A solution to shape optimization problems using time evolution equations

Daisuke Murai * Atsushi Kawamoto* Tsuguo Kondoh*
* Toyota Central Research and Development Laboratories Institute, 41-1, Yokomichi, Nagakute, Aichi, Japan (e-mail: Daisuke-Murai@mosk.tytlabs.co.jp).

Keywords: Shape optimization problems, Time evolution equations, Adjoint variable method

1. INTRODUCTION

This paper deals with a numerical analysis method based on time evolution equations for solving nonparametric boundary shape optimization problems of domain boundaries. Shape optimization problems often appear at the final stage of design.

2. SHAPE OPTIMIZATION PROBLEM

Let $\Omega \subset \mathbb{R}^{d}, d=2,3$ be a design domain with boundary $\partial \Omega=\Gamma_{N} \cup \Gamma_{D}$ where Γ_{N} is a Neumann boundary and Γ_{D} is a Dirichlet boundary, $D=\cup \Omega$ be a set of design domains. We denote that $\boldsymbol{n}=\left(n_{1}, \cdots, n_{d}\right)$ is an outward normal unit vector on the boundary $\partial \Omega, \mathbf{0}$ is a zero vector and $\boldsymbol{\nabla}=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{d}\right)$ for a point $\boldsymbol{x}=\left(x_{1}, \cdots, x_{d}\right)$ in Ω. We define the steady-state heat conduction problem:

$$
\begin{align*}
& -\boldsymbol{\nabla} \cdot(q \boldsymbol{\nabla} u)=b, \quad \text { in } \quad \Omega, \\
& -(q \boldsymbol{\nabla} u) \cdot \boldsymbol{n}=p, \quad \text { on } \quad \Gamma_{\mathrm{N}}, \tag{1}\\
& u=u_{\mathrm{D}}, \quad \text { on } \quad \Gamma_{\mathrm{D}},
\end{align*}
$$

where $b \in \mathbb{R}, p \in \mathbb{R}$ and $u_{\mathrm{D}} \in \mathbb{R}$ are given functions, $q>0$ is a given constant. In the problem (1), b presents a heat source in Ω, p presents a heat flux on $\Gamma_{\mathrm{N}}, u_{\mathrm{D}}$ presents a temperature defined on the boundary Γ_{D} and q presents a thermal conductivity. Using the solution u to the problem (1), we define the objective function as a thermal resistance presented by

$$
\begin{equation*}
f_{0}(\Omega)=\int_{\Omega} b u \mathrm{~d} \boldsymbol{x}+\int_{\Gamma_{\mathrm{N}}} p u \mathrm{~d} \gamma-\int_{\Gamma_{\mathrm{D}}} u_{\mathrm{D}}(q \boldsymbol{\nabla} u) \cdot \boldsymbol{n} \mathrm{d} \gamma \tag{2}
\end{equation*}
$$

and the constraint function as a volume for domain measure such as

$$
\begin{equation*}
f_{1}(\Omega)=\int_{\Omega} 1 \mathrm{~d} \boldsymbol{x} \tag{3}
\end{equation*}
$$

A shape optimization problem is defined by

$$
\begin{equation*}
\min _{\Omega}\left\{f_{0}(\Omega) ; f_{1}(\Omega) \leq f_{1}\left(\Omega_{0}\right), u \text { is a solution to }(1)\right\} \tag{4}
\end{equation*}
$$

where $\Omega_{0} \in D$ is a given initial domain with boundary $\partial \Omega_{0}=\Gamma_{\mathrm{M}} \cup \Gamma_{\mathrm{F}}$ and $f_{1}\left(\Omega_{0}\right)$ is the initial value of f_{1} given as

$$
f_{1}\left(\Omega_{0}\right)=\int_{\Omega_{0}} 1 \mathrm{~d} \boldsymbol{x}
$$

Here Γ_{M} is a moving boundary, i.e., Γ_{M} is deformed in the computational steps of optimization process and Γ_{F} is a fixed boundary, i.e., Γ_{F} is fixed in the computational steps
of optimization process.
A Lagrangian function of the problem (4) is given as

$$
\begin{equation*}
\mathscr{L}\left(\Omega, u, v_{0}, v_{1}, \lambda_{1}\right)=\mathscr{L}_{0}\left(\Omega, u, v_{0}\right)+\lambda_{1} \mathscr{L}_{1}\left(\Omega, u, v_{1}\right) \tag{5}
\end{equation*}
$$

where $\mathscr{L}_{i}\left(\Omega, u, v_{i}\right), i=0,1$ are Lagrangian functions for $f_{i}, i=0,1$, defined as

$$
\begin{equation*}
\mathscr{L}_{i}\left(\Omega, u, v_{i}\right)=f_{i}+\int_{\Omega}\{\boldsymbol{\nabla} \cdot(q \boldsymbol{\nabla} u)+b\} v_{i} \mathrm{~d} \boldsymbol{x} \tag{6}
\end{equation*}
$$

respectively. Here $v_{i}, i=0,1$ are the Lagrange multipliers for the problem (1).

