
Modeling Actomyosin Clustering depending
on Medium ATP-Concentrations ?

Christian Wölfer ∗ Robert J. Flassig ∗ Michael Mangold ∗,∗∗

∗ Max Planck Institute for Dynamics of Complex Technical Systems,
39106 Magdeburg, Germany

∗∗ TH Bingen, 55411 Bingen am Rhein, Germany

Keywords: Actin-Myosin Cortex, Dynamic Modeling, Distributed Model, System Analysis,
Synthetic Biology

1. INTRODUCTION

The cell cortex, formed by membrane linked actin fila-
ments, is an important functional unit of almost all eu-
karyotic cells and involved in a variety of major cellular
processes like cell division, motility, formation and stabi-
lization of cell shape(Alberts et al., 1994). Hence, modeling
and understanding of the cell cortex is of great interest
in the context of bottom-up synthetic biology (Schwille,
2011).
The polymeric and filamentous protein F-actin forms the
mesh-like and therefore viscoelastic material. Together
with the myofilament myosin II, a filamentous protein with
a variety of motor domain (Fig. 1b), the cortex has active
gel properties.
An experimental study with a synthetic ’minimal actin
cortices’ (Vogel and Schwille, 2012) showed that spatial
cluster formation of actin cortices only occur in a range of
0.1 to 10 µM and surprisingly not for high ATP concen-
trations (Vogel et al., 2013).

2. THE ACTOMYOSIN MODEL

To explain the experimental findings qualitatively a two
dimensional continuum model was developed in polar co-
ordinates to represent a cut through a spherical cell or vesi-
cle. Additionally, the actomyosin cortex properties were
mimicked by assuming that the actin and myosin species
remain close to the membrane in a very thin layer. Thus,
the actomyosin cortex can be described as a one dimen-
sional ring system with periodic boundary conditions. In
contrast, the energy source ATP, which is consumed by
the cortex, diffuses from the inside through the whole two
dimensional system (A.1). The spatial distribution of the
cortex species obeys an advection-diffusion equation with
additional mass action reaction rates (A.2-A.4).
The underlying force generating biochemical circuit is the
well described myosin cross bridge cycle (Rayment et al.,
1993). We used a simplified spatial distributed myosin
cross bridge model (Fig. 1a) where energy provided by
ATP hydroxylation causes a conformational change of the
myosin head (M). The active myosin head is able to in-
teract with F-actin forming an active actomyosin complex
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(A-M). The unstable active actomyosin complex performs
a further conformational change of the myosin head trig-
gering an acceleration of the F-actin filament due to the
mechanical coupling. To close the cycle, ATP is needed to
release the myosin head from the F-actin filament.
We assumed that the binding and releasing of the myosin
head are the rate-determining steps. Thus, force genera-
tion and the ATP hydroxylation take place during myosin
binding (r1) and detachment (r2).
The momentum equation with viscoelastic material behav-
iors is described by

D(ρv)

Dt
=

∂

∂ϕ
(σv + σe + σm), (1)

consisting of the material derivation for F-actin momen-
tum ρv, and terms for viscous stress σV as one dimensional
representation of the viscous stress tensor τϕϕ (Bird et al.,
1960), elastic stress σe = αA2(1−e) derived by Lewis et al.
(2014) with the related evolution of network deformation
e (A.5) and the contractile stress σm generated by the
myosin pulls.
As a new approach, the contractile stress is modeled by
the force generating mass action rate r1 times a force
transmission state χ:

σm = ψ · r1 · χ (2)

The fundamental idea is that the myosin can only bend,
break or compact filaments when on both sides of the
myofilament (Fig. 1b) enough heads are connected to
the F-actin mesh (Wölfer et al., 2016). Otherwise, the
power stroke would not be transmitted sufficiently and
instead move the myosin molecule along the actin filament.
The force transmission should increase the more myosin
heads are bound to the actin filament. Thus, in our
formulation the local force transmission is determined by
the concentration of inactive actomyosin scaled by the
total amount of myosin.

χ =
A-M

A-M +M
(3)

In contrast to other actin models (Jülicher et al., 2007; Ra-
maswamy and Jülicher, 2016) polymerization, depolymer-
ization and, as a consequence, polarity of F-actin filaments
were not taken into account because of an insignificant role
of those processes in the underlying in vitro experiment
Vogel et al. (2013).
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Fig. 1. a: Myosin cross bridge model b: myofilament c: clustering actin cortex d: average ATP concentration and
normalized contractile stress over time e: normalized curves force generation r1, transmission χ and contractile
stress against average ATP conc.

3. RESULTS AND DISCUSSION

Simulation of the nondimensionalized and discretizised
model showed that clustering occurs even when the ATP
concentration (consumed in r2) drops under 5 units ac-
cording with an increase of the contractile stress σm
(Fig. 1c,d). The network clustered gradually by merging of
smaller clusters, pursuant to the periodic initial conditions,
consistent to the experimental observations. Finally, the
contraction ceases after ATP depletion, recognizable by
diminishing of the cluster due to diffusion.
As expected, for high ATP level concentrations the gener-
ated force by r1 is very high . Thus, the majority of myosin
heads are in the unbound state resulting in a poor trans-
mission of force χ and therefore small contractile stress
σm or rather a movement of the myofilament along the
actin fiber. With decreasing ATP concentration the force
transmission is improved accompanied by a decreasing
force generation, resulting in a nearly bell-shaped dose-
response curve for σm (Fig. 1e).
Accordingly, we are able to generate the desired dose-
response relation for ATP and resulting contraction, with
the suggested formulation for contractile stress. In addition
in vitro studies, which observed a movement of myosin pro-
teins along actin filaments, support our new formulation
(Sheetz and Spudich, 1983; Vogel et al., 2013).
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Appendix A. PDE SYSTEM

∂ATP

∂t
= DT

(
1

R

∂

∂R

(
R
∂ATP

∂R

)
+

1

R2

∂2ATP

∂ϕ2

)
(A.1)

∂A

∂t
= −∂(A · V )

∂ϕ
+DA

∂2A

∂ϕ2
− r1 + r2 (A.2)

∂M

∂t
= −∂(M · V )

∂ϕ
+DM

∂2M

∂ϕ2
− r1 + r2 (A.3)

∂A-M

∂t
= −∂(A-M · V )

∂ϕ
+DA

∂2A-M

∂ϕ2
+ r1 − r2 (A.4)

∂e

∂t
= −∂(e · V )

∂ϕ
+ λ(1 − e) (A.5)
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