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Abstract: This report explores asymptotic stability of nonlinear singular systems, i.e., differential
algebraic equations with a descriptor state-space representation, by means of a polytopic rewriting of the
“generalised characteristic polynomial” (determinant of the corresponding nonlinear pencil). It is shown
that, via linearisation arguments, the Edge Theorem can be adapted for analysis purposes by taking into
account that singularity of systems translates into degree dropping of some vertex polynomials.
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1. INTRODUCTION

State-space forms of singular nonlinear systems are descriptors
(Dai, 1989):

E(x)ẋ(t) = A(x)x(t), (1)
where x(t) ∈ Rn is the state, A(x), E(x) ∈ Rn×n are smooth
matrix nonlinear functions, and, importantly, E(x) has not full
rank. Simulation of these systems requires proper initialisation
to hold the algebraic restrictions along the time (Brenan et al.,
1995); moreover, sudden loss of rank in E(x) may lead to
instantaneous novel algebraic restrictions which might be con-
sistent/inconsistent, persistent/evitable. Simulation of DAEs is
largely based on the Pantelides algorithm in Pantelides (1988)
which, under certain conditions, transforms it into an ordinary
differential equation (ODE). Since we are interested in stability
of equilibrium points, in the sequel, it will be assumed that x =
0 is an equilibrium point of (1). Lyapunov-based analysis of
such systems is still on course, based on generalised Lyapunov
functions, descriptor redundancy forms, and/or the Finsler’s
Lemma (Ishihara and Terra, 2002); only particular cases are
available in the nonlinear case: when explicit algebraic restric-
tions are provided (Ebenbauer and Allgöwer, 2007), the rank of
E(x) is fixed (quasi-linear) (Riaza and Zufiria, 2001), or E(x) is
constant (Yang et al., 2013).

This paper adopts a different perspective: it considers matrix
sE(x) − A(x) as a generalised pencil and det(sE(x) − A(x))
as the generalised characteristic polynomial associated to (1);
based on them, stability is established by mimicking eigenvalue
tests from linear systems theory. Since (1) is not a linear-
parameter- nor a time-varying system, guaranteeing that the
roots of det(sE(x) − A(x)) are always in the left half of the
complex plane C− is enough to ensure asymptotic stability of
the origin by linearisation arguments. To check the eigenvalue
condition for a given a compact subset of the state space
Ω ⊂ Rn, our proposal rewrites det(sE(x) − A(x)) as a polytope
of vertex polynomials; then, a variety of tests derived from
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the Edge Theorem (Bartlett et al., 1988) come at hand to
provide sufficient conditions for the polytope to be stable; these
tests are expressed in the form of linear matrix inequalities
(LMIs) (Boyd et al., 1994). Importantly, the singular nature
of the systems is mirrored by degree dropping of some vertex
polynomials, which obliges to recur to further refinements of
the Edge Theorem (Białas and Góra, 2012).

2. POLYTOPES OF POLYNOMIALS

A bounded expression can always be written as a convex
sum of its bounds; indeed, given z ∈

[

z0, z1
]

, it can be al-

gebraically checked that z = w0(z)z0 + w1(z)z1 with w0(z) =
(

z1 − z
)

/
(

z1 − z0
)

and w1(z) = 1 − w0(z); therefore, assuming

all non-constant terms z j(x) ∈
[

z0
j , z

1
j

]

, j ∈ {1, 2, . . . , r} in
the coefficients of det (sE(x) − A(x)) are bounded in Ω, where
z0

j = minx∈Ω z(x) and z1
j = maxx∈Ω z(x), they can be written as

z j(x) =





z1
j − z j(x)

z1
j − z0

j





︸        ︷︷        ︸

w j
0(x)

z0
j +





z j(x) − z0
j

z1
j − z0

j





︸        ︷︷        ︸

w j
1(x)

z1
j , (2)

where w j
0(x)+w j

1(x) = 1, 0 ≤ w j
i (x) ≤ 1, i ∈ {0, 1} for any x ∈ Ω

(convex sum property).

Once this is made, det (sE(x) − A(x)) can be rewritten as a
polytope of polynomials in s; each of these vertexes has con-
stant coefficients which correspond to a particular combina-
tion of minima and maxima of the r non-constant terms in
det (sE(x) − A(x)). Let i = (i1, i2, . . . , ir), ∀ j : i j ∈ {0, 1},
wi(z) = w1

i1
(z)w2

i2
(z) · · ·wr

ir
(z); then:

det (sE(x) − A(x)) =
∑

i

wi(z)pi(s), (3)

where
∑

i wi(z) =
∑1

i1=0
∑1

i2=0 · · ·
∑1

ir=0 w1
i1

(z)w2
i2

(z) · · ·wr
ir

(z) =
1, 0 ≤ wi(z) ≤ 1, pi = det (sE(x) − A(x))|wi=1. Since
rank(E(x)) < n certain vertex polynomials pi(s) will present
degree dropping.
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Example 1. Consider the nonlinear singular system
[

(x1 − x2)2 0
0 1

] [

ẋ1
ẋ2

]

=

[

1 −1
−1 − x2

1 −2

] [

x1
x2

]

