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1. INTRODUCTION

During the last decades (numerical) simulations based
on partial differential equations (PDEs) have consider-
ably gained importance in engineering applications, life
sciences, environmental issues, and finance. However, es-
pecially when multiple simulation requests or a real-time
simulation response are desired, standard methods such
as finite elements (FE) are prohibitive. Model reduction
approaches such as the reduced basis (RB) method, which
we will consider here, have been developed to tackle such
situations (see for instance Haasdonk (2017); Quarteroni
et al. (2016); Hesthaven et al. (2016) for an overview). The
key concept of the RB method is to prepare a problem-
adapted low-dimensional subspace of the high-dimensional
(FE) discretization space in a possibly expensive offline
stage to realize a fast simulation response by Galerkin pro-
jection on that low-dimensional space in the subsequent
online stage.

To assess the approximation error caused by the RB
method in the online stage a reliable and efficient a posteri-
ori error estimator has been derived in Veroy et al. (2003).
However, for inf-sup stable problems such as acoustics
problems the estimation of the inf-sup constant still poses
a challenge and the existing methods often result in rather
pessimistic results and thus pessimistic error bounds. We
propose a constant-free, probabilistic a posteriori error
estimator that does not require to estimate any stability
constants and is both reliable and efficient at (given) high
probability. Here, we extend the approach in Cao and
Petzold (2004); Homescu et al. (2005), where the solution
of an adjoint problem with random conditions at the final
time is employed to estimate the approximation error for
ordinary differential equations.

2. THE REDUCED BASIS METHOD FOR INF-SUP
STABLE PARAMETRIZED PDES

2.1 Problem setting

Let D ⊂ Rd, d = 1, 2, 3 be a bounded Lipschitz domain,
P denote the set of admissible parameters, and introduce
a Hilbert space H1

0 (D) ⊂ X ⊂ H1(D). Moreover, we
introduce a linear operator A(µ) : X → X ′ that is inf-
sup stable and bounded, i.e.

0 < β ≤ β(µ) := inf
v∈X

sup
w∈X

〈A(µ)v, w〉
‖v‖X‖w‖X

and (1)

γ(µ) := sup
v∈X

sup
w∈X

〈A(µ)v, w〉
‖v‖X‖w‖X

≤ γ <∞, (2)

where X ′ denotes the dual space of X and 〈·, ·〉 the duality
pairing.

We consider the following parameter-dependent PDE: For
any given µ ∈ P find u(µ) ∈ X such that

A(µ)u(µ) = f(µ) in X ′, (3)

where f(µ) ∈ X ′ is a given continuous linear form.

2.2 The high-dimensional discretization

Next, we introduce a conforming high-dimensional (FE)
space XN ⊂ X of dimension N and a so-called truth
solution uN (µ) that is defined as the solution of

A(µ)uN (µ) = f(µ) in XN ′. (4)

Note that in order to simplify the presentation we do not
introduce suitable discrete linear operators as we believe
the respective definition to be clear from the actual setting.

2.3 The reduced basis method in a nutshell

We assume that we have constructed an RB space XN :=
span{φ1, . . . , φN} in the offline stage say via a greedy
algorithm as introduced in Veroy et al. (2003), relying on
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the high-dimensional discretization. We may then define
an RB approximation uN (µ) ∈ XN as the solution of

A(µ)uN (µ) = f(µ) in XN ′. (5)

Note that thanks to a suitable offline/online-decomposition
the computation of uN (µ) in the online stage does not scale
in the dimension N of the high-dimensional discretiza-
tion (see for instance Haasdonk (2017); Quarteroni et al.
(2016); Hesthaven et al. (2016) for details).

To assess the approximation error ‖uN (µ)−uN (µ)‖X one
may introduce the residual

r(µ) := f(µ)−A(µ)uN (µ) ∈ XN ′. (6)

It is then straightforward to show that we have

‖uN (µ)− uN (µ)‖X ≤
1

β(µ)
‖r(µ)‖XN ′ . (7)

While the dual norm of the residual can be efficiently
computed via the Riesz representation, estimation of β(µ)
remains a challenge. The Successive Constraint Method
introduced in Huynh et al. (2007) yields a lower bound for
β(µ) which may however be rather pessimistic.

3. A RANDOMIZED A POSTERIORI ERROR
ESTIMATOR

To derive a randomized a posteriori error estimator we
rely on results similar to the restricted isometry property
employed in compressed sensing. In detail, we introduce
a matrix B ∈ RK×N whose entries are mutually inde-
pendent standard Gaussian random variables. Then, for a
vector x ∈ RN we have that for a given ε ∈ R, ε < 1 the
result

(1− ε)‖x‖22 ≤ ‖Bx‖22 ≤ (1 + ε)‖x‖22 (8)

holds true at a (given) probability of at most 1 − δ if
K ≥ K̄(δ, ε) (see for instance Vershynin (2012)). Here,
‖ · ‖2 denotes the Euclidean norm. Note that in contrast
to our approach the authors of Cao and Petzold (2004);
Homescu et al. (2005) employ the small sample statistical
method as proposed in Kenney and Laub (1994) that relies
on random vectors which are uniformly distributed on the
sphere SN−1.

Inspired by the results in Cao and Petzold (2004); Home-
scu et al. (2005) we introduce dual problems

A∗(µ)ψ
i
(µ) = B(i,:), i = 1, . . . ,K, (9)

where A∗(µ) denotes the stiffness matrix associated with
the adjoint operator A∗(µ) of A(µ) and B(i,:) denotes the
i-th row of the matrix B. We may then use the dual
solutions ψ

i
(µ) to define a probabilistic a posteriori error

estimator that is a reliable and efficient bound of the error
‖uN (µ)−uN (µ)‖X at given probability 1− δ. However, as
solving (9) for one i is as expensive as solving the primal
truth problem (4) this estimator is not computationally
feasible in the online stage.

In order to obtain an a posteriori error estimator that
can be computed in the online stage in a complexity that
does not depend on the dimension of the high-dimensional
space XN , we also introduce an RB approximation of the
dual problems (9). Here, we propose and compare different
computational strategies for the generation of the dual RB
space. If the RB approximation errors of the dual problems
are small, the error ‖uN −uN (µ)‖X can be bounded, with

high probability, from below and above by this online-
efficient a posteriori error estimator times a given constant.
For more details see Smetana et al. (2018).
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