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1. INTRODUCTION

Mechanical actuators the operating principle of which is
based on the deformation of a shape-memory alloy can
create high forces while the overall actuator size is com-
parably small. Often these kinds of actuators are operated
in an on-off mode, only. Nonetheless, a continuous oper-
ation is also possible, which is usually controlled using
heuristic linear or nonlinear controllers. In this article a
flatness-based open-loop control of this kind of actuators
is proposed using a simple physically inspired model of the
alloy.

The operating principle of shape-memory alloy actuators
is the diffusionless transition between different metallic
phases. Depending on the phase, the geometric shape of
the actuator changes thus leading to relatively large defor-
mations. What metallic phase the alloy prefers depends on
the current temperature and the mechanical stress (there
are magnetic alloys, too, but these are not considered
here). For a nickel titanium alloy (NiTi), there is an
austenitic phase, which is stable at high temperatures,
and a martensitic phase, stable at low temperatures. Be-
cause of the shape of the crystal cells, martensite forms in
twins of different orientation (Wang and Sehitoglu (2014)),
when the alloy is cooled. Stretching the cold alloy results
in a shift of the twin plane, which looks like a plastic
deformation from the macroscopic point of view, but is
a diffusionless process. The process can be reversed by
heating the alloy, which turns the crystal in the austenitic
phase again, so that the previous shape results.

To this end, actuators formed as thin wires are considered,
which can only afford tension forces in one direction.
Thus, the martensite cells will orientate in a way that
minimizes the strain energy and different orientations
are not subject to the considerations, here. This way,
one can regard the phase fractions xA of austenite and
the fractions x+ and x− of representative martensite
phases, only (Müller and Seelecke (2001)). In addition,
the following simplified assumptions are made: The wire
is always loaded by a tension force f(l, l̇, . . .) that can
be expressed by the wire length l and its derivatives.
This function is given by the mechanical system attached

? The explanation of the ideas behind the material model by Prof.
Seelecke is gratefully acknowledged.

to the wire. The mass, and therefore all inertial forces,
of the wire can be neglected. The wire shall have a
homogeneous temperature, spatially distributed effects are
not considered yet. Thus, a wire of spatially constant
cross section A, volume V , and length l = l0(1 + ε) is
considered, where l0 is the length in the austenitic phase
under no load and ε is the strain. Note that the cross
section A depends on both the phase fraction and the
strain, because of the volume preserving phase transition
and the elastic tension of the compressible material, while
the volume depends on the elastic component of the strain
only. Polycrystalline effects are neglected and the wire is
described by stacked layers of martensite and austenite
with the fractions x+ = x and xA = 1 − x, respectively.
Since the wire is assumed to be always loaded, only one
martensitic phase is considered.

2. MATERIAL MODEL

To explain the hysteretic behavior of the shape-memory
alloy, a free energy model was developed in Müller and
Seelecke (2001), which has been used in many other
works. In this model, the (Helmholtz) free energy F =
U − TS as a function of the temperature T and the
strain ε is considered. Here, U denotes the internal energy
and S the entropy. A thermodynamic system tends to
minimize the free energy. Considering the material tension
with respect to austenite, the martensitic phases can be
regarded to have a strain ε±, so that the (linear) stress-
strain relation is σA = EAε and σ± = E± (ε− ε±) for
austenite and martensite, respectively, while E denotes the
corresponding Young’s modulus. Therefore, the free energy
has minima at the specific strains, if the phases are stable
at the temperature T . At high temperatures, the entropy
term dominates and only the austenitic phase is stable (see
Figure 1a)). As the temperature decreases, minima at the
martensitic phases occur, but the energy barrier prevents a
phase transition (Figure 1b)). If the temperature decreases
further, the energy barrier gets smaller so that the alloy
transforms to the martensitic phase (Figure 1c)). As the
material is heated again, there is an energy barrier to the
austenite phase, which explains the hysteresis.

For an alloy under tension stress σ, the free enthalpy
G = F − ∂εUε is minimized. To find the term ∂εU , the
Gibbs fundamental equation dU = T dS+ dW conforming
to Kluge and Neugebauer (1994) with the work term
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dW = f dl = σAl0 dε = σ V
1+ε dε

in combination with the total derivative dU = ∂SU dS +
∂εU dε can be used to find

∂εU = σ V
1+ε .

