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Fig. 1. Capsule-type robot. M – mass of the housing, m –
mass of the core, c – spring rate, Fe – control force, µ
– coefficient of dry friction

1. INTRODUCTION

A capsule robot (capsubot) is a locomotion system that
can move in a resistive environment without external
propelling devices (legs, wheels, caterpillars, fins, water
screws, etc.) due to the motion of internal bodies and
interaction of the housing with the environment.

The robot in current study consists of a rigid body (hous-
ing) and an electromagnetic (solenoid-type) drive located
inside the housing. The drive involves an electromagnetic
coil (solenoid) that is rigidly attached to the housing and
an internal body(core); the core is made of a ferromagnetic
material and can move inside the solenoid along its axis.
The core is attached to the housing by a spring. The
solenoid’s axis is parallel to the axis of the housing. The
housing interacts with a resistive environment in which
the robot is moving. The robot is actuated by means of
a magnetic force that acts on the core when an electric
voltage is applied across the solenoid. The drive is designed
so that the magnetic force acts in one direction and tends
to pull the core inside the coil. The core returns to its
initial position due to the spring. The robot moves on a
horizontal plane along a straight line parallel to the axis
of the robot’s housing. The dynamics of the electric circuit
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of the solenoid is not taken into account. The schematic of
the system described is shown in Fig. 1.

This model was suggested and derived in Bolotnik et al.
(2016). The current study extends the cited paper with
experimental investigations.

2. MATHEMATICAL MODEL

Let M denote the mass of the housing together with the
solenoid, m the mass of the core, Fe the force applied
to the core by the solenoid, Ffr the force with which the
environment resists the motion of the housing, c the spring
rate, x the coordinate that identifies the position of the
housing’s center of mass relative to a fixed (inertial) ref-
erence frame, ξ the coordinate that identifies the position
of the core’s center of mass relative to the housing. The
variables x and ξ are measured along the line of motion of
the robot. The coordinate ξ is chosen so that the spring
is unstrained for ξ = 0. We assume that the resistance
force Ffr acting between the housing and the environment
is the dry friction force that obeys Coulomb’s law and µ
is the coefficient of dry friction of the housing against the
supporting plane. Let X denote the center of mass:

X(t) = x(t) +
m

M +m
ξ(t), (1)

By applying Newton’s second law separately to the hous-
ing and to the core and using (1), we obtain the governing
equations for the system under consideration in the fol-
lowing form:

(M +m)Ẍ = Ffr

(
Ẋ − m

M +m
ξ̇

)
,

Mm

M +m
ξ̈ + c ξ = Fe −

m

M +m
Ffr

(
Ẋ − m

M +m
ξ̇

)
.

(2)

Consider the force generated by the drive as a periodic
piecewise continuous function:

Fe =


F0,

{
t

T

}
< τ,

0,

{
t

T

}
≥ τ ,

(3)
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where T is the period, F0 is a positive constant that has
a dimension of force, and τ is a dimensionless positive
constant from the interval (0, 1). The parameter τ , called
the duty cycle, identifies the fraction of the period, during
which the control force is not equal to zero. Curly brackets
denote the fractional part of the expression enclosed in
them.

3. SIMULATION AND EXPERIMENTAL RESULTS

The basic content of this section is the analysis of the
dependence of the average velocity of the robot on the
excitation parameters T and τ .

The parameters of the experimental setup in terms of
the mathematical model are provided in Table 1. These
parameters are used for the simulation.

Table 1. Parameters of the system

Parameters Notatation and value

Mass of the housing M = 0.193 kg
Mass of the core m = 0.074 kg
Stiffness of the spring c = 256.23 Nm−1

Maximum value of the force Fe F0 = 1.25 N
Dry friction coefficient µ = 0.29

The results will be presented in dimensionless variables.
Instead of V , t, and T , we will use the variables V c/(F0ω),
ωt, and ωT , respectively, preserving the previous notation
for the normalized variables. The time scaling parameter

is defined by ω =
√

c(M+m)
Mm .

In the current study it is expected that the experimental
and simulated data will not match quantitatively. This
significant discrepancy could be accounted for by the
fact that in the computational model, we ignored the
dynamics of the electric circuit of the solenoid. However,
the qualitative effects are expected to be observed.

3.1 Dependence of the average velocity of the robot on the
parameter τ

The results of the investigation of the dependence of the
average velocity V of the robot on the excitation parameter
τ while the parameter T is fixed are depicted at Figure 2.
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Fig. 2. The dependencies of average velocities on τ

The simulation and the experiment demonstrate that the
average velocity of the steady-state motion of the robot
depends significantly on the duty cycle of the pulse-
width excitation signal, which indicates the possibility of
controlling the motion of the robot by changing only the
parameter τ . For τ = 0, near τ = 1/2, and τ = 1, the

average velocity of the robot is equal to zero. Based on
this figure, one can assume that these curves possess a
property of central symmetry about the point (1/2, 0) of
the coordinate plane τV . For the mathematical model used
for simulation this property was proved in Bolotnik et al.
(2016). This implies that changing the duty cycle of the
excitation signal from τ to 1 − τ at the same period leads
to the change in the direction of motion of the capsule
robot, with the magnitude of its velocity being preserved.

3.2 Dependence of the average velocity on the period T

Figure 2 shows an essential qualitative difference between
the curves for T = 0.66 · 2π and T = 1.10 · 2π, which
is reflected in the change in the sign of the average
velocities for the same values of τ . For example, the sign
of the average velocity in τ interval from 0 to 0.5 is
non-negative for T = 1.10 · 2π > 1 and non-positive for
T = 0.66 · 2π < 2π. This effect could be explained by the
resonance phenomenon. The resonance-induced change in
the direction of motion of a mobile vibration-driven system
was observed previously in Zimmermann et al. (2009).

The resonant change in the sign of the average velocity of
the robot can be seen from the curve plotting the average
velocity V versus the excitation period T (Fig. 3).
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Fig. 3. The dependencies of average velocities on T

Both curves, the experiment and the simulation, record the
change in the velocity, the first curve near T = 0.82·2π, the
second near T = 2π. Thus, the resonance effect is observed
in the experiment and in the simulation.

4. CONCLUSION

This paper provides model-based and experimental inves-
tigations of a capsule-type robot motion with a periodic
excitation force. The excitation force was controlled by
two excitation parameters. It was demonstrated that the
magnitude and the sign of the average velocity can be
controlled by tuning any of the excitation parameters.
The resonance-induced change in the direction of motion
is shown.
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