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Abstract. This paper concerns the active control of flexural vibrations in a two-link robot consisting
of two flexible arms with tip masses. Due to inertial forces of distributed and concentrated masses
flexural vibrations occur. The robot is moving in a horizontal plane, such that it is not necessary to
consider gravity. In order to compensate the flexible vibrations, piezoelectric actuators are integrated in
the arms. In the first step a shape control solution is presented in the framework of linear beam theory:
Assuming that the angles of the two links are known by appropriate measurements, the necessary distri-
bution of piezoelectric actuation is derived in order to compensate the flexible vibrations. This solution
represents a feed-forward control strategy. In the second step, it is assumed that masses and geometrical
parameters are not exactly known, and that the distribution of actuation strains is approximated by the
use of a limited number of piezoelectric patches. In order to reduce the remaining flexible vibrations,
an additional PD controller is employed for the piezoelectric actuated patches. The proportional (P)
part of the controller keeps the curvature, measured by sensor patches, near the value given by the op-
timal distribution of the patches. The differential (D) part of the controller aims to damp the remaining
vibrations of the beam. A numerical example of a highly flexible robot with three patches per arm is
studied. The robot shows significantly reduced vibrations and the control scheme turns out to be robust
with respect to variation of system parameters.

1 Introduction
The present paper deals with the control of vibrations in flexible multi-body systems using piezoelectric patch
sensors and actuators [1]. Exemplarily, a two-link robot consisting of two flexible arms with concentrated tip
masses is considered, in which flexible vibrations are caused by inertial forces. In the first step, a solution of
the shape control problem is applied, i.e. the distribution of piezoelectric actuation strains is derived in order to
compensate the inertial forces. For review on shape control of structures see Irschik [2], applications to elastic
structures performing large rigidbody motions have been presented in [3] - [5].

The shape control solution can be considered as a feed-forward control strategy: Assuming that the inertial forces
are known by appropriate measurement of the link angles and their time-derivatives, the distributed actuating
moment is applied by piezoelectric actuation. It turns out that for each arm at least three spatially distributed
actuating moments with different time responses are needed in order to completely compensate the inertial forces.
With regard to practical applications, the distributed actuation is realized by a limited number of piezoelectric
patches. Earlier investigations showed that the replacement of the shaped actuator layers by means of rectangular
actuator patches leads to a system which can compensate the vibrations, and stable control algorithms can be
implemented, see Krommer and Irschik [6] and Nader et al. [7].

In the second step, it is assumed that mass-distribution and geometrical properties of the robot are not exactly
known and that the realization of the actuating moment by piezoelectric patches is an approximation of the exact
solution. Thus, it is not possible, to completely compensate the flexible vibrations with the help of feed-forward
shape control. In order to minimize the remaining vibrations, an additional closed loop control algorithm is em-
ployed. Measuring the curvature of the beam with the help of piezoelectric patches, a PD-controller is added to the
piezoelectric actuated patches. The proportional (P) part of the controller keeps the curvature of the beam near the
value given by the optimal distribution of the patches. The differential (D) part of the controller aims to damp the
vibrations of the beam. By assuming that the third time-derivative of the joint angle cannot be measured accurately,
the differential part only damps out low frequency vibrations of the robot arms.

