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1. INTRODUCTION

The individual character of microbial systems is very dom-
inant, since cells vary in plenty of properties, such as
morphology, cell cycle state and many more. To accurately
capture biological variability by simulations in silico sev-
eral sources of noise must be considered. In this contribu-
tion we refer to intrinsic noise as an inherent stochastic
process, extrinsic noise as cell-to-cell variability and exter-
nal noise as external perturbations, see Fig. 1A. In order
to clarify our understanding of the different sources of
noise we investigate in Fig. 1B-D their impact on a simple
decay process P → Ø Pischel et al. (2017). We modeled
intrinsic noise via the Gillespie algorithm Gillespie et al.
(2013), which captures stochastic biochemical reactions.
In contrast extrinsic noise was computed via Monte Carlo
sampling of the distributed initial conditions accounting
for cell-to-cell variability. Both effects lead to a probability
density function describing the abundance of the protein P
for every time point. The synergy of intrinsic and extrinsic
noise yields a further spread of the probability density
function.

The interaction of different sources of noise and their
impact on the overall variability of bioprocesses is hardly
investigated due to computational and experimental chal-
lenges Lencastre Fernandes et al. (2011); Delvigne and
Goffin (2014). A popular approach to model stochastic
biochemical reaction systems is by means of the chemical
master equation, which governs the temporal evolution of
the probability P to find the system in a certain state x

d

dt
P (x(t), t) =

m∑
k=1

ak(x(t)−Nk)P (x(t)−Nk, t)

− ak(x(t))P (x(t), t).

(1)

We denote by a the reaction propensities and by N the
stoichiometric matrix. The index k indicates the chemical
reaction. In general it is not possible to solve the chemi-
cal master equation analytically, wherefore approximate
methods are used, e.g. the Gillespie algorithm and its
derivations, the methods of moments, the system size
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expansion or the finite state projection algorithm Kaze-
roonian et al. (2016). All of these methods have several
drawbacks and cannot capture different sources of noise.
Thus, we present a recent developed method, which is
capable to simulate intrinsic, extrinsic and external noise
simultaneously Pischel et al. (2017).

2. EFFICIENT MODELING OF VARIOUS SOURCES
OF NOISE

The simplest approach to model different sources of noise
simultaneously is by Monte Carlo sampling of uncertain
parameters combined with the temporal system evolution
via a stochastic process Wilkinson (2009). In our appli-
cation the stochastic process is governed by the chemi-
cal master equation, which is why we use the Gillespie
algorithm through this study. The combined approach is
asymptotically exact and yields an accurate solution of
the chemical master equation, which goes along with a
huge computational load. To accelerate this proceeding
we approximate the Monte Carlo sampling of the uncer-
tain parameters by the unscented transformation, which
chooses only 2nσ + 1 samples (sigma points) of the nσ
uncertain parameters deterministically Julier et al. (2000).
The sigma points are propagated through time via the τ -
leaping algorithm, which is an efficient approximation of
the Gillespie algorithm. For every time point t the mean
and covariance of the system can be estimated from the
propagated sigma points. Since the temporal evolution
was computed using a stochastic process this procedure
is repeated n times. With assumptions, e.g. normality
or log-normality, the underlying distribution ρ̂i(t) can be
reconstructed from the mean and covariance for each run
i. By weighted superposition of the distributions

ρ̃ =
n∑
i=1

ωiρi =
1

n

n∑
i=1

ρ̂i (2)

we obtain an approximate solution ρ̃ of the chemical mas-
ter equations with uncertain parameters. This algorithm
is outlined in Fig. 2. We applied our method to several
examples of systems biology and observed accelerated
convergence regarding the statistical moments and the
probability density function compared to the combined
Monte Carlo approach Pischel et al. (2017). Although our
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Fig. 1. Noisy biochemical reaction systems: (A) Several sources of noise impact biological variability. Intrinsic (B),
extrinsic (C), and intrinsic combined with extrinsic noise perturb a decay process Pischel et al. (2017).
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Fig. 2. Algorithm outline Pischel et al. (2017).

approximate method might in some cases not converge to
the exact solution we observe qualitative conformance.

3. CONCLUSION

In this study an efficient approach to model different
sources of noise in biochemical reaction systems simul-
taneously was proposed. Our method converges very fast
to an approximate solution compared to straightforward
Monte Carlo methods. Hence, it is well suited to speed up
costly optimization tasks, e.g. parameter estimation prob-
lems of distributed, stochastic biochemical systems Pischel
et al. (2017). Since optimization of stochastic systems
is rarely performed due to its huge computational load
Poovathingal and Gunawan (2010); Fröhlich et al. (2016)
our approach paves the way to further understanding of
uncertainty in complex dynamical systems.
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