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Lars Grüne ∗ Simon Pirkelmann ∗∗

∗ Chair of Applied Mathematics, University of Bayreuth, 95447
Bayreuth, Germany (e-mail: lars.gruene@uni-bayreuth.de)

∗∗ Chair of Applied Mathematics, University of Bayreuth, 95447
Bayreuth, Germany (e-mail: simon.pirkelmann@uni-bayreuth.de)

Keywords: Time-varying systems, model predictive control, partial differential equations

1. INTRODUCTION AND OUTLINE

In this discussion paper we consider the convection-
diffusion equation with time-varying boundary conditions
as a simple model of a room whose temperature shall be
controlled in an energy efficient way. This model serves
as an example for which we want to investigate whether
results from a recent paper (Grüne and Pirkelmann, 2017)
also hold for a more involved model.
In the first part we introduce the model and formulate a
constrained optimization problem. The following section
outlines how an approximate solution to the problem can
be obtained using Model Predictive Control (MPC). The
method is briefly described and we also mention results
about the relation between the MPC solution and the
solution of the original problem. The final part gives a
brief overview of selected aspects of the implementation.

2. PROBLEM STATEMENT

Consider the heat equation
∂y

∂t
− α∇2y+w∇y = 0 on Q := Ω× [0, T ], (1)

y(0) = y0 on Ω, (2)

where y : Q→ R is the temperature, α > 0 is the diffusion
coefficient, w : [0, T ] × Ω → R is a velocity field and
y0 : Ω→ R is the initial condition.
As a domain Ω we consider the unit interval. The boundary
Γ is partitioned into a controlled boundary Γc and an un-
controlled boundary Γout, see Figure 1. On the controlled
part of the boundary a function u is applied representing
heating and cooling. This is modelled by the condition

β
∂y

∂n
+ γcy = γcu on Σc := Γc × [0, T ]. (3)

On the uncontrolled part we have

β
∂y

∂n
+ γouty = γoutyout on Σout := Γout × [0, T ]. (4)

In the above equations ∂y
∂n is the derivative of y in normal

direction, yout is the outside temperature, and β : Σ→ R,
γc : Σc → R and γout : Σout → R are coefficient functions.

Defining γ :=

{
γout on Γout

γc on Γc
and z :=

{
yout on Γout

u on Γc
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the two above boundary conditions can be written in a
more consise way:

−β ∂y
∂n

= γ(y − z) on Σ. (5)

Ωy

Ω

ΓcΓout

Fig. 1. Illustration of domain Ω and subdomain Ωy, as well
as controlled (Γc) and uncontrolled (Γout) parts of the
boundary.

In addition to controlling the temperature at the boundary
we may control the velocity field w. For simplicity we
assume that for any fixed time point w is constant on the
whole domain, i.e. does not depend on space.
The presented model is motivated by a practical appli-
cation: energy efficient building control. We would like to
influence the temperature of a room (Ω) by controlling the
temperature at one wall of the room (Γc) and the airflow
inside the room. The temperature at the other wall cannot
be controlled and may be changing over time (e.g. due to
changing weather). However, we assume that the outside
temperature yout is known in advance via the weather
forecast, at least for a certain time span into the future.
Our goal is to keep the temperature in some part of the
room Ωy within certain upper and lower bounds y and y,
and doing so using as little control effort (or energy) u and
w as possible. In addition, we may also want to penalize
the deviation from some reference temperature yΩ.
This is expressed by the following optimal control problem:

min
y,u

J(y, u) =
εy
2
‖y(T )− yΩ(T )‖2L2(Ω) +

εy
2
‖y − yΩ‖2L2(Q)

+
εu
2
‖u‖2L2(Σ) +

εw
2
‖w‖2L2(0,T )

(6)
subject to equations (2), (5) and the constraints

u ≤ u ≤ u on Σc, (7)

y ≤ y ≤ y on Ωy × [0, T ], (8)

with (possibly time-varying) lower and upper bounds for
state and control.
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3. MODEL PREDICTIVE CONTROL

