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1. INTRODUCTION

The goal of this paper is to apply model reduction
techniques that preserve the Hamiltonian structure (see
e.g. Maboudi Afkham and Hesthaven (2016)) to a high-
dimensional, linear elasticity model. The Hamiltonian
structure of a linear elasticity model is presented and the
structure-preserving model reduction is introduced. Fur-
ther, two structure-preserving model reduction techniques
are compared to a technique that does not preserve the
Hamiltonian structure in a numerical experiment.

2. HIGH-DIMENSIONAL MODEL

2.1 Second-order formulation

The model for two-dimensional linear elasticity is derived
from a geometrically linear, small strain formulation. The
Lamé constants λL, µL ∈ R with µL > 0, 3λL+2µL > 0 are
used to describe the linear elastic material behavior. Addi-
tionally, nondimensionalization is applied. This results in
a dimensionless Lamé–Navier initial boundary value prob-
lem. Application of the Finite Element Method (FEM)
with a triangular grid and linear shape functions yields
the initial value problem of size n ∈ N which describes the
evolution of the unknown, parameter-dependent, displace-
ment field q : [t0, te]× P → Rn with

M
d2

dt2
q(t,µ) +K(µ)q(t,µ) = f(t), (1)

with the initial value conditions

q(t0,µ) = q0,
d

dt
q(t0,µ) = v0 (2)

where µ = [λL, µL]
T ∈ P are the parameters from the

parameter space P ⊂ R2, M ∈ Rn×n is the mass ma-
trix, K(µ) ∈ Rn×n is the parameter-dependent stiffness
matrix, f(t) is the force vector, q0 ∈ Rn is the initial dis-
placement, and v0 ∈ Rn is the initial velocity at the initial
time t0 ∈ R. The final time is denoted with te ∈ R. The
parameters µ are assumed fixed during a single simulation.
The parameter-dependence is only denoted if required in
the following which is why we abbreviate K = K(µ),
q(t) = q(t,µ).

2.2 Hamiltonian formulation

In order to derive a Hamiltonian formulation of the system,
the force vector f(t) = f has to be constant. The second-

order system (1) is rewritten in terms of a first-order
system with the linear momentum p(t) = M d

dtq(t) and

the state vector x(t) = [qT(t),pT(t)]
T

. The corresponding
Hamilton’s equation reads

d

dt
x(t) = J2n∇xH(x(t)) = J2n(Hx(t) + h), (3)

x(t0)) = x0 = [qT0 ,v
T
0 ]

T
(4)

with the definitions

J2n =

[
0n In
−In 0n

]
, H =

[
K 0n

0n M
-1

]
, h =

[
−f

0n×1

]
(5)

and the corresponding Hamiltonian function

H(x) = 1/2 xTHx+ xTh (6)

where 0n ∈ Rn×n is the matrix and 0n×1 ∈ Rn the vector
of all zeros and In ∈ Rn×n is the identity matrix.

An essential feature of the definition of Hamilton’s equa-
tion is that the Hamiltonian function is preserved along
the solution, i.e. d

dtH(x(t)) = 0, where x(t) is the solution
of the Hamiltonian system (3).

3. STRUCTURE-PRESERVING MODEL REDUCTION

3.1 Motivation

The size 2n of the system (3) is in general high which
is why the model is called high-dimensional model. Mul-
tiquery scenarios or real-time application require model
reduction techniques. The goal of the structure-preserving
model reduction is to derive a reduced system that pre-
serves the Hamiltonian structure of the system (3). To this
end, the full state vector x ∈ R2n is approximated with a
low-dimensional state x̂ ∈ R2k of size 2k where k ∈ N and
k � n. A reduced order basis (ROB) V ∈ R2n×2k is used
for the approximation

x(t) ≈ V x̂(t). (7)

The ROB is chosen to be symplectic matrix, i.e.

V TJ2nV = J2k. (8)

If the ROB is symplectic, the existence of its symplectic
inverse V + = JT2kV TJ2n ∈ R2k×2n with V +V = I2k is
guaranteed.

