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1. INTRODUCTION

The approximation of a high-dimensional, discrete or con-
tinuous, quantified or even non-quantified system by a
lower-dimensional well-quantified system occurs in mul-
tiscale numerics, cf. Ames (1969), in lower-dimensional
representations and in modelling, cf. Murray (2008). In
particular in modelling, the small system is interpreted
as a model for the larger system, oftentimes a real-world
problem. Here, we discuss basic ideas by hands of finite
dimensional specifications.
We regard a system of ordinary differential equations

Ẋ = F (X) , X(0) = X ini ∈ Ω ⊆ RN (1)

in X = X(t) ∈ RN with the initial value X ini. In general,
the N equations in (1) are coupled. We aim to approximate
this system by a lower dimensional system in Y ∈ RM ,
M < N and sometimes formally M ≤ N , named

Ẏ = G(Y ) , Y (0) = Y ini ∈ Θ ⊆ RM (2)

with the initial value Y ini. One essential question is wether
Y (t) ≈ ϕ(X(t)) with a link map ϕ : RN → RM is an
appropriate approximation for certain X ini ∈ Ω, Y ini ∈ Θ
and t ∈ [0, T ].

Definition 1. We call the system Ẏ = G(Y ) an exact sub-

system of Ẋ = F (X), if Y (t) = ϕ(X(t)) for all t ∈ [0, T ]
results from Y ini = ϕ(X ini) for all X ini ∈ Ω.

Remark 2. Equation (2) needs not to be a sub-system in
the sense that it is a part of (1). Here, we understand an
exact sub-system as the existence of an exact link map ϕ.

Example 3. Let us regard the harmonic oscillator with
F : R2 → R2 and Ẋ = F (X) = (X2,−X1)T. Even for
this comparably simple system, we find surprisingly many
exact sub-systems. By transition to complex variables,
we find the two sub-systems Ẏ = ±iY = G(Y ) with
ϕ : R2 → C by ϕ(X) = 1

2 (1,∓i)T · X = Y , which are
independent from each other. By

ϕ : X 7→ c(X2
1 +X2

2 ) = Y

with Ẏ = G(Y ) = 0, we generate a sub-system containing
the conservation of energy. In addition,

ϕ : X 7→ t = Y = arctan
−X2

X1

and G = 1 pose an unexpected exact sub-system of the
harmonic oscillator as long as 0 ≤ t < 2π holds.
These four exact sub-systems are part of the model family
of all models of the harmonic oscillator.

2. TERMS, DEFINITIONS AND PROPERTIES

A particularly simple sub-system is induced by a selection
of components of X. Such a selection is a projection

πJ : X = (X1, . . . , XN )T 7→ (Xj1 , . . . , Xjk)T = Y (3)

with a set of indices J = {j1, . . . , jk}. The projection
πJ : RN → RM with M = |J | defines the link ϕ = πJ
between the system in X ∈ RN and a sub-system in
Y ∈ RM .

2.1 Reducibility, separability, adjacency structure

Definition 4. A system (1) is called reducible, if there is
a set J ⊂ I = {1, . . . , N}, J 6= I, forming an exact sub-
system with ϕ = πJ and G(πJX) = πJF (X). A system (1)
is called separable, if ϕ = πI\J forms an exact sub-system,
too.

Reducibility and separability are recognized by the ad-
jacency structure of ∇F . A system (1) is reducible if
∇F ∈ RN×N is an identically reducible matrix for all
X ∈ Ω. It is separable if ∇F has block structure.
Furthermore, ∇F displays the causal dependency struc-
ture of the system (1), i.e. Xi causally depends on Xj , if
the entry (∇F )ji in the j-th row and i-th column of the
matrix ∇F is non-vanishing for some X ∈ Ω.

2.2 Coordinates and concepts

The terms of reducibility and separability depend on
coordinates. In order to achieve a causal structure, which
is as simple as possible, coordinates are sought, in which
the system is reducible or even separable. This search is
formalised by a transformation T : RN → RN with a
bijective diffeomorphism T : X 7→ X ′. The transformed
system in X ′ ∈ RN is

Ẋ ′ = [∇T −1X ′] · F (T −1X ′) = F̃ (X ′). (4)

If there is a transformation so that the system (4) is
reducible or separable, we call the system (1) potentially
reducible or separable, respectively.

