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1. INTRODUCTION

Metabolic modeling has proved to be a very powerful tool
to get a better insight into the metabolism of an organism.
This approach has gained accuracy in the last decades, and
turns out to be particularly efficient to improve production
of target molecules, by understanding biological processes
that influence metabolism. In particular, it allows to assess
the main fluxes throughout a metabolic network (Baroukh
et al., 2014; Nazaret and Mazat, 2008). But resulting
models are of high dimension and difficult to use for control
purpose.

For example, metabolic modeling has clarified produc-
tion of triacylglycerols from microalgae and carbohydrates
from cyanobacteria (Baroukh et al., 2015). Both com-
pounds can then be turned into biofuel (biodiesel and
bioethanol, respectively) with expected reduced environ-
mental impacts (Lardon et al., 2009).

Metabolisms of microalgae and cyanobacteria are driven
by the solar flux which supports fixation of CO2. Pe-
riodic fluctuation of light induces instationarity of their
metabolisms, with accumulation of metabolites (especially
lipids and carbohydrates). Therefore, such metabolisms
are never at steady state.

However, most of the approaches dedicated to metabolism
analysis assume balanced growth, i.e. Steady State As-
sumption (SSA), which leads to rough approximations. For
instance, Flux Balance Analysis (FBA) (Orth et al., 2010)
or Macroscopic Bioreaction Models (MBM) (Provost et al.,
2006) are based on linear algebra to solve the equation
M ·V = 0, where M is the stoichiometric matrix and V is
the vector of intracellular reaction rates.

Some approaches have attempted to introduce dynamics,
for example, assuming that cell optimizes at each time in-
stant an objective criterion using Dynamical Flux Balance
Analysis (DFBA) (Mahadevan et al., 2002) or considering
external conditions that might change continuously in a
hybrid system, as proposed in Kaplan et al. (2009). But
all of them address specific processes and a general math-
ematical framework has never been established.
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Furthermore, metabolic models are of high dimension,
which makes their mathematical analysis and parameter
identification complex. Identifying conditions to maximize
productivity by a rigorous mathematical analysis is gener-
ally not possible.

Here we propose a method to reduce the dimension of
a dynamical metabolic system, which is appropriate to
derive model based control strategies. Contrary to nearly
all existing works, the idea is to keep some dynamical
components of the model, that are necessary especially
when dealing with microalgae and cyanobacteria.

A first attempt in this direction was carried out with the
DRUM method (Baroukh et al., 2014). This modeling
approach considers subnetworks in Quasi Steady State
(QSS), which are interconnected by metabolites that can
accumulate. Then, Elementary Flux Modes (EFM) are
computed in each subnetwork to reduce them using Quasi
Steady State Assumption (QSSA). As result, the dynamics
of accumulative metabolites form a reduced system of
Ordinary Differential Equations (ODE).

DRUM approach has proven to provide sound results,
with very efficient representation of accumulation of lipids
and carbohydrates in microalgae submitted to light/dark
cycles. However, as almost all methods developed for
metabolic analysis, it relies on a series of assumptions
whose mathematical bases have not been rigorously es-
tablished. Beyond QSSA, which assumes “fast” and
“slow” parts on the metabolism without delimiting them,
these approaches also neglect intracellular dilution due to
growth.

2. RESULTS AND DISCUSSION

The main objective of our work is to provide mathematical
foundations for the reduction of metabolic networks to low
dimensional dynamical models. In a first stage, we simplify
the problem assuming linear kinetics in a metabolic net-
work. For reducing the system accurately, we propose a
dynamical approach that relies on time scale separation
and the QSSA.

The reduction of a linear kinetic model, with a continuous
input and a constant factor of dilution caused by growth,
is analyzed through this method. The system is composed
of subnetworks of fast reactions, which are connected by
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metabolites involved in slow dynamics (see Fig. 1). Hence,
metabolites in subnetworks of fast reactions are assumed
to be in QSS.

After a change of variables for the metabolites in QSS, the
system of ODE corresponding to the metabolic model is
presented as a slow-fast system:

dX

dt
= I(t) −K1 ·X + K2 · Y

ε
dY

dt
= K3 ·X −K4 · Y,

where K4 is a strictly column diagonally dominant matrix
(Horn and Johnson, 1985). In order to obtain a reduced dy-
namical model that approximates accurately its solution,
we verify the conditions for applying Tikhonov Theorem
for singularly perturbed systems (Kokotović et al., 1999).

Contrary to the classical assumption of Flux Balance Anal-
ysis (FBA) (where the whole system is assumed at steady
state), our reduced model depends on a small system of
differential equations, which represents the dynamics of
the slow variables:

dX

dt
= I(t) −K1 ·X + (K2 ·K−1

4 ·K3) ·X.

Moreover, dilution due to growth is not neglected in our
method. Actually, keeping this dilution factor improves ap-
proximation precision and preserves qualitative (stability)
features of the original system.

Once the reduced model is computed, it is possible to
compare the concentration of the metabolites after an
initial transition phase. Using the expression of the QSSA

Y = K−1
4 ·K3 ·X,

we mathematically prove that a metabolite in QSS has
concentration one order of magnitude lower than any
metabolite in the slow part of the system. This assertion
is true subject to some flux constraints, which are also
physically justified. For instance, not having traps for the
flux from the input to the last metabolite in the chain is
crucial.

Additionally, an algorithm to numerically estimate the
parameters of the reduced system is proposed. We first
use an identification strategy based on minimization, to
estimate the parameters of the low dimensional ODE
system obtained after the reduction. Then, we resolve
a linear least squares problem for obtaining parameters
required to approximate the concentration of metabolites
in QSS.

Finally, we apply our method to a toy metabolic linear
model and we compare the result with DRUM (Baroukh
et al., 2015). The toy model includes a periodic input and
reflects standard bricks in metabolic networks: combina-
tion of reversible and non-reversible reactions, with chains
and cycles.
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