In order to investigate the behavior of the open loop and the closed loop control algorithms, a numerical model
including large deformation beam elements for the robot arms, the actuating piezo elements and the open and
closed loop controllers have been implemented within the multibody dynamics simulation code HOTINT (see
http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html). The beam elements are
based on specific large deformation beam elements, which are available for the Bernoulli Euler case [8] and the
shear deformable (Timoshenko) case [9]. Numerical computations are performed with main goal to find an efficient
configuration of patches and to test if the system shows the desired behavior. A numerical example of a highly
flexible robot with three patches per arm is studied which shows significantly reduced vibrations and turns out to
be robust with respect to variation of system parameters.
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2 Shape control of a moving cantilever beam
Figure 1 shows an initially straight laminated elastic beam moving in a horizontal plane. An inertial frame with the
Cartesian coordinates (x0,y0,z0) is introduced, where the plane under consideration is parallel to the plane (x0,z0).
Furthermore, a floating frame with a Cartesian coordinate-system (x,y,z) is fixed to the end B of the beam. For the
notion of a floating frame of reference, see Shabana [10]. The floating coordinate system is rotated with respect
to the inertial one by the angle ϕ about the y-axis. The x-axis of the floating system is used to define a floating
straight reference configuration, represented by the dashed straight line in figure 1, with respect to which the beam
performs vibrations in the (x,z) plane. For an observer co-moving with the floating frame, the beam appears to be
clamped in point B, the x-axis playing the role of the beam axis. We assume the (y,z) axes to be parallel to the
principal axes of inertia of the cross-sections of the beam, such that plane vibrations can take place.
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Figure 1: Kinematics of the beam

In the floating frame, the position vector xP and displacement vector uP of point P on the beam axis are given by

xP = (x+u)ex +wey, uP = uex +wey, (1)

with the axial displacement u = u(x, t), the deflection w = w(x, t) and the unit vectors ex, ey and ez of the floating
frame of reference. The actual position of the origin B of the floating frame is given by the coordinates x0

B = x0
B(t)

and z0
B = z0

B(t), where the superscript 0 indicates that the latter co-ordinates are measured in the inertial frame. The
rotation of the reference frame with respect to the inertial frame is described by the angle ϕ = ϕ(t). The angle ϕ
and the coordinates x0

B and z0
B thus define the rigidbody motion of the beam. The absolut position vector (in the

inertial system) thus reads

x0
P = [x0

B +(x+u)cosϕ +wsinϕ]ex +[z0
B − (x+u)sinϕ +wcosϕ]ez. (2)

The acceleration of P in the inertial frame can be obtained by differentiating eq. (2) twice with respect to time.
In the following, we assume that the elastic displacements and strains are small, and that the beam is so slender,
such that we can apply the Bernoulli-Euler hypotheses of cross-sections remaining plane and perpendicular to the
deformed axis, which is also called a single-layer beam theory rigid in shear. The axial strain with respect to the
floating frame of reference is hence written as

εxx = u′ − zw′′. (3)

Here and in the following, a prime denotes the derivative with respect to the variable x. As external excitations, a
concentrated force Fe and a concentrated moment Me are considered as shown in Figure 1,

Fe = Fe
x ex +Fe

z ez, Me = Me
y ey. (4)

In the framework of Bernoulli-Euler beam theory, axial stress is assumed to be predominant, such that the consitu-
tutive relations for a laminated beam consisting of passive and actuating layers are given in the additive form

σxx = E(εxx − ε0
xx), (5)

where σxx is the axial component of stress, E is an effective Young modulus and ε0
xx is called the axial eigenstrain.

In thermoelastic materials, for example, this eigenstrain would be equal to the thermal expansion strain, ε0
xx =

α(T −T0), with the thermal expansion coefficient α , temperature T , and the constant reference temperature T0. In
thin piezoelectric layers, the eigenstrain

ε0
xx = d31Ez (6)

represents the converse piezoelectric effect, with the piezoelectric coefficient d31 and the electric field Ez in thick-
ness direction of an actuating layer. Putting eq. (3) into eq. (5) and integrating over the cross-section A gives
normal force N and bending moment M,

N = A11u′ −Na, M = −D11w′′ −Ma, (7)

989

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



where A11 = A11(x) is the effective extensional stiffness and D11 = D11(x) the effective bending stiffness of the
laminated beam, Na = Na(x, t) and Ma = Ma(x, t) are the actuating force and moment, respectively. These quantities
read

A11 =

∫
A

E dA, D11 =

∫
A

Ez2 dA, Na =

∫
A

Eε0
xx dA, Ma =

∫
A

Eε0
xxz dA. (8)

