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1. INTRODUCTION

Various mathematical models reproducing similar obser-
vations have different advantages and disadvantages. Con-
sequently, the question evolves how to compare and relate
models in a hierarchical order. We present two approaches
for modeling viral liver infections such as hepatitis C, a
world wide disease which chronifies in up to 75% of the
cases, cf. Schwab (2011). The first model using reaction-
diffusion equations allows analytical longterm behavior
predictions. The second model, a cellular automaton, de-
scribes the interactions of virus and T cells in a smaller
dimension and includes new mechanisms.

2. MODELING HEPATITIS

We list properties of the liver as well as of viral liver
infections. Based on this, we present a reaction-diffusion
system in Sec. 2.2 and a cellular automaton in Sec. 2.3.

2.1 Liver infections

The liver lobes consist of hepatic lobules connected to the
veins. This results in a ramified small-scale system.

After the infection, the immune system reacts to the virus.
First, dendritic cells report the presence of the virus.
As a reaction, T cells are produced in the lymphocytes.
Different kinds of T cells are involved in the primary
immune reaction. T helper cells induce B lymphocytes to
produce antigens. The killer T cells identify infected cells
and trigger the programmed cell death. Killer T cells cause
most of the damage caused by a liver infection, cf. Bowen
et al. (2002). The incubation time between the infection
and the attack of the killer T cells is several weeks.

The inflammation starts with an acute phase in which the
killer T cells try to eliminate the virus. Then, either the
virus is eliminated and the immune reaction fades, or in
case of a chronic course, the virus remains in remote areas
of the liver and a diminished immune reaction persists.

2.2 Reaction-diffusion model

In the model, first presented by Kerl (2012), the im-
mune reaction is summarized in a term of T cells v.

The interactions of the virus u and the T cells v are
based on Lotka-Volterra equations with a logistic growth
w(u) = (1− u) u−εu+κ of the virus, including the Allee effect,

and an inflow term j[u] which describes the inflow of T cells
through the vein depending on the total virus population
in the liver. For x ∈ Ω and t > 0, the equations

u̇ = uw(u)− γuv + α∆u ,

v̇ = j[u]− η(1− u)v + β∆v − µ∆u
(1)

describe the reactions between the virus and T cells,
the diffusion spread of the populations (α, β) and the
chemotactic effects (µ), which direct T cells to the virus.
Initial values u0(x) and v0(x) and homogenous Neumann
boundary conditions are used.

The occurrence of chronifications depends on the minimal
eigenvalue λ of the negative Laplacian in Ω with Neu-
mann boundary conditions, the maximal diffusion coef-
ficient d = max{α, β} and the maximal change rate of the
reactions M . If these parameters fulfill σ = λd −M > 0,
chronic courses can be ruled out, see Smoller (1994).

2.3 Cellular automaton

We use a rectangular geometry with n × m cells and
an additional cut with regard to the small-scale liver
structure. The possible states of a cell are obstacle (-1),
dead (0), healthy (1), infected (2) and attacked by T cells
(3), see Fig. 1. We use these discrete states and a coupled
map lattice for the amount of T cells in each cell. The
automaton is inhomogeneous because we model an inflow
area as described in Sec. 2.1. The update uses a Neumann
neighborhood with radius 1. The chemotactic effects are
gained from a Moore neighborhood with radius 3.
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Fig. 1. Change of cell states: Obstacles (-1) remains,
healthy cells (0) change over infected (1), and attacked
by T cells (2) to dead (3). Dead cells may get healthy.

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 49-50, DOI: 10.11128/arep.55.a55236 49

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



3. RESULTS

In this section, we compare the simulations of both models
and highlight similarities and differences.

3.1 Reaction-diffusion model

The area Ω has a cut at x1 = 0.5 with regard to
the small-scale liver structure and an inflow area around
(x1, x2) = (1, 1). Depending on the parameters in Eq. (1),
both main courses, healing and chronification, are repro-
ducible. For parameters with σ < 0, we may observe spa-
tial inhomogeneous, stationary solutions, which we inter-
pret as chronic infections, see Fig. 2. The virus persists in
an area remote from the inflow area. The immune reaction
does not fade out.
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Fig. 2. Stationary virus and T cell distribution in a chronic
infection course, modeled with Eq. (1).

3.2 Cellular automaton (CA)

The numerical simulation by hands of the cellular automa-
ton reproduces both disease courses as well as the model in
Eq. (1). For small chemotaxis parameters µ, it shows a be-
havior which is equivalent to the reaction-diffusion model.
The system behavior of a chronic infection is comparable
to the simulation in Fig. 2. For healing courses with strong
chemotactic effects, we observe a new mechanism. A group
of T cells follows the virus behind the cut. As an effect,
there is a gap between the separated group and the inflow
area without any virus and T cells. The group of T cells
eliminates the virus and dies thereafter. The separated
group of T cells in an active phase is shown in Fig. 3,
in the lower right, behind the obstacle.
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Fig. 3. Isolation of T cells in an active phase, simulation
by hands of the cellular automaton. The barrier of
obstacles is marked with white crosses.

3.3 Model family

Mathematical modeling starts with the observation of the
object to be modeled. We presented the most relevant
observations in Sec. 2.1. They form our constructed reality,

the observed liver. From a philosophical point of view, the
observations are already a first model of the real world or,
in our case, of the real liver. In the next modeling step, we
chose a way of modeling, e.g. partial differential equations,
cellular automata or stochastic models. For each modeling
approach, we select mechanisms for describing the con-
structed reality, i.e. the interaction of virus and T cells or
chemotactic effects. Both presented models used an area
with a cut as a model for the small-scale liver structure.

As a joint result, both models show healing and chronic
courses, in dependency of the size of the area Ω, the
chosen parameters and the initial conditions. The cellular
automaton inherits the longterm behavior of system (1).
This is reasonable because the average of the cellular
automaton fits to the finite differences of the reaction
diffusion system, cf. Weimar (1994). Besides this similarity,
the numerical simulation of the cellular automaton shows
a separation of some T cells, see Fig. 3. This effect is
not included in the reaction diffusion model. Due to this,
the question evolves, wether a reaction diffusion model
including this additional effect exists, see Fig. 4.
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Fig. 4. Model hierarchy. Downwards: sub-models, upwards:
model refinements. The discretization of Eq. (1) is
equivalent to the CA without chemotaxis. This one
is a discrete sub-model of the continuous Eq. (1) and
a simplification of the CA described in Sec. 3.2. It is
questionable whether there is a refined PDE model
reproducing the separated T cell group.
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