3. SHAPE DERIVATIVE

In order to solve the problem (4) by gradient based method, the shape gradient for the objective function f_{0} and the constraint function f_{1} with respect to the variation of Ω are requested. The shape gradient $\boldsymbol{g}_{i}, i=0,1$ can be obtained using the stationary conditions of $\mathscr{L}_{i}, i=0,1$. The shape gradient of $f_{i}, i=0,1$ are represented as

$$
\begin{equation*}
\frac{\mathrm{d} \mathscr{L}_{i}\left(\Omega, u, v_{i}\right)}{\mathrm{d} \Omega}=\frac{\partial \mathscr{L}_{i}}{\partial u} \frac{\partial u}{\partial \Omega}+\frac{\partial \mathscr{L}_{i}}{\partial v_{i}} \frac{\partial v_{i}}{\partial \Omega}+\frac{\partial \mathscr{L}_{i}}{\partial \Omega} \tag{7}
\end{equation*}
$$

where $\partial u / \partial \Omega=\delta u$ is a variation of $u, \partial v_{i} / \partial \Omega=\delta v_{i}$ are variations of $v_{i}, i=0,1$.
The stationary condition of $\mathscr{L}_{i}, i=0,1$ for all variations δv_{i} of $v_{i}, i=0,1$, such that

$$
\frac{\partial \mathscr{L}_{i}}{\partial v_{i}} \frac{\partial v_{i}}{\partial \Omega}=\int_{\Omega}\left\{(\boldsymbol{\nabla} \cdot(q \boldsymbol{\nabla} u)+b) \delta v_{i}\right\} \mathrm{d} \boldsymbol{x}=0, \quad i=0,1
$$

are equivalent to the condition that u is the solution to the problem (1).
The stationary condition of $\mathscr{L}_{i}, i=0,1$ for all variations $\delta u, \delta u=0$ on Γ_{D} of u such that

$$
\begin{aligned}
\frac{\partial \mathscr{L}_{0}}{\partial u} \frac{\partial u}{\partial \Omega} & =\int_{\Omega}\left\{\boldsymbol{\nabla} \cdot\left(q \boldsymbol{\nabla} v_{0}\right)+b\right\} \delta u \mathrm{~d} \boldsymbol{x} \\
& -\int_{\Gamma_{\mathrm{N}}} \delta u\left\{p+\left(q \boldsymbol{\nabla} v_{0}\right) \cdot \boldsymbol{n}\right\} \mathrm{d} \gamma \\
& +\int_{\Gamma_{\mathrm{D}}}\left\{v_{0}-u_{\mathrm{D}}\right\} \delta(q \boldsymbol{\nabla} u) \cdot \boldsymbol{n} \mathrm{d} \gamma=0 \\
\frac{\partial \mathscr{L}_{1}}{\partial u} \frac{\partial u}{\partial \Omega} & =\int_{\Omega}\left\{\boldsymbol{\nabla} \cdot\left(q \boldsymbol{\nabla} v_{1}\right) \delta u\right\} \mathrm{d} \boldsymbol{x} \\
& -\int_{\Gamma_{\mathrm{N}}} \delta u\left(q \boldsymbol{\nabla} v_{1}\right) \cdot \boldsymbol{n} \mathrm{d} \gamma \\
& +\int_{\Gamma_{\mathrm{D}}} v_{1} \delta(q \boldsymbol{\nabla} u) \cdot \boldsymbol{n} \mathrm{d} \gamma=0
\end{aligned}
$$

are equivalent to the condition that $v_{i}, i=0,1$ are the solutions to the following adjoint problems, respectively:

$$
\begin{array}{lll}
-\boldsymbol{\nabla} \cdot\left(q \boldsymbol{\nabla} v_{0}\right)=b, & \text { in } & \Omega, \\
-\left(q \boldsymbol{\nabla} v_{0}\right) \cdot \boldsymbol{n}=p, & \text { on } & \Gamma_{\mathrm{N}}, \\
v_{0}=u_{\mathrm{D}}, \quad \text { on } \quad \Gamma_{\mathrm{D}}, & \\
-\boldsymbol{\nabla} \cdot\left(q \boldsymbol{\nabla} v_{1}\right)=0, & \text { in } & \Omega, \\
-\left(q \boldsymbol{\nabla} v_{1}\right) \cdot \boldsymbol{n}=0, & \text { on } & \Gamma_{\mathrm{N}}, \tag{9}\\
v_{1}=0, \quad \text { on } \quad \Gamma_{\mathrm{D}} . & &
\end{array}
$$

Here, we fix u and $v_{i}, i=0,1$ with the solutions of problems (1), (8) and (9). By (7), we have the shape gradients for $f_{i}, i=0,1$:

$$
\begin{aligned}
\frac{\mathrm{d} \mathscr{L}_{0}}{\mathrm{~d} \Omega} & =\frac{\partial \mathscr{L}_{0}}{\partial \Omega}=\{2 b u-(q \boldsymbol{\nabla} u) \cdot \boldsymbol{\nabla} u\} \boldsymbol{n}=g_{0} \boldsymbol{n}, \\
\frac{\mathrm{~d} \mathscr{L}_{1}}{\mathrm{~d} \Omega} & =\frac{\partial \mathscr{L}_{1}}{\partial \Omega}=\boldsymbol{n}=g_{1} \boldsymbol{n} .
\end{aligned}
$$

See Azegami (1994).