The equations of motion for the beam in Figure 1 have been derived by Zehetner and Irschik [5] considering the
v.Karman part of strain. Neglecting the latter, we obtain

(A11u′)′ −μ(ü+2ẇϕ̇ +wϕ̈ −uϕ̇2) = N′
a −qe

x, (9)
−(D11w′′)′′ −μ(ẅ+2u̇ϕ̇ −uϕ̈ −wϕ̇2) = M′′

a −qe
z , (10)

with the maass per unit length μ = μ(x) =
∫

A(x) ρ(x)dA and the boundary conditions

x = 0 : u = w = w′ = 0, (11)
x = L : A11u′ = Fe

x +Na, −(D11w′′)′ = Fe
z +M′

a −D11w′′ = Me
y +Ma. (12)

In Eqs. (9) and (10), qe
x = qe

x(x, t) and qe
z = qe

z(x, t) are effective distributed forces per unit length,

qe
x = −μ(ẍ0

B cosϕ − z̈0
B sinϕ − xϕ̇2), qe

z = −μ(ẍ0
B sinϕ + z̈0

B cosϕ − xϕ̈), (13)

The initial-boundary value problem formed by equations (9) - (12) is linear with respect to the flexible coordinates
u and w. Recall that ϕ , x0

B and z0
B are considered as prescribed functions of time.

In the following the solution of shape control is formulated: The effective external excitations are compensated, if
the right hand sides of Eqs. (9), (10) and (12) vanish, i.e.

0 < x < L : N′
a = qe

x, M′′
a = qe

z , (14)
x = L : Na = −Fe

x , Ma = −Me
y , M′

a = −Fe
z .

If the motion starts from rest, i.e. w(t = 0) = ẇ(t = 0) = u(t = 0) = u̇(t = 0) = 0, then the elastic displacements
vanish,

w(x, t) = 0, u(x, t) = 0. (15)

Care has to be taken with respect to the fact that equation (15) may not be the only solution. E.g. a heavy beam
may reach a buckled state in the course of the motion. On the other hand, the geometric stiffening effect is not
accounted for in the equations of motion, such that instable solutions may occur for large angular velocities. Such
effects have been studied in [5] considering the v.Karman part of strain.

In the following, it is assumed that such instabilities do not occur. Integration of Eq. (14) yields the actuating force
and moment which have to be induced by the actuators in order to compensate the external excitations,

Na = −Fe
x −L

∫ 1

ξ
qx(ξ ) dξ , (16)

Ma = −Me
y −Fe

z L(1−ξ )−L2
∫ 1

ξ
(ξ −ξ )qz(ξ ) dξ , ξ = x/L. (17)

Assuming that all system parameters like rigidbody motion, mass distribution and geometrical properties are ex-
actly known, the elastic deformation of the beam can be completely suppressed with the actuating normal force
and bending moment in Eqs. (16) and (17). The solution of shape control can thus be interpreted as feed-forward
control law. In the following section, shape control is applied to a two-link robot.

3 Compensation of flexural vibrations in a two-link robot
Figure 2 shows the investigated two-link robot consisting of two flexible arms with lengths L1 and L2, respectively,
masses per unit length μ1 and μ2 and tip masses m1 and m2.

In the following, the axial elastic displacement u is neglected, such that shape control is only applied with respect to
the deflection w, i.e. the actuating normal force is set to zero, Na = 0, and the axial vibrations remain uncontrolled.