, (4)

whose generalised characteristic polynomial is

(x1 − x2)2 s2 +
(

2(x1 − x2)2 − 1
)

s − x2
1 − 3. (5)

As expected, sudden loss of rank in the left-hand side of (4)
and degree dropping of (5) occur when x1 − x2 = 0. An
exact polytopic rewriting of (5) for the compact set Ω where
z1(x) = (x1 − x2)2 ∈ [0, α] and z2(x) = x2

1 ∈ [0, β] with
α, β > 0, can be done by writing (3) with p00(s) = −s − 3,
p01(s) = −s − β − 3, p10(s) = αs2 + (2α − 1)s − 3, and
p11(s) = αs2 + (2α − 1)s − β − 3 as vertex polynomials, and
w1

0(z) =
(

α − (x1 − x2)2
)

/α, w2
0(z) =

(

β − x2
1

)

/β, w1
1 = 1 − w1

0,

and w2
1 = 1 − w2

0 as convex interpolating functions. Again,
degree dropping occurs in vertex polynomials p00(s) and p01(s)
as a result of the system singularities.

3. POLYNOMIAL-BASED STABILITY

Let H(·) ∈ Rn×n denote the Hurwitz matrix of a polynomial
p(s) = ansn + an−1sn−1 + · · · + a1s + a0. Since the seminal
paper of Białas (1985), sufficient and necessary conditions
for the stability of convex combinations of two n-th degree
stable polynomials have been established by constructing an
“edge-like” test which examines whether the real eigenvalues of
the composite matrix H12 = −H(p1(s))H−1(p2(s)) are strictly
negative, where p1(s) = sn + an−1sn−1 + . . . + a1s + a0 and
p2(s) = sn + bn−1sn−1 + . . .+ b1s+ b0 are the stable polynomials
in the convex combination λp1(s) + (1 − λ)p2(s), λ ∈ [0, 1].
This criterium has been put into an LMI form for polytopes of
stable polynomials (Sánchez and Bernal, 2017). When degree
dropping of some vertex polynomials occur, refinements exist
that are based on further considerations on the geometry of the
complementary regions (Białas and Góra, 2012).
Theorem 1. Assume the origin x = 0 of the nonlinear singular
system (1) is an equilibrium point. Assume also that the system
has a generalised characteristic polynomial with exact convex
representation (3) in the compact set Ω. Then, the origin x = 0
is asymptotically stable in the sense of singular systems if there
exists matrices Mij of adequate dimension, such that LMIs

Mij+MT
ij >0, H(pi)MijH

T (pj)+H(pj)M
T
ij HT (pi)≥0, (6)

are feasible for all i, j ∈ {0, 1}r such that deg(pj) ≥ deg(pi),
i , j, provided each vertex polynomial pi is stable.

Proof. If conditions (6) hold, then Mij + MT
ij > 0 and

H−1(pj)H(pi)Mij+MT
ij HT (pi)H−T (pj) ≥ 0 hold, which implies

that the real eigenvalues of each H−1(pj)H(pi) are all non-
negative (Ebihara and Onishi, 2009). This, in turn, implies that
the convex sum (3) is a polytope of stable polynomials with
possibly degree dropping in some of its vertexes (Białas and
Góra, 2012). Recall that the convex sum (3) is algebraically
equivalent to p(s, x) = det(sE(x) − A(x)) for all x ∈ Ω,
which therefore implies that there is a P ∈ Rn×n such that
ET (0)P = PT E(0) ≥ 0 and PA(0) + AT (0)P ≤ 0. Thus, a
linearisation argument allows using V(x) = xT ET (0)Px as a
Lyapunov function for all the trajectories in a sufficiently small
vicinity within a subset X ⊂ Rn with dim(X) ≤ rank(E(0)), to
which the dynamics of the system are restricted, i.e., asymptotic
stability of the origin x = 0 in the sense of singular systems is
granted.

Example 1 (continued): Consider again the nonlinear singu-
lar system (4) in example 1, whose characteristic polynomial
is given in (5). Modelling as shown thereby with α = 100 and
β = 25 leads to four polynomials p00(s) = −s−3, p01(s) = −s−
28, p10(s) = 100s2 + 199s− 3, and p11(s) = 100s2 + 199s− 28,
where the last two are unstable. This implies the test is unable
to establish stability in this region, which is consistent with
the fact that it includes unstable trajectories. Notwithstanding,
since E(x) loses rank in x1 − x2 = 0 leading to a persistent
algebraic restriction which includes the origin, the generalised
characteristic polynomial can be reduced to p(s, x) = −s − 3 +
x2

1 which, taking z2(x) can be modelled as the convex sum of
p0(s) = −s − 3 and p1(s) = −s − 28 whose associated Hurwitz
matrices yield feasible LMI conditions in Theorem 1 with

H(p0)=
[

−1 0
0 −3

]

, H(p1)=
[

−1 0
0 −28

]

, M12=

[

0.5053 0
0 0.0061

]

.

This result confirms that stable trajectories are indeed those in
the algebraic restriction x1 − x2 = 0 where E(x) loses rank.
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