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1. INTRODUCTION

Enforcing local volume constraints in the design problem
turns out to be an efficient approach to increase structural
robustness against uncertainties (Wu et al., 2017). By
constraining locally the available amount of material, the
optimized design exhibits infill patterns which reflects a
more uniform and periodic distribution of the material.
This method can notably produce results exhibiting bone-
like structures which are known to be robust against load
uncertainty. Compared to a deterministic approach, the
robustness is often achieved at the cost of reducing the
component stiffness (Tromme et al., 2017). However, the
justification of using local volume constraints has not
been well discussed in the context of robust topology
optimization. Moreover, no standard methodology exists
to determine the local volume constraint upper bound.

This study aims to explain the relationship between ro-
bustness and local volume constraints and to propose a
method defining the upper bound of local volume con-
straints for a given failure distribution. To compute the
failure probability distribution, a game theory approach is
adopted. A standard design problem is solved to illustrate
the developed method.

2. ROBUST TOPOLOGY OPTIMIZATION

Standard topology optimization problem is usually for-
mulated as a compliance minimization problem (stiff-
ness maximization) subject to a global volume constraint.
Mathematically, the formulation reads

minimize
φ

f0 = fTd

subject to K (φ)d = f ,∑
e∈Ω

ρe (φ) ve ≤ V,

− 1 ≤ φi ≤ 1, ∀i ∈ Ω,

(1)

where Ω is the design domain, K the stiffness matrix,
d the displacement vector and f the force vector. The
element density and the element volume are represented
respectively by ρe and ve. The vector φ gathers the design
variables.

Topology optimization problems are known to be ill-posed
and prone to checkerboard issues and mesh dependency. In
this paper, the Helmholtz PDE based filter is adopted and
introduces the relationship between the design variable φ

and the element density ρ (Kawamoto et al., 2011). To
mathematically enforce a 0-1 material distribution, the
SIMP interpolation scheme is considered (Bendsøe, 1989;
Rozvany et al., 1992).

Ensuring robustness via local volume constraints is straight-
forward as it simply adds a set of constraints to the design
problem (1). Those local constraints are expressed as∑

k∈Ωl

ρkvk ≤ Vl, for l ∈ L = {1 . . . L}, (2)

where L is the number of design domain subdivisions and
Vl the upper bound of the subdomain l. The subdivision
verifies ⋃

l∈L

Ωl = Ω and Ωi ∩ Ωj = 0, for i 6= j. (3)

3. UNEXPECTED FAILURE

The present study focuses on design problems considering
unexpected failures. It is assumed that failure arises from
an unexpected load other than f and that the probability
distribution of the failure does not depend on the structure
nor on the load vector. This situation can occur due to
defects in production, accidental impacts during trans-
portation or aged deterioration for instance.

The failure distribution is represented by pl (l ∈ L) with∑
l∈L pl = 1. If the structure undergoes a failure in the

subdomain l, the stiffness drops in that region. Therefore,
if an algorithm could predict that the subdomain l will
have a failure, it would be advantageous to remove mate-
rial in l and to redistribute it in other subdomains. Hence,
the larger failure probability pl is expected, the smaller
amount of material, i.e. the smaller upper bound Vl, should
be applied.

The problem is to compute the upper bound Vl based on
the given probability distribution pl. For this purpose,
we assume a design process that reallocates uniformly
materials in other subdomains. The following lemma sum-
marizes the main achievement of this research as it gives a
relationship between the upper bound of the local volume
constraints and the probability distribution.

Lemma 1. If the failure distribution pl is given, the upper
bound of the local volume constraint Vl can be computed
as

Vl =
1− pl
L− 1

V, for l ∈ L. (4)
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The proof is omitted due to the limited space. However, it
can easily be checked that the sum of the local volume con-
straint upper bounds equals the global volume constraint
upper bound, i.e.

∑
l∈L Vl = V .

4. GAME THEORY APPROACH

To determine the failure distribution pl, we consider the
particular case wherein some opponents try to identify
the weakest point of the structure. In such worst case
scenarios, game theory can be employed to determine the
failure distribution while guaranteeing robustness (Holm-
berg et al., 2017).

The situation can be compared to a penalty shoot-out
in a soccer game. There are two players, a kicker and a
keeper. The kicker aims at the areas of the goal where it
is difficult for the keeper to reach, i.e. the extreme left or
right. However, the keeper tries to predict the best action
of the kicker and he concludes that the kicker will aim at
the goal extremities, which is not convenient for the kicker
as his strategy is leaked. As a result, the options of both
players converge towards some compromising points.

Similarly, design problems considering unexpected failure
can be interpreted as a game between a “failure” player
and a “structure” player. The failure player tries to choose
the subdomain l that maximizes the structural damage
while the structure player tries to limit the amount of
material within the targeted areas. In game theory, this
is a standard two player zero-sum game. The utility of the
failure player is the compliance of the structure after fail-
ure and the utility of the structure player is the opposite.
The resulting failure distribution pl can be computed as
a mixed Nash equilibrium of the game. The mixed Nash
equilibra of two player games can be computed using the
Lemke-Hawson algorithm (Papadimitriou, 2007).

5. EXAMPLE AND CONCLUSION

The design problem described in Fig. 1 is solved to
exemplify the proposed method. The available amount
of material is set to 50% of the design domain which is
divided into L = 8 ∗ 16 = 128 subdomains. It is assumed
that the subdomain loses all its material if a failure occurs.

The failure distribution pl is first computed from the game
theory problem. To reduce computation time, the number
of subdomains is reduced to eight. The players have six
options since the two subdomains where the load is applied
need material to withstand the load. The mixed Nash
equilibrium computed by Lemke-Hawson algorithm is not
uniform as illustrated in Fig. 2, which means that specific
subdomains are targeted by the failure player. The local
volume constraint Vl is then computed based on (4). The
optimized solution is illustrated in Fig. 3.

This first example illustrates the validity of the proposed
approach. Comparing to a standard optimization, the
compliance is higher, meaning that the structure is less stiff
but it is however more robust against unexpected failure.
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