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Abstract: The possibility of a two-body system to move upward along an inclined line is
investigated. The system is controlled by the force of interaction of the bodies so that the
distance between the bodies and their velocities are periodic functions of time. The friction
between the bodies and the line is Coulomb’s dry friction. Necessary and sufficient conditions
for the possibility of periodic upward motion of the system are proved. The motion is possible
if and only if the smaller body can start moving upward the line from a state of rest while the
bigger body is at rest. An algorithm of the upward motion is presented.
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1. STATEMENT OF THE PROBLEM

Consider a system of two interacting bodies of masses
M and m on an inclined plane. Coulomb’s dry friction
forces act between the bodies and the plane. The force
of interaction of the bodies changes the velocities of the
bodies, which changes the friction forces that are external
forces for the system. Thus, the control of the force of
interaction leads to the control of the system’s center of
mass. The bodies are assumed to move along a fixed line
l on an inclined plane. Denote by α ∈ [0, π/2) the angle
between line l and the horizontal plane. The bodies are
modeled by point masses. Let x and y be the coordinates
along line l, and v and V the velocities of bodies m and M ,
respectively. Without loss of generality we assume M > m.
Let k be the coefficient of friction against the plane for
bodies m and M and g the acceleration due to gravity.

The motion of the system along the line is governed by the
equations

ẋ = v, ẏ = V,
mv̇ = −mg sinα + F + Fm,

MV̇ = −Mg sinα− F + FM

(1)

where F denotes the force applied to body m by body M ,
and Fm and FM denote Coulomb’s friction forces applied
to the bodies by the plane. The friction forces are defined
by the relations

Fm = −kmg cos α sgn v, v 6= 0,
|Fm| ≤ kmg cos α, v = 0,

FM = −kMg cos α sgn V, V 6= 0,
|FM | ≤ kMg cos α, V = 0

(2)

We consider the motions of the system in which the
distance between the bodies and the velocities of both
bodies are expressed by time-periodic functions, y(t+T )−
x(t+T ) ≡ y(t)−x(t), v(t+T ) ≡ v(t), V (t+T ) ≡ V (t).
Here, T is the time period which may be chosen arbitrarily.
? This study was supported by the Russian Foundation for Basic
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In other words, we consider the motions with constant
shifts of each body for the period, the shift being the same
for both bodies: y(t + T )− y(t) ≡ x(t + T )− x(t) ≡ const.
We call such motions periodic motions. When considering
the motions of the system during a period, the periodicity
conditions are equivalent to the boundary conditions
y(T )−y(0) = x(T )−x(0), v(T ) = v(0), V (T ) = V (0) (3)

The question is whether the periodic motion of the system
upward along the line is possible.

We assume that if there is no interaction between the bod-
ies and both bodies are at rest at some time instant, they
will remain at rest on the inclined line. This assumption
implies

tg α ≤ k (4)
Additionally, we require that the force governing the
uniform upward motion of the smaller body m be not equal
in its absolute value to the force governing the uniform
downward motion of the larger body M , kmg cos α +
mg sinα 6= kMg cos α − Mg sinα. This condition can be
written as

tg α 6= k
M −m

M + m
(5)

This is necessary for determining uniquely which of the
bodies will start moving first from the state of rest of the
entire system when an appropriate interaction force begins
to act.

Problem. Find the condition allowing the periodic motion
for the two-body system upward along the inclined line,
provided that relations (1) -(5) and the inequality

x(T ) > x(0) (6)
hold.

2. CRITERIA OF POSSIBILITY OF THE PERIODIC
UPWARD MOTION

Proposition. The periodic motion of the two-body system
upward along an inclined line is possible if and only if
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tg α < k
M −m

M + m
(7)

Proof. Let us prove first the sufficiency of the condition
(7). To do so, we will construct explicitly a periodic
motion of the system that shifts it upward along line l,
provided that inequality (7) holds. Let the system be at
rest at the beginning of the motion, v(0) = V (0) = 0. At
the first stage of the motion, body m moves downward,
while body M moves upward. Choose some time interval
[0, t0] and a constant interaction force F so that body M
begins to move upward, namely, let F ≡ −(Mg sinα +
kMg cos α + A), A > 0. Then body M will move with
an acceleration upward and body m will move with an
acceleration downward,

MV̇ = A,
mv̇ = −(M + m)g sinα− (M −m)kg cos α−A

(8)

After that we stop controlling the system and set F ≡ 0
for an interval [t0, t1], with the duration of this interval
being large enough for both bodies to have time to come
to a stop due to friction, so that V (t1) = v(t1) = 0. Denote
x(t1) = x1, y(t1) = y1, y1 > 0, x1 < 0.