In order to derive the actuating moments Ma,1 and Ma,2 for the two arms of the robot, we have to express the
effective excitations, see Figure 3. The distributed forces per unit length of arm 1 and 2, respectively, are given by[

qe
x,1

qe
z,1

]
= μ1ξ L1

[
ϕ̇2

1
ϕ̈1

]
,

[
qe

x,2
qe

z,2

]
= μ2L1

[
gx,1(t)
gz,1(t)

]
+ μ2ξ L2

[
gx,2(t)
gz,2(t)

]
, (18)
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Figure 2: Two-link robot
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Figure 3: Effective excitations of arm 1 and 2

where φ2 = ϕ1 +ϕ2 has been introduced and gx,1, gz,1, gx,2 and gz,2 are functions of time,

gx,1(t) = ϕ̈1(cosφ2 sinϕ1 − sinφ2 cosϕ1)+ ϕ̇2
1 (cosφ2cosϕ1 + sinφ2 sinϕ1), (19)

gz,1(t) = ϕ̈1(sinφ2 sinϕ1 + cosφ2 cosϕ1)+ ϕ̇2
1 (sinφ2cosϕ1 − cosφ2 sinϕ1),

gx,2(t) = φ̇ 2
2 ,

gz,2(t) = ϕ̈2.

The tip forces are given by[
Fe

x,1
Fe

z,1

]
= m1L1

[
ϕ̇2

1
ϕ̈1

]
+m2

[
hx,1(t)
hz,1(t)

]
+ μ2L2

[
hx,2(t)
hz,2(t)

]
, (20)[

Fe
x,2

Fe
z,2

]
= m2L1

[
gx,1(t)
gz,1(t)

]
+m2L2

[
gx,2(t)
gz,2(t)

]
,

with the time-functions

hx,1(t) = (L1gx,1(t)+L2gx,2(t))cosϕ2 +(L1gz,1(t)+L2gz,2(t))sinϕ2, (21)
hz,1(t) = −(L1gx,1(t)+L2gx,2(t))sinϕ2 +(L1gz,1(t)+L2gz,2(t))cosϕ2,

hx,2(t) = (L1gx,1(t)+
L2
2

gx,2(t)cosϕ2 +(L1gz,1(t)+
L2
2

gz,2(t)sinϕ2,

hz,2(t) = −(L1gx,1(t)+
L2
2

gx,2(t)sinϕ2 +(L1gz,1(t)+
L2
2

gz,2(t)cosϕ2.

The tip moments read

Me
y,1 = m2(L1gz,1(t)+L2gz,2(t))+ μ2(

1
2

gz,1(t)L1L2
2 +

1
3

gz,2(t)L3
2), (22)

Me
y,2 = 0.
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With Eq. (17), the actuating moments in arm 1 and 2, respectively, follow to

Ma,1 = −Me
y,1 −Fe

z,1L1(1−ξ )−L2
1

∫ 1

ξ
(ξ −ξ )qz,1(ξ ) dξ , ξ = x1/L1, (23)

Ma,2 = −Fe
z,2L2(1−ξ )−L2

2

∫ 1

ξ
(ξ −ξ )qe

z,2(ξ ) dξ , ξ = x2/L2.

Inserting Eqs. (18), (20) and (22) yields

Ma,1(ξ , t) = M̂(0)
a,1(t)S(0)(ξ )+ M̂(1)

a,1(t)S(1)(ξ )+ M̂(3)
a,1(t)S(3)(ξ ), (24)

Ma,2(ξ , t) = M̂(1)
a,2(t)S(1)(ξ )+ M̂(2)

a,2(t)S(2)(ξ )+ M̂(3)
a,2(t)S(3)(ξ ),

with the shape functions

S(0)(ξ ) = 1, S(1)(ξ ) = 1−ξ , S(2)(ξ ) = (1−ξ )2, S(3)(ξ ) =
1
2
(1−ξ )2(ξ +2), (25)

and the amplitudes

M̂(0)
a,1(t) = M̂(1)

a,2(t)+ M̂(2)
a,2(t)+ M̂(3)

a,2(t), M̂(1)
a,2(t) = −m2(L1gz,1(t)+L2gz,2(t)), (26)

M̂(1)
a,1(t) = L1(m1L1ϕ̈1 +m2hz,1(t)+ μ2L2hz,2(t)), M̂(2)

a,2(t) = −
1
2

gz,1(t)L1μ2L2
2,

M̂(3)
a,1(t) =

1
3

μ1L3
1ϕ̈1, M̂(3)

a,2(t) = −
1
3

gz,2(t)μ2L3
2.