4. SOLUTION TO THE PROBLEM (4) USING TIME EVOLUTION EQUATIONS

In order to obtain the solution to the problem (4), we introduce following time evolution equations:
$\frac{\partial \boldsymbol{v}(t, \boldsymbol{x})}{\partial t}=\boldsymbol{\nabla} \cdot(c \boldsymbol{\nabla} \boldsymbol{v}(t, \boldsymbol{x}))-\alpha \boldsymbol{v}(t, \boldsymbol{x}), \quad$ in $\quad \Omega_{0} \times[0, T]$, $\boldsymbol{v}(0, \boldsymbol{x})=\mathbf{0} \quad$ in $\quad \Omega_{0}$,
$-(c \boldsymbol{\nabla} \boldsymbol{v}(t, \boldsymbol{x})) \cdot \boldsymbol{n}=-\left(g_{0}(t)+\lambda_{1} g_{1}(t)\right) \boldsymbol{n}$ on $\Gamma_{\mathrm{M}} \times[0, T]$,
$\boldsymbol{v}(t, \boldsymbol{x})=\mathbf{0} \quad$ on $\quad \Gamma_{\mathrm{F}} \times[0, T]$,
$\frac{\partial \boldsymbol{\rho}(t, \boldsymbol{x})}{\partial t}=\boldsymbol{v}(t, \boldsymbol{x}) \quad$ in $\quad[0, T] \times \Omega_{0}$.

$$
\partial t-0(t, x) \quad 11 \quad[0,1] \times s L_{0}
$$

where $c>0, \alpha>0$ and $T>0$ are given constants. We chose sufficiently large T so that

$$
\left|f_{0}(\Omega(T))-f_{0}(\Omega(T-\delta t))\right| /\left|f_{0}(\Omega(T-\delta t))\right| \leq \varepsilon_{0}
$$

holds for a small time step δt and given small constant $\varepsilon_{0}>0 . \lambda_{1}$ denotes a Lagrange multiplier for f_{1}. In this paper, we set λ_{1} as

$$
\begin{equation*}
\lambda_{1}=-\frac{\left\|g_{0}(t) \boldsymbol{n}\right\|}{\left\|g_{1}(t) \boldsymbol{n}\right\|} \exp \left(\beta f_{1}\right), \quad\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle} \tag{12}
\end{equation*}
$$

so that KKT condition $g_{0}(T) \boldsymbol{n}+\lambda_{1} g_{1}(T) \boldsymbol{n}=\mathbf{0}, \lambda_{1} f_{1}(T)=$ $0, \lambda_{1} \geq 0, f_{1}(T) \leq 0$ holds at the end of optimization process. Here $\beta>0$ is the given constant for controlling the violation of constraint function during the optimization process (See Kawamoto (2013)). We consider the violation of f_{1} in the optimization process of computation and chose $\beta>0$ so that $f_{1} \leq 0$ holds for all $t \in[0, T]$. The solution to the problem (4) is obtained by $\Omega=\Omega_{0}+\boldsymbol{\rho}$.

5. NUMERICAL EXAMPLE

We analyze a two-dimensional problem related to a steadystate heat conduction problem (1). Fig. 1 shows the initial domain Ω_{0} with boundary $\partial \Omega_{0}=\Gamma_{\mathrm{M}} \sup \Gamma_{\mathrm{F}}$. Fig. 2 shows a design domain Ω with boundary $\partial \Omega=\Gamma_{\mathrm{N}} \cup \Gamma_{\mathrm{D}}$ where $\Gamma_{\mathrm{N}}=\Gamma_{\mathrm{N} 1} \cup \Gamma_{\mathrm{N} 2}$. Table 1 shows problem settings of the problem (10) and (1). Fig. 3 shows the solution u to the problem (1) in the initial domain Ω_{0} and the mesh used in this analysis. Fig. 4 shows the solution u to the problem (1) in the optimized domain Ω. Fig. 5 shows the history of objective function and constraint function during the
optimization process. In fig. 5, objective function and constraint function are normalized by using each initial values.

Fig. 1. The original domain Ω_{0} with boundary $\partial \Omega_{0}$

Fig. 2. A design domain Ω with boundary $\partial \Omega$

Table 1. Problem settings of the problem (10)
and (1)

Fig. 3. The solution to the Fig. 4. The solution to the problem (1) in Ω_{0}
problem (1) in Ω

Fig. 5. The history of objective function and constraint function

REFERENCES

H. Azegami. Solution to domain optimization problems. Trans. Japan Society Mechanics and Engineering 60(574): pages 1479-1994, 1994.
A. Kawamoto, T. Matsumori, T. Nomura, T. Kondoh, S. Yamasaki, S. Nishiwaki. Topology optimization by a time-dependent diffusion equation. International Journal for Numerical Methods in Engineering 93(8): pages 795-817, 2013.