The approximation (7) is inserted into Hamilton’s equa-
tion (3) while the system is projected with W T = V +.

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 35-36, DOI: 10.11128/arep.55.a55228 35

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



This yields the low-dimensional initial value problem as
the reduced Hamiltonian’s equation

d

dt
x̂(t) = J2k∇x̂

Ĥ(x̂(t)) = J2k(Ĥx̂(t) + ĥ), (9)

x̂(t0) = W Tx0 = V +x0 (10)

with the definitions

Ĥ = V THV , ĥ = V Th (11)

with the corresponding reduced Hamiltonian function

Ĥ(x̂) = 1/2 x̂TĤx̂+ x̂Tĥ. (12)

3.2 Snapshot-based basis generation

A snapshot-based basis generation is used. This means
several simulations with the high-dimensional model (3)
are used to provide ns ∈ N state vectors xs

i = x(ti,µi),
i = 1, . . . , ns which are referred to as snapshots. The ROB
is computed based on the ensemble of all snapshots, e.g.
with the snapshot matrix Xs = [xs

1, . . . ,x
s
ns

] ∈ R2n×ns .

The Proper Symplectic Decomposition (PSD) (see Peng
and Mohseni (2016)) chooses the ROB to minimize the
residual of the symplectic projection (I−V V +)Xs of the
snapshot matrix, i.e.

minimize
V ∈R2n×2k

∥∥(I − V V +)Xs
∥∥
F
, (13)

subject to V TJ2nV = J2k, (14)

while the side condition (14) requires the ROB to be sym-
plectic (cf. (8)). An explicit solution for the minimization
problem (13)-(14) is yet not known and can only be pro-
vided under restrictive assumptions on the structure of the
ROB. Peng and Mohseni (2016) for example present the
Cotangent Lift and the Complex SVD whereas Maboudi
Afkham and Hesthaven (2016) present a greedy procedure
to solve the minimization problem.

4. NUMERICAL RESULTS

In this section, two structure-preserving model reduction
techniques are compared with a technique that does not
preserve the Hamiltonian structure. A relative, mean over
time, state space error measure is considered to compare
the model reduction techniques numerically

e(2k) =

nt∑
i=1

1

nt

‖x(ti)− V x̂(ti)‖2
‖x(ti)‖2

(15)

where t1, . . . , tnt ∈ [t0, te] are the discrete times and the
variable 2k is the size of the ROB V .

The example scenario is a beam that is clamped on one side
and loaded with a force on the other side. The force acts
on the boundary and pushes orthogonal to the beam. The
finite element model has 2n = 1152 degrees of freedom.
The ROB is created from snapshots computed with one

simulation with µ1 = [1.21 1011N/m, 8.08 1010N/m]
T

. The
reduction techniques are compared for the same parameter
µ1. In all cases, a symplectic integration scheme, namely
the implicit midpoint rule, is used for time integration.

The Cotangent Lift and the greedy approach from
Maboudi Afkham and Hesthaven (2016) are considered
as structure-preserving model reduction techniques in the
following. Both are compared with the Proper Orthogonal
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Fig. 1. Relative, mean over time, state space error e(2k)
for different ROB sizes 2k in a semi-logarithmic plot.

Decomposition (POD) which does not necessarily preserve
the Hamiltonian structure. For more details on the POD,
see e.g. Volkwein (2013).

The results of the comparison are displayed in Figure 1
in terms of the error measure from (15). It shows that
the POD is able to compute the best ROB with 2k = 100.
But the POD also yields the highest error with e(90) > 102

which was excluded from Figure 1 for the sake of a better
overview. Overall, the results of both structure-preserving
PSD techniques show less peaks and thus are more reliable.
The greedy approach is in all considered cases better than
the Cotangent Lift.

5. CONCLUSION

The structure-preserving model reduction was introduced
and the Proper Symplectic Decomposition was presented
as corresponding snapshot-based model reduction tech-
nique. The numerical results showed that the considered
structure-preserving model reduction techniques provide
bases that are more reliable than the ones created with
the Proper Orthogonal Decomposition.
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