4 Realisation with piezoelectric patches
A possible realisation of a distributed actuating moment is to mount shaped piezoelectric layers on the beam. This
strategy has been investigated in [5] for a rotating flexible beam. For the investigated two-link robot three shaped
piezoelectric layers would be required for each arm in order to realise the actuating moments in Eq. (24).

Using a large number of shaped piezoelectric layers is complicated and hardly practicable, such that in the follow-
ing the distribution of the actuating moment is approximated by piezoelectric patches, as shown in figure 4, where
lp denotes the patch length, and ls the length of the space between the patches.
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p lp lplsl s l s l s

s

p

Figure 4: Realisation with piezoelectric patches

Assuming that the patches are thin, the electric field in a patch i is given by Ei
z = V i(t)/hp, with the voltage

V i(t) and the patch thickness hp. The piezoelectric eigenstrain induced by the patch follows from Eq. (6) to
ε0,i

xx = d31V i(t)/hp. Inserting into Eq. (8) yields the actuating moment induced by the patch i

Mi
a =

1
2

Epd31b(h+hp)V i(t), (27)

with the Young modulus Ep of the patch, and the beam width b. The actuating moment has a constant spatial
distribution in the area of the patch.

5 Numerical modeling of the piezo-beam-element
For the numerical simulation of the piezo-electric actuated robot, a fully nonlinear beam finite element is utilized.
In the following, the equations of motion of a displacement based finite element, based on the absolute nodal
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Figure 5: Planar ANCF element.

coordinate formulation (ANCF), see Shabana [10], and implemented according to Gerstmayr and Irschik [8], are
presented. The beam element has been extended to a formulation based on Reissner’s large deformation rod theory,
see Gerstmayr et al. [9]. The planar ANCF element contains eight degrees of freedom, including coupled large
bending and axial deformation. According to the Bernoulli-Euler beam theory, the latter finite element considers
arbitrary large axial and bending deformation and no shear deformation. The position vector r of a point at the
beam axis, originally placed at x, see Figure 5, is interpolated by shape functions S and element coordinates q,
which follows as

r = Sq, q =
[
r(1)T

r′(1)T
r(2)T

r′(2)T ]T
(28)

with the abbreviation r′ = ∂r
∂x . Here, x ∈ [0, L] denotes the coordinate of the undeformed beam axis. The shape

function matrix Sm is given as
r = [S1I S2I S3I S4I]q = Smq, (29)

where I is the 2×2 unit matrix. This interpolation allows coupled bending and stretching of the beam axis, while
shear is not included. The single shape functions Si are given by

S1 = 1−3
x2

L2 +2
x3

L3 , S2 = x−2
x2

L
+

x3

L2 , S3 = 3
x2

L2 −2
x3

L3 , S4 = −
x2

L
+

x3

L2 . (30)

5.1 Equations of motion

The weak form of the equations of motion is derived from the Lagrange-D’Alembert equation,

δWI +δWS −δWE = 0, (31)

in which δWI denotes the virtual work of inertia forces, δWS is the virtual work of internal (elastic) forces and δWE
is the virtual work of external forces. The mass matrix is determined from the kinetic energy,

T =
1
2

∫
L
ρAṙT ṙdx = q̇T

∫ L

0
ρAST

mSm dx q̇ = q̇T Mq̇ (32)

and is defined by M =
∫ L

0 ρAST
mSm dx. Here, A denotes the cross sectional area of the beam element and ρ is the

density. The mass matrix is constant and can be stored in sparse form. The virtual work of inertia forces (I) and
external forces (E) follow as

δWI = q̈T Mδq and δW b
E =

∫
L
AbT δr(x)dx. (33)

