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1. INTRODUCTION

The optimized layout of a central receiver power plants
requires an accurate but fast simulation of the plant
operation depending on its design parameters. Ray tracing
models are commonly used to calculate the solar flux
concentrated by the heliostat field. The computation time
for an annual performance simulation is critical for the
usage in an optimization procedure.

The main influences on run-time are the spatial (number of
rays) and temporal (number of time points) discretization.
For the annual simulation, usually weather data from clear
sky models is used, e.g. the meteorological radiation model
(MRM), see Badescu (2008). Using non-symmetric mea-
sured weather data (e.g. from a TMY file) the temporal
sample points have to be chosen in a different way.

In this paper, different temporal integration approaches
are presented and discussed for the case of measured
weather data.

2. TEMPORAL INTEGRATION

The annual energy production Eyear of the solar tower
power plant can be computed with the sum over all days
d and the integral of the daily power production,

Eyear =
365∑
d=1

(∫ sunset

sunrise

P (t, d) dt

)
︸ ︷︷ ︸

=:E(DNI(d))

, (1)

where E(DNI(d)) describes the direct normal irradiation
at day d. The computation of the annual energy produc-
tion can be accelerated by reducing the number of samples
per day by quadrature rules and reducing the number of
days by clustering.

2.1 Quadrature methods for intraday sampling

Quadrature methods can be used to approximate the
integral of the daily energy E(DNI(d)) by using specific
sampling points and their according temporal weight.

Because hourly data is provided by the weather files,
so far just quadrature methods with a constant time
step of one hour are used, e.g. the summed midpoint
and summed trapezoidal rule. But to apply quadrature
rules with higher order (e.g. Gauss-Legendre quadrature
rule) and reduce the number of sampling points, a higher
temporal resolution than just hourly constant data is
helpful and would further increase the accuracy. It is
possible to achieve a higher resolution from the hourly
averaged measured data by using data reconstruction, see
Fig. 2.1.
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Fig. 1. Reconstruction of the hourly averaged measured
DNI data (blue) using the conservative and TVD
superbee limiter (red).

DNI value at day d around the time ti changes as follows:

DNI(t, d) = DNI(ti, d) + σ(ti) · (t− ti),

t ∈ [ti −
∆t

2
, ti +

∆t

2
],

(2)

with its originally measured value DNI(ti, d), and recon-
structed slope σ(ti).

Calculating the reconstructed slope with the superbee
limiter, which fulfills the required properties of conservativ
and TVD, see Leveque (1986), the error between the
hourly averaged measured values and the real values can
be reduced by 32% for a cloudy day. For a clear sky, e.g.
the data from the MRM model, the error can be reduced
by 85%.
With the reconstructed values three different quadrature-
rules, midpoint, trapezoidal and Gauss-Legendre with a
changing number of quadrature points are investigated
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for computing the daily energy, see Fig. 2.1. For Mumbai
around 7 sample points per day are needed for a sufficient
accuracy.
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Fig. 2. Comparison of the three quadrature-rules with a
changing number of quadrature points for Mumbai.

2.2 Clustering of days

Considering the different, day dependent weather condi-
tions an averaged DNI value of the neighboring days can
be computed by

˜DNI(dk) =

dk+dk+1
2∑

i=
dk−1+dk

2

2

dk+1 − dk−1
DNI(di). (3)

Using this averaged DNI for the simulated, representing
day the annual energy can be computed with the summed
trapezoidal-rule

Eyear ≈
m−1∑
k=1

dk+1 − dk

2
( E( ˜DNI(dk+1)) + E( ˜DNI(dk)) ). (4)

Comparing the annual energy computed with the aggre-
gated approach with the usually used constant day sam-
pling, the new approach allows to reduce the number of
sample points to only 38 points, see Fig. 2.2.
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Fig. 3. Comparison of the constant day sampling with
the aggregated day sampling approach for a changing
number of sample points.

3. ANGULAR INTEGRATION

The annual energy production Eyear can also be computed
by considering the sun path in the domain of the solar
angles instead of the time domain. Therefore, the DNI
needs to be transformed from the time domain into the
angular domain. Then, two-dimensional quadrature rules
are used to compute the annual energy, e.g. midpoint-
rule, trapezoidal-rule, Gauss-Legendre quadrature-rule.
The underlying quadrature method defines a region in the
angular-solar domain. All DNI values of this region are
aggregated to one average DNI value, while the number of
data points resemble the temporal weight of this region,
see Fig 3.

Using the integration in the azimuth-altitude domain the
number of sampling points for the computation of the
annual energy for Mumbai can be reduced to 18.

Fig. 4. Integration domain for the transformation to az-
imuth and altitude with a midpoint grid (left) and to
ecliptic longitude hour angle with a Gauss-Legendre
grid (right).

A transformation to the hour angle and the ecliptic longi-
tude gives further enhancements, such as the almost rect-
angular shape of the integration domain, see V. Grigoriev
and Blanco (2015). For Mumbai the number of sample
points could be reduced further to just 16 sample points
per year.

4. FIELD EFFICIENCY MAP

Looking at the equation for the power of one heliostat Pi

with the number of considered losses n,

Pi(t, d) = Ai · IDNI(t, d) ·
n∑
ηn,i(t, d) (5)

the power depends linearly on the intensity of the sun
IDNI(t, d). This allows to uncouple the DNI values and
the efficiency of the power plant. A field efficiency map
is computed, including the efficiency of the power plant
for all possible sun positions, by using e.g polynomial
interpolation or spline functions. With this field efficiency
map the energy of the power plant can be computed
extremely fast by only multiplying the efficiency with the
corresponding DNI value.

5. CONCLUSION

For industrial performance computations, real measured
weather data should be used. For that case, smarter inte-
gration methods and a field efficiency map are successfully
used, such that the simulation time is strongly reduced.
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