEMENT
MODELS IN STRUCTURAL DYNAMICS

For equations of type (1) the model reduction is performed
in two steps. First, the number of unknowns is reduced
by a Galerkin projection. Second, the evaluation of the
nonlinear force term is sped up by hyperreduction.

2.1 Galerkin Projection

In order to reduce the dimension of the problem, i.e. the
number of unknowns, a Galerkin projection is performed.
Therein a lower-dimensional approximation of the relevant
system dynamics is done by

u = V q + ε ≈ V q
with the nonlinear reduction basis V = [V lin V nl] con-
sisting of a linear part V lin augmented with an addi-
tional nonlinear part V nl. The linear part is calculated
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Table 1. Possible combinations of methods for
calculation of the nonlinear reduction basis.

Linear part V lin Nonlinear part V nl

Modal truncation Vibration modes Modal derivatives

Static derivatives

Moment matching Krylov directions Krylov derivatives

Static derivatives

Other linear methods Linear basis vectors Exact derivatives

Static derivatives

using linear methods together with a linearized model
(e.g. Salimbahrami and Lohmann (2006)). The additional
nonlinear part consists of exact or static derivatives of the
linear basis vectors accounting for the nonlinear behavior
(e.g. Idelsohn and Cardona (1984)). Tab. 1 lists basic
combinations of methods that are used.

This leads to the projected and reduced system dynamics

V TMV q̈(t) + V Tf(V q(t)) = V TBF (t) .

The quality of the reduction basis and the associated
reduced system are evaluated and optimized via a specific
H2-norm for the error system.

2.2 Hyperreduction

Although the projection reduces the dimension of the
problem, its reduction of computation time is quite poor.
This originates from the evaluation of the reduced non-
linear restoring force V Tf(V q), because it still has to be
evaluated in the full element domain, i.e. for the physical
displacements u = V q. Hyperreduction methods have
been developed to overcome this issue.

The ansatz of Hyperreduction is to evaluate the elemental
restoring forces fe of a subset of all elements and extrapo-
late their contribution to the global restoring force vector
f instead of assembling the contibution of all elements:

V Tf(V q) =
∑
e∈E

V TBT
e fe(BeV eq)

≈
∑

e∈Ẽ⊂E

V TLeB
T
e fe(BeV eq) .

Different Hyperreduction methods differ in the way the

element subset Ẽ and the operator Le are chosen. One of
the most popular Hyperreduction methods for structural
problems is called the Energy Conserving Sampling and
Weighting (ECSW) method. It has advantageous proper-
ties when applied to mechanical problems, such as stability
and passivity (Farhat et al. (2014, 2015)).

3. PARAMETRIC REDUCTION

The consideration of parameter changes only needs a prior
suitable sampling of the parameter space P. Then the same
methods can be applied for each parameter sampling point
pi ∈ P (i = 1, 2, . . . , N) resulting in N different reduction
bases V (pi) and if necessary reduced systems Sr(pi) (e.g.
Benner et al. (2015)). Tab. 2 summarizes basic approaches
used within this framework.

Table 2. Methods used for parametric reduc-
tion.

Local approaches Global approaches

Basis updating V (pi) Concatenation to global basis[
V (p1) V (p2) · · · V (pN )

]
Basis interpolation V (pi) Global parameter-dependent

basis V (p)

Matrix/system interpolation Sr(pi)

4. RESEARCH CODE AMFE

Nonlinear model reduction methods have not been im-
plemented in commercial code so far. Furthermore, the
implementation of new developed methods is very tedious
in conjunction with commercial finite element code. There-
fore, an open source research code, called AMfe (Rutz-
moser (2017)), has been implemented that makes proto-
typing new model reduction methods easy. The code is
written in Python and provides easy access to internal
computations due to its modular structure. Several reduc-
tion methods have been implemented such as methods for
calculating reduction bases and hyperreduction methods
e.g. ECSW.

5. OUTLOOK

At current state only non-parametric nonlinear model
order reduction methods have been implemented in the
research code. The goal of current research of the authors
is to develop and implement new reduction techniques
for parameter dependent systems for applications such as
design, optimization and control systems.
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