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1. INTRODUCTION

Designing optimal radiofrequency (RF) pulses for nuclear
magnetic resonance (NMR) imaging consists of driving a
collection of spin systems using external electromagnetic
fields of minimal energy to a desired spin state. However,
in some cases the hardware only allows a discrete set of
pulse phases and amplitudes. In contrast to methods based
on quantization (Dridi et al., 2015), we aim to compute
such pulses by solving a suitable optimal control problem.
A standard model for NMR is given by the Bloch equation
in a rotating reference frame without relaxation, i.e.,

d
dtM

(ω)(t) = M(ω)(t)×B(ω)(t) , M(ω)(0) = M0,

which describes the temporally evolving magnetization
M(ω) ∈ R3 of an ensemble of spins rotating at the
same resonance offset frequency ω (called isochromat),
starting from a given equilibrium magnetization M0 ∈ R3

(e.g., aligned to a strong external field). The time-varying
effective magnetic field B(ω)(t) is of the form

B(ω)(t) = (ωx(t), ωy(t), ω)T ,
where u(t) := (ωx(t), ωy(t)) ∈ R2 can be controlled. The
aim is to achieve a magnetization M(ω)(T ) = M(ω)

d within
the time interval Ω = [0, T ] for a list of offset frequencies
ω1, . . . , ωJ using control values u(t) from a discrete set

M =
{

( 0
0 ) ,
(
ω0 cos θ1
ω0 sin θ1

)
, . . . ,

(
ω0 cos θM

ω0 sin θM

)}
for a fixed amplitude ω0 > 0 and M > 2 equi-distributed
phases 0 ≤ θ1 < . . . < θM < 2π.
Introducing the control space U := L2(0, T ;R2), the control-
to-state operator

S : U → (R3)J , u 7→
[
M(ω1)(T ), . . . ,M(ωJ )(T )

]
,
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and the target vector z := [M(ω1)
d , . . . ,M(ωJ )

d ]T ∈ (R3)J ,
this problem can be formulated as an optimal control
problem

(1) min
u∈U

1
2‖S(u)− z‖22 +

∫ T

0
g(u(t)) dt.

Here, g : R2 → [0,∞] is a vector-valued version of the
multi-bang penalty from Clason and Kunisch (2014, 2016)
that can be motivated as the convex hull of the non-convex
penalty α

2 |·|
2
2+δM, where δM denotes the indicator function

in the sense of convex analysis, and can thus be expected
to promote controls with values only in M. The main
advantage of this formulation is that it leads to a convex
optimization problem that can be efficiently solved using a
semismooth Newton method (Clason et al., 2016).

2. CONVEX ANALYSIS FRAMEWORK

Standard arguments from convex analysis and on the
continuity and differentiability of S yield the following
results.
Theorem 2.1. There exists a solution ū ∈ U to (1)
Theorem 2.2. Let ū ∈ U be a local minimizer of (1). Then
there exists a p̄ ∈ U satisfying

(2)
{
−p̄ = S′(ū)∗(S(ū)− z) =: F ′(ū),
ū(t) ∈ ∂g∗(p̄(t)) a.e. t ∈ [0, T ].

Here, S′(u)∗ denotes the adjoint of the Fréchet derivative
of S, which can be computed as the solution of the adjoint
Bloch equation, and ∂g∗ denotes the convex subdifferential
of the Fenchel conjugate of g, which will be specified below.
For the numerical solution, we also require the Moreau–
Yosida regularization

(3)
{
−pγ = S′(uγ)∗(S(uγ)− z) = F ′(uγ),
uγ(t) = hγ(pγ(t)) a.e. t ∈ [0, 1],

where
hγ := (∂g∗)γ = 1

γ
(Id−proxγg∗)

and proxγg∗ = (Id−γ∂g∗)−1 denotes the (single-valued
and Lipschitz-continuous) proximal mapping of g∗.
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3. MULTIBANG PENALTY

Letting ūi, i = 0, . . . ,M , denote the admissible control
values inM (with ū0 = 0), we obtain from the definition
of the Fenchel conjugate and the maximum rule for the
subdifferential by straightforward if tedious computation
the following explicit characterization for q := p(t):

∂g∗(q) =
{
{ūi} q ∈ Qi,
co{ūi1 , . . . , ūik} q ∈ Qi1...ik .

Together with (2) this yields that apart from singular cases
corresponding to the second line, the optimal control ū will
indeed take on values from the admissible set. The sets Qi
can be characterized using polar coordinates; here we only
illustrate their distribution in Fig. 1a.
Similarly, we obtain for the Moreau–Yosida regularization

hγ(q) =



0 q ∈ Qγ0 ,
ūi q ∈ Qγi ,(
〈q,ūi〉
γω2

0
− α

2γ

)
ūi q ∈ Qγ0,i,

ūi+ūi+1
2 + 〈q,ūi−ūi+1〉(ūi−ūi+1)

γ|ūi−ūi+1|22
q ∈ Qγi,i+1,

q
γ −

α
γ

(
ω0

|ūi+ūi+1|2

)2
(ūi + ūi+1) q ∈ Qγ0,i,i+1,

with the subdomains Qγi illustrated in Fig. 1b.
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Fig. 1. Subdomains for radially distributedM, M = 6

4. NUMERICAL SOLUTION

Introducing the superposition operator Hγ : U → U via
[Hγ(p)](t) = hγ(p(t)), we can write (3) in reduced form as

uγ −Hγ(F ′(uγ)) = 0.
Since hγ is Lipschitz continuous and piecewise differentiable
and the range of S′(u)∗ ⊂ L∞(0, T ;R2), this is a Newton-
differentiable equation. Taking

DNhγ(q) =


0 q ∈ Qγi ,
ūiū

T
i 1

γω2
0

q ∈ Qγ0,i,
(ūi−ūi+1)(ūi−ūi+1)T

γ|ūi−ūi+1|22
q ∈ Qγi,i+1,

1
γ Id q ∈ Qγ0,i,i+1,

the corresponding superposition operator DNHγ(p) leads
to a superlinearly convergent semismooth Newton method(

Id−DNHγ(F ′(uk))F ′′(uk)
)
δu = −uk +Hγ(F ′(uk)),

which can be realized using a matrix-free Krylov method
such as GMRES (where F ′′(u) can be computed using the
solution of two linearized (adjoint) Bloch equations).

5. NUMERICAL EXAMPLES

Figure 2 illustrates the above approach for the simultaneous
control of J = 4 isochromats with from M0 = (0, 0, 1)T

to M(ωj)
d = (0, 0, 1) for j = 3, M0 else, and M = 6

admissible values with equidistant phases (marked with
dashed lines in Fig. 2a), where the implementation of the
discrete (linearized) Bloch and adjoint equations is taken
from Aigner et al. (2015). For more details and examples,
see Clason et al. (2016).
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Fig. 2. Optimal control and state for M = 6, J = 4
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