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1. INTRODUCTION

This paper deals with a numerical analysis method based
on time evolution equations for solving nonparametric
boundary shape optimization problems of domain bound-
aries. Shape optimization problems often appear at the
final stage of design.

2. SHAPE OPTIMIZATION PROBLEM

Let Ω ⊂ Rd, d = 2, 3 be a design domain with boundary
∂Ω = ΓN∪ΓD where ΓN is a Neumann boundary and ΓD is
a Dirichlet boundary, D = ∪Ω be a set of design domains.
We denote that n = (n1, · · · , nd) is an outward normal
unit vector on the boundary ∂Ω, 0 is a zero vector and
∇ = (∂/∂x1, · · · , ∂/∂xd) for a point x = (x1, · · · , xd) in
Ω. We define the steady-state heat conduction problem:

−∇ · (q∇u) = b, in Ω,

− (q∇u) · n = p, on ΓN,

u = uD, on ΓD,

(1)

where b ∈ R, p ∈ R and uD ∈ R are given functions, q > 0
is a given constant. In the problem (1), b presents a heat
source in Ω, p presents a heat flux on ΓN, uD presents a
temperature defined on the boundary ΓD and q presents a
thermal conductivity. Using the solution u to the problem
(1), we define the objective function as a thermal resistance
presented by

f0(Ω) =

∫
Ω

budx+

∫
ΓN

pudγ −
∫
ΓD

uD (q∇u) · ndγ (2)

and the constraint function as a volume for domain mea-
sure such as

f1(Ω) =

∫
Ω

1dx. (3)

A shape optimization problem is defined by

min
Ω

{f0(Ω); f1(Ω) ≤ f1(Ω0), u is a solution to (1)} , (4)

where Ω0 ∈ D is a given initial domain with boundary
∂Ω0 = ΓM ∪ ΓF and f1(Ω0) is the initial value of f1 given
as

f1(Ω0) =

∫
Ω0

1dx.

Here ΓM is a moving boundary, i.e., ΓM is deformed in the
computational steps of optimization process and ΓF is a
fixed boundary, i.e., ΓF is fixed in the computational steps

of optimization process.
A Lagrangian function of the problem (4) is given as

L (Ω, u, v0, v1, λ1) = L0(Ω, u, v0) + λ1L1(Ω, u, v1), (5)

where Li (Ω, u, vi) , i = 0, 1 are Lagrangian functions for
fi, i = 0, 1, defined as

Li (Ω, u, vi) = fi +

∫
Ω

{∇ · (q∇u) + b} vidx. (6)

respectively. Here vi, i = 0, 1 are the Lagrange multipliers
for the problem (1).

3. SHAPE DERIVATIVE

In order to solve the problem (4) by gradient based
method, the shape gradient for the objective function f0
and the constraint function f1 with respect to the variation
of Ω are requested. The shape gradient gi, i = 0, 1 can be
obtained using the stationary conditions of Li, i = 0, 1.
The shape gradient of fi, i = 0, 1 are represented as

dLi(Ω, u, vi)

dΩ
=

∂Li

∂u

∂u

∂Ω
+

∂Li

∂vi

∂vi
∂Ω

+
∂Li

∂Ω
(7)

where ∂u
/
∂Ω = δu is a variation of u, ∂vi

/
∂Ω = δvi are

variations of vi, i = 0, 1.
The stationary condition of Li, i = 0, 1 for all variations
δvi of vi, i = 0, 1, such that

∂Li

∂vi

∂vi
∂Ω

=

∫
Ω

{(∇ · (q∇u) + b) δvi}dx = 0, i = 0, 1

are equivalent to the condition that u is the solution to
the problem (1).
The stationary condition of Li, i = 0, 1 for all variations
δu, δu = 0 on ΓD of u such that

∂L0

∂u

∂u

∂Ω
=

∫
Ω

{∇ · (q∇v0) + b} δudx

−
∫
ΓN

δu {p+ (q∇v0) · n} dγ

+

∫
ΓD

{v0 − uD} δ (q∇u) · ndγ = 0,

∂L1

∂u

∂u

∂Ω
=

∫
Ω

{∇ · (q∇v1) δu}dx

−
∫
ΓN

δu (q∇v1) · ndγ

+

∫
ΓD

v1δ (q∇u) · ndγ = 0
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are equivalent to the condition that vi, i = 0, 1 are the
solutions to the following adjoint problems, respectively:

−∇ · (q∇v0) = b, in Ω,

− (q∇v0) · n = p, on ΓN,

v0 = uD, on ΓD,

(8)

−∇ · (q∇v1) = 0, in Ω,

− (q∇v1) · n = 0, on ΓN,

v1 = 0, on ΓD.