The virtual work of elastic forces is defined by

δWS =
∫ L

0
A11(ε − ε0)δε +D11(K −K0)δK dx. (34)

For details see the paper of Gerstmayr and Irschik [8]. The quantity K, sometimes denoted as the material measure
of curvature, is defined by the rate of rotation θ of the cross section,

θ ′ =
∂θ
∂ s

∂ s
∂x

= κ
∂ s
∂x

= K =

(
r′ × r′′

|r′|2

)T
e3. (35)
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The axial strain in the Bernoulli-Euler beam can be split into normal and bending strain, respectively,

ε = |r′|−1 and εbend = yK. (36)

Eigenstrains are considered by means of the normal strain ε0 and the bending strain K0. The latter two quantities
are utilized to include piezo-electric actuation in the large deformation beam element. The terms ε0 and K0 are
equivalent to initial stretch and initial curvature in a pre-curved beam element. The piezo-electric actuation can be
equivalently taken into account by means of actuating normal forces Na and actuating bending moments Ma,

δWS =
∫ L

0
(A11ε −Na)δε +(D11K −Ma)δK dx. (37)

6 Closed Loop Control Algorithm
The realisation of the piezo actuated robot arm is shown in Figure 4. For a patch i, the actuating piezo moment is
constant, represented by a constant Mi

a of Eq. (37). Due to the fact that the actuated span of the beam is smaller
than the total length of the beam, the feed-forward (ff) piezo moment is increased by a constant factor k j,

Mff,i
a, j = k j Mi

a, j, k j =
L j

Lpiezo, j
=

L
3lp

. (38)

The index j denotes the number of the robot arm j = 1 or j = 2. While other weighting factors are possible, in
the present case a larger number of patches leads to convergence of the solution towards the solution with shaped
patches. Alternatively, optimal weighting factors could be computed in order to eliminate vibrations at certain
positions or in order to minimize the deformation in the beam, see Nader et al. [7].
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Figure 6: Shape control

The basic strategy of the closed loop controller is sketched in Figure 6. The input of the feed-forward controller
is given by the relative joint angles ϕ1 and ϕ2 of the two robot arms. In a feed-forward controller, the estimated
necessary actuating moment Mff,i

a, j according to Eq. (38) is applied to the patches. In the feedback controller, the
average curvature κ i

j is measured in each patch i of the robot arm j by means of sensor patches, see Figure 4. The
average curvature times patch length also represents the relative angle between the right and left end of the patch.
The error of the prescribed average curvature eκ is given as

eκ = κ̄ i
j −Mff,i

a, j
1−1/k j

D11
. (39)
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and is controlled by a slightly modified PD-control law. In order to avoid the differentiation of measured accelera-
tions ϕ̈ , the feed-forward actuating moment Mff,i

a, j is not included in the differential part of the controller, see Figure
6. Additionally, a low pass filter (LP) is added after differentiation of the error of the prescribed average curvature.
The total feedback controlled actuating moment can be written as

Mi
a, j = Mff,i

a, j −PD11eκ −D
(
D11 LP

( ˙̄κ
))

. (40)

7 Numerical Example
As a numerical example, the two-link robot of figure 2, is considered. The material parameters of the two arms with
equal dimensions are length L1 = L2 = 0.5m, rectangular cross section with height h = 0.01m, width b = 0.02m,
density ρ = 2700kg/m3, Young’s modulus E = 7e10N/m2 and a tip-mass of 1kg. The material is assumed to be
linear elastic. The effect of gravity is not considered in this example. It is furthermore assumed that the patches do
not influence the bending stiffness D11 = E bh3

12 The two links are driven by means of two drives in the hinges of
the links. The angle in the hinges is assumed to exactly follow the prescribed angle, thus neglecting effects of an
electrical drive or of the gears. The prescribed angles in the two hinges follow the function, see Figure 7,