2.3 Linear systems

Applied to linear systems Ẋ = AX = F (X) with A ∈
RN×N , we look for a linear sub-system Ẏ = BY = G(Y )
with B ∈ RM×M and initial values as mentioned above.
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A spectral decomposition induces a transformation T :
RN → RN given by

X ′ = T X := V −1X,

where V ∈ CN×N contains the eigenvectors of A with
AV = V Λ. Then, (4) is Ẋ ′ = ΛX ′, where Λ ∈ CN×N is
the Jordan matrix of eigenvalues.
In case of a non-diagonalisable matrix A, the transformed
system separates into Jordan blocks. Each Jordan block
represents an exact sub-system, not further separable. Let
us regard an upper tridiagonal r×r-Jordan block between
the rows m− r + 1 and m in Λ. Then, all projections

ϕ = πJT : X 7→ (X ′m−j , . . . , X
′
m)T = Y

with 0 ≤ j ≤ r − 1 induce exact sub-systems. An amount
of k Jordan blocks is equivalent to k independent sub-
systems. In particular the system Ẋ ′ = ΛX ′ is separable
if Λ contains more than one Jordan block, because they
depict sub-systems that can be described independently
from each other.
In case of a diagonalisable A, the matrix Λ is diagonal.
Hence, the system Ẋ ′ = ΛX ′ is completely separable.
All projections ϕ = πIT : X 7→ Y with any set of
indices I = {i1, . . . , im} ⊆ {1, . . . , N} induce exact sub-
systems. In contrast to the non-diagonalisable Jordan case,
any selection of components is admissible, and the system
Ẋ ′ = ΛX ′ has a very simple causal structure.
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Fig. 1. Families of exact linear sub-systems for N = 3.
Left: diagonalisable A, full family. Right: Two Jordan
blocks, one with r = 2, m = 2, and one with r = 1,
m = 3 with separation in {X ′1, X ′2} and {X ′3}. Thus
{X ′1} is not a stand-alone exact sub-system.

2.4 One-dimensional situation

In the one-dimensional case with N = M = 1, we
have scalar quantities X and Y . Consequently, we find
F,G : R → R and the link ϕ : R → R. So the systems
(1) and (2) are one-dimensional autonomous ordinary dif-
ferential equations. Solutions of such equations always are
monotonous. Furthermore, differentiable and monotonous
functions R → R can be transformed into each other
by a non-linear scaling of the domain and co-domain.
Consequently, every one-dimensional system is an exact
sub-system of every one-dimensional differential equation
according to Def. 1. The impact of this surprising obser-
vation in modelling will be analysed in further research.

2.5 Noether’s theorem and conserved quantities

Noether’s theorem explains the connection between the ex-
istence of conserved quantities and the symmetry of a sys-

tem under transformation of variables, cf. Boccaletti and
Pucacco (2001). The invariance under spacial translations
leads to momentum conservation, while the conservation of
energy results from the invariance under time translation,
as in Example 3. In the formalism introduced here, a
conserved quantity Y of (1), like in Noether’s theorem,
is described by an exact sub-system in (2) with M = 1

and G = 0 what implies Y ∈ R with Ẏ = 0.

3. THE MODELLING POINT OF VIEW

We have introduced a conceptual framework that describes
the approximation of Ẋ = F (X) by lower-dimensional

sub-systems Ẏ = G(Y ). The modelling point of view takes
the system (1) as a real-world system, we want to describe
by a model (2). In the context of modelling, we interpret
the transformation T : X 7→ X ′ as a choice of terms
or concepts, that induce a well-arranged causal structure
that is as simple as possible. While describing physical
or biological systems, scientists always search for simple
causal dependencies and simple descriptions, cf. Machamer
and Silberstein (2002). The projection πJ induced by
(3) represents the selection of components to consider in
the model. The presented conceptual framework fits into
the process of modelling and forms an approach for its
formalisation.

4. OUTLOOK

An intuitive approach to modelling starts with an identifi-
cation of basic mechanisms. In order to model a system (1),
we assume separated and independent mechanisms. These
mechanisms are represented by functions Fi : RN → RN

in F = α1F1 + . . .+ αkFk with fixed α1, . . . , αk ∈ R. This
leads to the system equation

Ẋ = α1F1(X) + . . .+ αkFk(X). (5)

It is determined, which mechanism leads to which change
of the system (5). One question to analyse is, how the
terms of reducibility and separability fit to the separation
of mechanisms and the resulting linear combination of
different Fi.
Another point of view might interpret the αi as param-
eters, defining different models to identify. The resulting
parameter identification is a model identification in order
to find a best model of a real-world problem and thus a
best approximation of the system (1).
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