(9)

Here, we fix u and vi, i = 0, 1 with the solutions of
problems (1), (8) and (9). By (7), we have the shape
gradients for fi, i = 0, 1:

dL0

dΩ
=

∂L0

∂Ω
= {2bu− (q∇u) ·∇u}n = g0n,

dL1

dΩ
=

∂L1

∂Ω
= n = g1n.

See Azegami (1994).

4. SOLUTION TO THE PROBLEM (4) USING TIME
EVOLUTION EQUATIONS

In order to obtain the solution to the problem (4), we
introduce following time evolution equations:

∂v(t,x)

∂t
= ∇ · (c∇v(t,x))− αv(t,x), in Ω0 × [0, T ],

v(0,x) = 0 in Ω0,

− (c∇v(t,x)) · n = − (g0(t) + λ1g1(t))n on ΓM × [0, T ],

v(t,x) = 0 on ΓF × [0, T ],
(10)

∂ρ(t,x)

∂t
= v(t,x) in [0, T ]× Ω0. (11)

where c > 0, α ≥ 0 and T > 0 are given constants. We
chose sufficiently large T so that

|f0(Ω(T ))− f0(Ω(T − δt))|
/
|f0(Ω(T − δt))| ≤ ε0

holds for a small time step δt and given small constant
ε0 > 0. λ1 denotes a Lagrange multiplier for f1. In this
paper, we set λ1 as

λ1 = −∥g0(t)n∥
∥g1(t)n∥

exp(βf1), ∥·∥ =
√
⟨·, ·⟩, (12)

so that KKT condition g0(T )n+λ1g1(T )n = 0, λ1f1(T ) =
0, λ1 ≥ 0, f1(T ) ≤ 0 holds at the end of optimization
process. Here β > 0 is the given constant for controlling the
violation of constraint function during the optimization
process (See Kawamoto (2013)). We consider the violation
of f1 in the optimization process of computation and chose
β > 0 so that f1 ≤ 0 holds for all t ∈ [0, T ]. The solution
to the problem (4) is obtained by Ω = Ω0 + ρ.

5. NUMERICAL EXAMPLE

We analyze a two-dimensional problem related to a steady-
state heat conduction problem (1). Fig. 1 shows the initial
domain Ω0 with boundary ∂Ω0 = ΓM supΓF. Fig. 2 shows
a design domain Ω with boundary ∂Ω = ΓN ∪ ΓD where
ΓN = ΓN1 ∪ ΓN2. Table 1 shows problem settings of the
problem (10) and (1). Fig. 3 shows the solution u to the
problem (1) in the initial domain Ω0 and the mesh used in
this analysis. Fig. 4 shows the solution u to the problem
(1) in the optimized domain Ω. Fig. 5 shows the history
of objective function and constraint function during the

optimization process. In fig. 5, objective function and
constraint function are normalized by using each initial
values.

Fig. 1. The original domain
Ω0 with boundary ∂Ω0

Fig. 2. A design domain Ω
with boundary ∂Ω

Table 1. Problem settings of the problem (10)
and (1)

Problem Settings

problem (10) T = 1.5, c = 1, α = 0, v2 = 0 on ΓM × [0, T ]
problem (1) q=1, b=0, p=0 on ΓN1, p=−1 on ΓN2, uD=0
equation (12) β = 100

Fig. 3. The solution to the
problem (1) in Ω0

Fig. 4. The solution to the
problem (1) in Ω
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Fig. 5. The history of objective function and constraint
function
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