Let at the second stage of the motion body m overtake
body M , while body M is at rest. Define the control force
F as follows:

F (t) = mg sinα + kmg cos α + B, t ∈ [t1, t1 + δ],
F (t) = mg sinα + kmg cos α−B, t ∈ [t1 + δ, t1 + 2δ]

(9)
If the value of B is small enough, body M stays at
rest. Indeed, the inequality (7) implies that there exists
a positive value B such that the inequality

mg sinα + kmg cos α + B + Mg sinα < kMg cos α (10)
holds. This inequality means that the value of the sliding
friction force for body M is greater than the modulus of
the sum of all other forces applied to this body; hence
body M is at rest. The motion of body m is governed by
the equations

mv̇ = B, t ∈ [t1, t1 + δ], v(t1) = 0
mv̇ = −B, t ∈ [t1 + δ, t1 + 2δ] (11)

At the time instant t1 + 2δ, body m comes to a stop,
v(t1 +2δ) = 0. By equating the distance travelled by body
m for time 2δ to the value y1−x1, one can find the duration
2δ = 2

√
m
B (y1 − x1) required for body m to overtake body

M and to come to a stop. By letting T = t1 + 2δ we
complete the construction of the control subject to which
the system is at rest at the beginning and at the end of the
period and both bodies travel the distance y1 > 0 upward
along line l. This completes the proof of sufficiency of the
condition (7).

Now we will prove the necessity of (7). Let us suppose that
the periodic motion of the system upward along the line is
possible. Denote by u the velocity of the center of masses
of the system

u = (m + M)−1(mv + MV ) (12)
Equations (1) involve the equation of motion for the center
of mass:

(m + M)u̇ = −(m + M)g sinα + FM + Fm (13)
If the upward motion of the system is possible, then a
time interval exists such that the center of mass velocity is
positive on this interval. Hence, one can take a time instant

t∗ from the left neighborhood of the point of maximum of
the function u(t), so that the velocity is positive and its
derivative is nonnegative at this point,

u(t∗) > 0, u̇(t∗) ≥ 0. (14)
The first inequality (14) means that v(t∗) > 0 or V (t∗) >
0. If V (t∗) > 0, then FM = −kMg cos α and the second
inequality (14) cannot hold by virtue of equation (13) and
the inequalities |Fm| ≤ kmg cos α and m < M . The center
of mass necessarily decelerates if the larger body moves
forward. Let now v(t∗) > 0. Then Fm = −kmg cos α,
and the second inequality (14), with (13) being taken into
account, can be represented as follows:

FM ≥ (m + M)g sinα + kmg cos α (15)
Hence, taking into account the relation |FM | ≤ kMg cos α
we obtain k(M − m)g cos α ≥ (M + m)g sinα. This
inequality combined with condition (5) lead to (7), which
completes the proof of the necessity of the inequality (7).

Remark 1. This proposition can be reformulated as follows.
The periodic motion of a two-body system upward along
an inclined line is possible if and only if body m can
move upward with nonnegative acceleration while body
M is at rest. The equivalence of the reformulation to the
proposition is proved by the facts that the inequality (7)
is equivalent to inequality (10) with B from the right-
hand neighborhood of zero and inequality (10) provides the
motion of body m upward with nonnegative acceleration
with body M at rest.

Remark 2. Let the system of n interacting bodies with
masses

m1 ≤ m2 ≤ · · · ≤ mn, M∗ =
∑

i=1,..n

mi (16)

on an inclined line with dry friction be considered. The
periodic motion of this system upward along an inclined
line is possible if and only if the body with minimal mass
m1 can move upward with a nonnegative acceleration, with
all other bodies being at rest. This condition implies

tg α < k
M∗ − 2m1

M∗
(17)

The proof of the necessity of this condition is similar to
that for a two-body system. The sufficiency is proved by
presenting the motion similar to that presented above, for
which at the first stage bodies mi, i = 2, . . . n move as a
single whole (as the larger body for the two-body case),
and at the second stage all these bodies are at rest.

Remark 3. Let now two bodies of the system have different
coefficients of friction and let the friction be anisotropic.
Denote by k+

m, k−m and k+
M , k−M the coefficients of friction

for upward and backward motions of bodies m and M ,
respectively. We assume that at least one of the inequalities
k−MM > k+

mm, k−mm > k+
MM holds and that the system

can stay at rest, which implies
tg α < (k−MM + k−mm)(M + m)−1 (18)

The periodic motion of the system upward along an
inclined line is possible if and only if

tg α <
max{k−MM − k+

mm, k−mm− k+
MM}

M + m
(19)

or, which is the same, one body can move upward with
nonnegative acceleration while the other body is at rest.
The proof of this remark is similar to that of Proposition.
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