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1. INTRODUCTION

Many infections or diseases that pose a public health
threat have a zoonotic origin, i.e., are transmitted from
animals to humans by contact with infected animals.
Verotoxin-producing Escherichia coli (VTEC) is an ex-
ample of a zoonotic foodborne pathogen where cattle can
act as a reservoir, see Newell et al. (2010). Livestock
movements are the primary transmission route for trans-
ferring VTEC infections between cattle herds, Nielsen
et al. (2002). EU regulations require member states to
keep national databases of all bovine animals and it is
therefore possible to develop realistic large-scale disease
spread models that incorporate the transport network to
better understand the transmission of zoonotic infections
in the cattle population. Although mainly inspired by
zoonotic diseases and models driven by livestock data, our
discussion is of entirely general character and applies to
arbitrary epidemiological models. We have implemented a
framework for stochastic disease spread simulator on net-
works in the software SimInf, see Widgren et al. (2016a),
which is a C compiled extension to the programming lan-
guage R available through the Comprehensive R Archive
Network (CRAN). With SimInf and data with detailed
information about the movement of the Swedish cattle
population and bacterial testing at multiple sites we can
perform Bayesian parameter inference on national scale
epidemics.

2. EPIDEMIOLOGICAL MODELING

The SISE-model consists of the two compartments sus-
ceptible (S) and infected (I) and an environmental com-
partment (E) representing an infectious pressure from free-
living pathogens. The infection transmits indirectly from
infected to susceptible individuals through the local en-
vironment, contaminated by infected individuals. Within
each herd i, the SISE model has the following two state
transitions,

Si
υϕi−−→ Ii

Ii
γ−→ Si

}
, (1)

where υ is the indirect transmission rate of the environ-
mental infectious pressure, and γ is the recovery rate from

the infection. Moreover, ϕi(t) is the concentration of the
local environmental-infectious pressure in herd i, evolved
as

dϕi(t)

dt
=

αIi(t)

Si(t) + Ii(t)
− β(t)ϕi(t), (2)

where α is the average shedding rate of bacteria to
the environment per infected individual, while the time-
dependent function β captures the decay and removal of
bacteria. The model can be extended to include multiple
compartments, such as different age groups in the suscep-
tible and infected compartments, see Bauer et al. (2016);
Widgren et al. (2016b). With the inclusion of observations,
we implement (1) and (2) as stochastic simulations on a
connected network in SimInf, see Engblom and Widgren
(2017); Bauer et al. (2016).

The data we have available contains a total of 18,649,921
reports with information about; first, the date and the
node for birth events, second, the date, the source, and
destination node for any movements, and third, the date
for slaughter or death, Nöremark et al. (2011). Each unique
node identifier (n = 37,221) in the data corresponds to
a single geographical location where animals are kept,
and could, e.g., correspond to a farm building or pasture
distributed across the entire Sweden.

3. BAYESIAN PARAMETRIZATION

We consider a postulated truth in the form of a time-
dependent stochastic process X(t) = X(t, θ), for some
parameter θ. The density for this process is denoted by
P
(
(x, t)|(x′, t′); θ

)
= P

(
X(t) = x|X(t′) = x′; θ

)
, and we

consider throughout this work that the true density is
computationally intractable but — mainly for convenience
— is Markovian. We are given a set of observations (xi) =
(xi, ti) ∼ X(ti), and the task is to estimate the unknown
parameter θ.

In exploring the posterior density P(θ|x) ∝ P(x|θ),
likelihood-based inference methods are not viable and
other methods need to be advised. We consider two
likelihood-free inference methods, first, Approximate
Bayesian Computations (ABC), see Beaumont et al.
(2002), and second, Synthetic Likelihood Markov chain
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Monte Carlo (SLMCMC) as in Wood (2010). Both meth-
ods generate simulated data (zi(θ

′)) ∼ X(ti, θ
′) and com-

pare it with the observed data as a substitute for the
likelihood.

In ABC one compares the summarized versions of
{(zi), (xi)}, the summary statistics {S(z), S(x)}, using a
distance measure, e.g., the Euclidean norm. If the distance
is smaller than a tolerance ε, the proposed parameter θ′

is accepted. The ABC method thus gives the approximate
posterior distribution defined as

Pε(θ|S(x)) ∝
∫
X
P(z|θ′)P(θ′)IAε,x(z)dz

Aε,x(z) = {z ∈ X ; ||S(z)− S(x)|| < ε}.
(3)

The choice of the acceptance tolerance ε will define how
close to the true posterior the approximation is. As ε→∞
the sample distribution is the prior: Pε(θ|S(x)) → P(θ),
and as ε → 0 the approximation will converge to the
posterior Pε(θ|S(x))→ P(θ|S(x)), see Wilkinson (2013).

The other method referred to as SLMCMC considers each
set of simulated summary statistics to be an observation of
a multivariate normal distribution S(·) = s ∼ N (mθ,Σθ),
where mθ is the mean and Σθ is the covariance. When
assuming normality, we utilize an auxiliary model Z and
will, in turn, be able to observe the auxiliary model’s
posterior density PZ,η(θ|s). The accuracy of the observed
posterior density depends on the number of observation η
of s and the validity of the assumption of the auxiliary
model Z being descriptive of the postulated truth. We
construct the synthetic log-likelihood as

pZ,η(s|θ) = −1

2
(s− m̂θ)

>
Σ̂−1θ (s− m̂θ)−

1

2
log |Σ̂θ|, (4)

where m̂θ and Σ̂θ are estimates of the mean and covari-
ance. We then explore the approximate posterior density
using (4) in a likelihood-based Markov chain Monte Carlo
method.

In Figure 1, we illustrate a proof of concept for the two
methods. We conduct the parameter inference on a Ge-
ometric Brownian Motion, for which the likelihood func-
tion is known, and we present the results from ABC and
SLMCMC together with the likelihood-based Metropolis-
Hastings algorithm, Hastings (1970), i.e., the best attain-
able posterior in this setting. We are currently applying
these likelihood-free methods to the SISE-model using
series of measurements
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