The additional term ∂εUε in the free enthalpy explains
why only one martensitic phase is formed when cooling a
wire under tension.

This phase transformation process is assumed to have
a rate that depends on the temperature and the height
∆G(σ, T ) of the energy barriers, which are different for the
different transitions A+ from austenite to martensite and
+A from martensite to austenite. There, the quantities T
and ∆G occur in the argument of an exponential function.
For an explanation the reader is referred to Müller and
Seelecke (2001). Thus, one has quasilinear differential
equations

τ ẋA = x+p+A(T, σ)− xApA+(T, σ)

τ ẋ+ = xApA+(T, σ)− x+pA+(T, σ)

for the phase fractions, which obviously respect the alge-
braic condition xA + x+ = 1 and can be reduced to

τ ẋ = (1− x)pA+(σ, T )− xp+A(σ, T ). (1)

Since the proposed time constant τ is very small, singular
perturbation theory may be used to come up with alge-
braic equations instead, neglecting the very fast dynamics.

To complete the actuator model, an equation for the
heating power P is required. The following considerations
are easier to understand when working with the length l
and force f of the wire. Since U̇ = Q̇+f l̇ for the change of
the internal energy, for the enthalpy H = U − fl one has
Ḣ = Q̇ − lḟ . On the other hand H = xHM + (1 − x)HA

holds for the enthalpy, where HM and HA is the enthalpy
of the whole wire, as if it had only one metallic phase.
Further

ḢM,A = ∂THM,AṪ + ∂fHM,Aḟ ,
while ∂fHM,A = −l. Comparing the two equations for the

derivative Ḣ, one finds

Ḣ = ẋ (HM −HA)− lḟ + (x∂THM + (1− x)∂THA) Ṫ

= Q̇− lḟ ,
which yields

Q̇ = (x∂THM + (1− x)∂THA) Ṫ + (HM −HA) ẋ. (2)

3. DIFFERENTIALLY FLAT SYSTEM

Combining the shape-memory alloy wire model with the
mechanically system providing an external force (a spring
for instance) results in a differentially flat system with
the wire length l as a flat output, as will be shown next.
Given the length l0 of the unloaded wire in austenitic
phase as a parameter, one has the relation l = l0 (1 + ε)
and that knowing l the strain is known, too. From the
mechanical system itself one directly computes the tension
force f = f(l, l̇, . . .).

To compute the stress σ = f
A and the phase fractions the

cross section A of the wire is required first. Under the
assumptions above, one has a volume preserving tension
due to the phase transition next to an elastic tension due
to stress. The latter effect contributes a strain

ε̄ = σ
(

1−x
EA

+ x
EM

)

a)

ε

F ε+

b)

ε

F ε+∆G

c)

ε

F ε+

Fig. 1. Free energy F (T, ε). Sections are shown for different
temperatures T .

so that ε = xε+ + ε̄ for the composite strain. The elastic

tension scales the cross section by (1− νε̄)2 ≈ 1−2νε̄ with
the transverse deformation constant ν so that

A = A0
(1−νε̄)2
1+xε+

for the cross section. These equations can be solved for the
phase fraction x and the stress σ, given the strain ε and
the force f .

Now, in the rate equation (1) the quantities computed so
far as well as the derivative ẋ of the phase fraction are
substituted to solve this equation for the temperature T .
Using (2) and differentiating T then allows to express the

control input, viz the heating power P = Q̇. This way,
given any sufficiently smooth trajectory t 7→ l(t), allows
one to compute the corresponding control input P (t).

The step of computing the temperature requires some
attention. The monocrystalline model suggests that, due
to the large negative exponents, there is almost no phase
transition until a critical temperature or strain reached.
Inverting the equations directly results in very large heat-
ing powers. In practice, such a behavior is not observed.
A polycrystalline extension of this model as proposed in
Heinze (2004) will allow to address this problem.

One should also note that the wire can be easily heated
by forcing an electrical current through it, while there is
usually no way to cool it actively. Negative values of Q̇ are
achieved by convection that depends on the temperature
and geometry of the wire, which are known from t 7→ l(t).

Since the small wire is fixed at its ends, there are very large
heat sinks, which call for a spatially distributed model.
Such a model might lead to much better coincidence
between simulation results and experiments, in return
yielding more accurate control behavior.
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