For large or possibly infinite time horizon T the problem
becomes very difficult to solve numerically. Also, reliable
weather forecast data will only be available for relatively
short periods. To deal with this issue Model Predictive
Control (MPC) is used. For an in-depth introdution to
MPC we refer to Grüne and Pannek (2017).
Briefly, the idea is as follows: Starting at time t = 0
given the state y(0) = y0 we consider the problem on
a shorter horizon [0, TMPC ] with TMPC < T and solve
the reduced open-loop problem instead. As a solution we
obtain the control u on the smaller horizon which is then
applied to the system up to t = h with some sampling rate
h < TMPC . At time t = h the state is measured again and
the procedure is repeated. Continuing this way we obtain
the closed-loop of the controlled system.
The natural question now is whether the MPC closed-
loop approximates the solution of the original problem.
Our recent results for time-varying systems show that
at least the cost of an infinite horizon optimal solution
is approximated by the MPC algorithm, cf. Grüne and
Pirkelmann (2017). In that paper we used a rather simple
example to illustrate the results.
The model presented in the current paper is more involved
and will serve to demonstrate that approximate optimality
can also be observed in the infinite-dimensional setting.

4. IMPLEMENTATION DETAILS

MPC reduces the problem in time but we still need to solve
an open-loop optimal control problem in each step of the
MPC algorithm. We use a First-Discretize-Then-Optimize
approach to solve the problem.
Discretizing the optimal control problem (6), (8) in time
and space we obtain a finite-dimensional optimization
problem with a quadratic cost functional

min
yh,u,w

J(yh, u, w) =

N−1∑
k=0

(εy
2

(yh,k − yΩ,k)TQ(yh,k − yΩ,k) +
εu
2
uTkRuk

+
εw
2
wT

kWwk

)
+
εy
2

(yh,N − yΩ,N )TQ(yh,N − yΩ,N )

subject to the nonlinear constraints

Ayh,k+1 + wkBwyh,k+1 = Byyh,k + buuk + by,outyout,k
for k ∈ {0, . . . , N − 1},

y
h,k,i
≤ yh,k,i ≤ yh,k,i for k ∈ {0, . . . , N}, i ∈ IΩy

,

uk ≤ uk ≤ uk for k ∈ {0, . . . , N − 1},
where the matrices A, Bw, By and the vectors bu and by,out
stem from the finite element discretization and Q, R and
W are weighting matrices and IΩy

is an index set corre-
sponding to finite element nodes inside the subdomain Ωy.
The implementation is carried out using FEniCS, cf. Al-

næs et al. (2015), Logg et al. (2012), for the finite element
discretization and MATLAB’s fmincon solver for the op-
timization. The source code for our implementation of the
MPC algorithm can be found on GitHub, see references.
Our numerical simulations show that the costs of the
closed-loops seem to converge for increasing horizon
lengths (see Fig. 2). In addition, it was investigated
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Fig. 2. Closed-loop cost of the MPC loop for a simulation
over a time period of T = 1.

whether the open-loop trajectories of the optimization
have the turnpike property which is the key property of the
optimal trajectories needed for proving near optimality of
the MPC solutions. The corresponding numerical results
will be presented in detail in the talk.

5. OUTLOOK

While the convergence of closed-loop costs can be ex-
plained by our theoretical results, it is not yet proven that
the state and control trajectories also converge. This will
be the subject of further investigations.
Another challenge is that the current implementation
scales poorly with the degrees of freedom of the finite
element discretization and therefore larger problems in
multidimensional domains have not yet been addressed. A
first approach to deal with this issue is the use of Proper
Orthogonal Decomposition as described in (Mechelli and
Volkwein, 2017). We are currently working with the au-
thors on a more efficient implementation of our problem.
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