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1. INTRODUCTION

It is widely known that trabecular bones of vertebrates
are constantly being remodeled in response to the corre-
sponding local stresses and strains Boyle (2011). This is
called Wolff’s law. On the other hand, it has yet to be
understood how the outer shape of a vertebrae bone is
formed. In this study, based on the observation of zebrafish
vertebrae bones, we hypothesize that a vertebrae bone is
composed of the two regions: one is formed a priori, while
the other is formed a posteriori against external loading
like trabecular bones. Assuming that Wolff’s law can be
expansively applied to the formation of the outer shape
of a vertebrae bone, we introduce a mathematical model
using topology optimization.

2. ZEBRAFISH AS A MODEL ORGANISM

In this research, we focus on zebrafish as a model organism.
Zebrafish backbone is consist of 32 vertebrae (Fig. 1).
The vertebrae bones significantly change their shapes as
zebrafish is growing up from juvenile to adult (Fig. 2).

Fig. 1. Zebrafish skeleton (left) and V15 single verte-
bra(v15) scanned with micro-CT (right)

3. MATHEMATICAL MODELING

Based on the observation of zebrafish vertebrae bones,
we hypothesize that a vertebrae bone is composed of
two regions: one is formed a priori, while the other is
formed a posteriori against external loading. To simulate
the growth of such a vertebrae bone we first divide the
computational domain into some subdomains as shown
in Fig. 3. Regardless of external loading the white parts
always have bones, while the green parts have no bones
? The authors acknowledge that this research is supported by
CREST and Toyota Central R&D.

Fig. 2. Vertebra development (left) and visualization of
osteoblast (right)

because the regions are occupied by nerves and blood
vessels. These parts form a congenital basic structure.
Assuming that loading acts on the two ends of the two
cones, we apply distributed load on the red and orange
parts with 1 and 0.5, respectively. In response to these
mechanical stimuli, the bone shape in the purple parts is
determined based on the following mathematical model.

Fig. 3. Computational domain for simulating the growth
of vertebrae bone.

Fig. 4. Parameterization for the growth of computational
domain

We first define bone density ρ by the following regularized
Heaviside function of a scalar function φ:
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ρ(φ) =

{
d (φ < −h)
(1− d)H(φ) + d (−h ≤ φ ≤ h)
1 (h < φ)

(1)

where h is the half bandwidth between the bone domain
(h < φ) and the void domain (φ < −h). d is a very small
positive lower bound set for avoiding singularity of the
stiffness matrix. H(φ) is defined as
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With this representation, we assume that the bone struc-
ture in the purple part is obtained as a solution to the
following optimization problem:

minimize
φ

f :=

∫
ΓN

t · udΓ

subject to g :=

∫
D

ρ(φ) dD− V ≤ 0,
(3)

where V is the upper bound of total volume, t is the
external surface traction, u is the displacement vector.
Since the optimization problem (3) takes the nested form,
the displacement vector u is given by solving the following
force equilibrium problem.

Assuming the deformation is infinitesimal, the stress ten-
sor σ and the strain ε can be expressed with linear isotropic
elasticity tensor E as

σ = E : ε(u), ε(u) =
1

2

(
∇u+∇u>) . (4)

Bone density ρ is embedded in the elasticity tensor as

E = ρPE0, (5)

where E0 is the elasticity tensor when ρ = 1. P (= 3)
is introduced for penalizing the intermediate values [0,1].
Finally, the force equilibrium problem is formulated as

−∇ · σ = 0 in D
u = 0 on ΓD

σ · n = t on ΓN

}
. (6)

In order to set up the time evolution equation for topology
optimization (3), we introduce the Lagrangian L := f+λg
and pursue the following optimality condition Kawamoto
(2013):

dL

dφ
=

df

dφ
+ λ

dg

dφ
= 0, λg = 0, λ ≥ 0, g ≤ 0, (7)

where λ is the Lagrange multiplier. Finally, we update
the scalar function φ by the following reaction diffusion
equation:

∂φ

∂t
= κ∇2φ− α

dL

dφ
(8)

where, κ is the diffusion factor and α reaction factor.

4. NUMERICAL EXAMPLES

We implement the above mentioned method using COM-
SOL Multiphysics COMSOL (2015). The reaction diffu-
sion equation (8) can be solved by the PDE mode (weak
form) in the mathematics module in COMSOL Multi-
physics. Also, the force equilibrium problem (6) can be
solved by the solid mechanics module. The parametrized
domain can be controlled by the parameter sweep function.
When updating the parameter, the final configuration at
the previous stage is used as the initial configuration for

the next stage. At each stage, the upper bound of the
volume fraction is set to 20%. Fig. 5 shows the represen-
tative five stages out of 10 stages. As the vertebrae bone
growing, additional strengthening structures are formed
on the both sides. Fig. 6 compares the measured shape
of a zebrafish vertebrae bone and the shape produced by
the proposed mathematical model. The calculated shape
seemed to capture the basic structure but the shape has
more roundish struts.

Fig. 5. Simulation of the growth of a vertebrae bone using
topology optimization with a parametrized computa-
tional domain

Fig. 6. Simulation (left) and measurement (right)

5. CONCLUSION

We have proposed a mathematical model for simulating
the zebrafish vertebrae bone growth using topology opti-
mization. Numerical results show the proposed model can
capture the basic feature of vertebrae bone, while there
still remain some discrepancies between the calculated
shape and the measured shape.
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