
Model-Based Design of Experiments:
Where to go?

Robert J. Flassig ∗ René Schenkendorf ∗∗,∗∗∗
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1. INTRODUCTION

Design of experiments (DoE) is a set of well-established
and over 100 years evolved rational methodologies for
validating and discovering relationships between controls
and responses of an input-output system in a data efficient
way. The philosophy behind DoE is that controls or factors
affect the system’s response. The response of a system to
a specific control may be observed and thus by an ap-
propriate set of applied controls (=DoE), one may gather
information of the system’s mechanism to disentangle the
relationship between controls and responses. Responses
may comprise system states but also observables or per-
formance measures derived from the system states.

The use of mathematical models for analysing complex
processes is a powerful tool to gain a deep system under-
standing. However, this approach requires realistic, predic-
tive mathematical models. During the model development
phase, scientists have to cope with numerous challenges,
e.g., limited knowledge about the underlying mechanisms,
lack or exorbitance of dynamic or static experimental
data, large experimental and process variability. Given a
specific model class, a plethora of many different method-
ologies to optimally identify a specific model class struc-
ture have been developed since the mid of 20th century.
This includes on the one hand methods for discrimination
of competing structures but also methods for parameter
estimation. We would like to discuss, whether further
methodologies in the direction of model-based design are
still needed, and if yes, to what extent. Further, given the
trend of gathering massive data of a system of interest
we highlight the analogy of DoE for systems identification
and big data analysis. Within the age of digitalization,
analysis and modelling of big data have become an active
field of DoE application. Big data typically comprise mas-
sive volume, heterogeneous and unexplored data collected
in areas across science (e.g. structural biology, particle
physics), health (e.g. genomics, predictive healthcare),
economics (e.g. market analysis), ecology, business (e.g.
process monitoring), Web 2.0 sources (e.g. social media,
internet of things) and robotics (e.g. sensoring data) (Fan
et al., 2014). To extract information, modelling big data
with empirical (statistical) or mechanistic models with

classical approaches is often note feasible and thus, sev-
eral approaches from design of experiments have emerged
to facilitate big data modelling. Specifically, model-based
DoE supplies a rational for targeted sampling in divide-
and-conquer algorithms or for sequential learning, which
in classical DoE is known as sequential or multi-stage
DoE (Box and Draper, 1986). The classic DoE based
on statistical performance measures, e.g., A-, D-, E-, I-
, T-optimality, have been complemented by probabilistic
model-based performance measures. These measures in-
clude global sensitivities, information-based criteria and
Bayesian inference based on the posterior calculation,
which have been massively studied and applied in systems
biology (Schenkendorf and Mangold, 2013; Flassig and
Sundmacher, 2012).

2. DOE FOR BIG DATA ANALYSIS

Over the last decade, many research and engineering dis-
ciplines have become more and more data intense. Big
data have arisen from innovative experiments, measure-
ment and monitoring devices generating high-dimensional,
massive sample sizes. Big data are therefore often difficult
to analyse, and the extraction of information is notoriously
laborious. In a sense, a big dataset can be understood as a
complex system that is yet to be identified. Thus, the goal
of modelling and analysing big data is similar to what
is desired in complex systems identification: (i) under-
standing of the interdependencies of factors and responses
that shape the dataset and (ii) accurate predictions of
future outcomes. As in classical systems identification,
the maxim of data efficiency is given. At first sight, this
requirement seems awkward. It is the high-dimensional,
massive sample property that generates several interesting
emergent phenomena: scalability, storage bottleneck, noise
accumulation, spurious correlation, incidental endogeneity
and measurement errors (Fan et al., 2014).

During the initial rise of big data, statistics and related
disciplines of data analysis have failed to adequately ad-
dress big data properties and related challenges (Wang
et al., 2016). The situation has changed recently when big
data challenges in many different application areas have
naturally driven the development of new big data method-
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ologies. Even though it is easy to see that model-based
DoE methodologies for complex systems identification can
be tailored to cope with the emerging phenomena in big
data, studies and methodologies to DoE-based big data
approaches have only recently been developed (Drovandi
et al., 2017).

Initially, big data methods have considered the entire
dataset, and thus scalability has been the focus. Scalability
has been addressed by methods including ’divide-and-
conquer’ approaches (Guha et al., 2012), Bayesian infer-
ence based on a consensus Monte Carlo algorithm (Huang
and Gelman, 2005; Scott et al., 2016), principle component
analysis (Kettaneh et al., 2005), clustering approaches
(Bouveyron and Brunet-Saumard, 2014), least angle re-
gression (Efron et al., 2004), and sparsity assumptions
(Hastie et al., 2015). In contrast to using the complete
dataset, DoE-based methods have been recently developed
following the paradigm that a well-chosen subset of the
big dataset can deliver equivalent answers compared to
the full dataset at considerably less effort (Drovandi et al.,
2017). As in classical DoE for systems identification or in
Bayesian optimization, exploration and exploitation are
the pillars of optimally analysing big data. An advantage
of the DoE-based approach to big data is the avoidance of
pitfalls resulting from big data effects and classical, well-
established statistics can be applied. However, the DoE
itself needs to be well chosen.

3. OUTLOOK: WHERE TO GO?

Uncertainty quantification, meta-modelling and big data
modelling are active fields of application of DoE. Whereas
uncertainty quantification has advanced its methods to
efficient non-linear transformations of random variables,
we still need improvements when it comes to optimizing
stochastic, distributed complex systems. The optimization
of systems with stochastic spatio-temporal fluctuations in
combination with distributed properties is a challenging
task, either from the modelling but also from the opti-
mization point of view. The current popularity of Bayesian
optimization and machine learning algorithms should be
used to foster cross-disciplinary research including classic
DoE; sequential design, Bayesian optimization and adap-
tive learning are three sides of the same coin. A coalition
between researchers from classical DoE, Bayesian opti-
mization and machine learning community in combination
with applications in the areas of big data applications (e.g.
process monitoring, earth science, genomics, internet of
things, robotics, social media), biotechnology, pharmaceu-
tics and systems medicine will have a bride future in terms
of scientific and socio-economic impact.

DoE-based big data analysis is in the need of further
research in the direction of noise accumulation and spu-
rious patterns in high dimensional data, improvement of
computational and algorithmic efficiency and stability and
mastering heterogeneity, experimental variations and sta-
tistical bias associated with combining data from different
sources (Fan et al., 2014).

Finally, even though model-based DoE approaches have
been very much advanced over the last decades, the hard
work still needs to be done: given a specific problem, scien-
tists and engineers still have to think critically about the

problem. This also includes a keen awareness of strengths
and weaknesses of their chosen tools. This statement may
seem trivial, however, in the time of open source libraries,
out of the box solutions, nearly limitless computing power
and time pressure, superficial understanding of modelling
and simulation methods can be disastrous. This implicates
that we as the community have to provide access and
support to well-documented open source implementations,
tutorials and workshops. The recent MATHMOD Min-
isymposium Model-Based Design of Experiments: Where
to go? is heading in this direction bringing experts from
different fields together and taking up the viewpoints of
the modelling and the big data community.
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