θ1 = θ2 = 10At3 −15At4 +6At5 for t < 1 and θ1 = θ2 = A = π/2 for t ≥ 1 (41)

which corresponds to a smooth function for the angular acceleration in the hinge and therefore results in a
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Figure 7: Prescribed angles in joints of two-link robot.
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Figure 8: Comparison of vertical tip displacement of the robot without and with piezo-actuated shape control.

smooth motion of the robot. This is a common trajectory for industrial robots. Each arm contains three piezo
patches according to Figure 4. The dimensions of the patches are lp = 0.1m and ls = 0.05m resulting in the
weighting factor for the shape control k1 = k2 = 10/6, see Eq. (38). The mechanical system is idealized and does
not include any damping.
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Figure 9: Comparison of the mid-span deflection of arm 1 without and with piezo-actuated shape control.
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Figure 10: Comparison of vertical tip displacement of the robot without control, with open loop control and with
feedback control.
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Figure 11: Comparison of the mid-span deflection of arm 1 without control, with open loop control and with feedback
control.
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Figure 12: Comparison of vertical tip displacement of the robot without control, with open loop control and with
feedback control, using a wrong length of L = 0.6m in the control algorithm.
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Figure 13: Comparison of the mid-span deflection of arm 1 without control, with open loop control and with feedback
control, using a wrong length of L = 0.6m in the control algorithm.

As a first investigation, the motion with and without shape control by means of piezo-electric actuation is compared.
Figure 8 shows the tip displacement in vertical (y) direction. The final displacement shall be 0.5m. Without control,
a significant oscillation of approximately 40mm amplitude remains in the tip deflection in the case without control.
In the case with open loop (feed-forward) shape control, the oscillations are not visible in the plot and have about
0.7mm amplitude. In the case of shape control, but with a change of the geometrical parameters to L = 0.6 in the
feed-forward algorithm, the error in the tip position again becomes approximately 26mm in amplitude. Figure 9
shows the same comparison for the mid-span deflection of the first robot arm.

In the second investigation, the feedback controller is activated with control parameters P = 1 and D = 0.1. Figures
10 and 11 show the vertical tip position and the mid-span deflection of robot arm 1, respectively. In comparison
with the open loop case, the remaining oscillations after the movement of the robot can be fully damped out.
However, during the motion, some of the oscillations remain. It is known from the control of piezo-actuated beams,
that in some points the deflection and rotation of the cross-section of the beam can be eliminated, depending on
the placement and the number of patches. In the current case, the actuation of the patches is purely following
the computed distributed bending moment, which is discretized in the mid-point of each patch. Otherwise, the
tip deflection could be even eliminated during the whole maneuver with a minimum of two patches per beam and
assuming that all system parameters are known.

In the third study, the feedback controller is tested with a disturbance of the geometrical parameters. Thus, the
length of both robot arms is set to 0.6m in the feed-forward control algorithm. Figures 12 and 13 show the vertical
tip position and the mid-span deflection of robot arm 1 for the case without control, with feed-forward control and
with the closed loop control algorithm as given in Eq. (40). This study shows that the feedback controller is able
to react to large disturbances of the system. Knowing that the mechanical damping of the real system will further
damp oscillations, it can be estimated that the real system might contain even less oscillations.
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8 Conclusions
A solution for the shape control problem of an idealized flexible two-link robot has been derived, which fully
eliminates the vibrations in the moving robot arms. A numerical model has been set up for the realizable piezo
actuated two-link robot, which is able to include geometric imperfections. The numerical example shows that
it is possible to significantly reduce the flexible vibrations with the help of feed-forward shape control, if the
system parameters are well known. In the case of imperfections, caused by patched shape control and geometric
imperfections, an additional feedback control could be implemented, which reduces vibrations significantly. With
the implementation of the numerical simulation code it is possible to perform parameter studies in order to find a
reasonable configuration for an experimental setup of the piezo actuated robot.
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