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Abstract.
The polynomial chaos expansion has become a relative widespread technique to deal with systems
with uncertainties. Stochastic linear differential equations can be reduced to deterministic differential
equations by projecting this expansion onto the probability space. We use this feature to simulate
the decomposition of acetylated castor oil ester in an isothermal batch reactor and to compare the
deterministic and stochastic approach.

1 Introduction
For the treatment of uncertainties of model parameters Monte-Carlo evaluations are a state of the art method. If the
model is simple in terms of the computation time on a workstation, Monte-Carlo evaluations are a suitable method
for computing the moments of the system. For the complex case of reactive flows a probabilistic estimation or
optimization of this model with the Monte-Carlo method can be prohibitive.

During the last years Polynomial Chaos for the treatment of uncertainties of complex systems has been developed
to a cheap and powerful alternative to Monte-Carlo, see [8, 13]. It is based on the assumption that an expansion of
a random variable in terms of orthogonal polynomial functions on the probability space of this random variable is
possible, and that the convergence to the random variable is fast enough, so that a truncation after few terms of the
expansion already offers a good approximation.

Our goal is to use the polynomial chaos expansion to simulate an isothermal batch reactor, reducing the original,
stochastic system to a set of deterministic equations, which can be then solved by standard methods, and to illustrate
the advantages of considering the stochastic approach in certain situations.

This paper is divided as follows: In section 2 the basics of the chemical kinetics are exposed, along with the
derivation of the governing equations for an isothermal batch reactor from simple mass balance assumptions.
Section 3 gives a brief overview of the polynomial chaos expansion and applies it to the simulation of an isothermal
batch reactor. Finally, in section 4 the decomposition of acetylated castor oil ester in an isothermal batch reactor is
simulated and the effect of uncertainties in the temperature is discussed.

2 Governing Equations
2.1 Chemical Kinetics

We consider a chemical system composed of N species and M reactions:

N

∑
i=1

ν ′
i jMi

k j
−→

N

∑
i=1

ν ′′
i jMi j = 1, ..., M. (1)

where Mi represents the i-th species, and ν ′
i j, ν ′′

i j are the molar stoichiometric coefficients of species i in the reaction
j. The specific reaction rate of the j-th reaction is given by k j, and is assumed to follow the Arrhenius law

k = A ·Tb · exp
[
−

Ea
RT

]
. (2)

The activation energy Ea is the energy threshold for the reaction to occur, R is the gas constant and AT b the
preexponential factor. Note the strong dependence of the reaction rate on the temperature T .

The general case (1) yields for the overall reaction rate of a substance Mi

RMi =
M

∑
j=1

(ν ′′
i j −ν ′

i j)k j
N

∏
l=1

η
ν ′

l j
Ml

, i = 1, ..., N, (3)
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with ηMl the molar concentration of Ml .

A deep treatment of chemical kinetics is out of the scope of this work. The reader should consult [1] or [4] for
more details.

2.2 Mass Balance Equation

The reactive flows are going to be simulated in chemical reactors. We need a design equation which expresses
the time and spatial variation of the concentration for a given substance. This will take into account inflow of the
substance in the reactor, outflow and chemical reactions involving it. The following ansatz can be made for the
mass balance

IX − OX + GX = AX , (4)

where IX is the In f low, OX the Out f low and GX the overall reaction rate of the substance X . AX is the change
in time of the concentration of X via chemical reaction, the so-called accumulation. For the total reaction rate is
valid

GX =
∫

V
RX dV , (5)

with V the total volume of the reactor. IX is defined as the molar mass per unit time that gets in the reactor. OX is
the molar mass per unit time that exits the reactor.

2.3 Batch Reactor

The classical batch reactor is a perfectly mixed vessel in which reactants are converted to products during a period
of time, called batch cycle. We suppose a homogeneous reaction mixture of all substances, so that concentration
and temperature gradients can be neglected. It is used in a variety of processes, like polymerization and fermenta-
tion.

In the batch reactor all variables change dynamically with time. The reactants are charged into the vessel and
heat and/or catalyst is added to initiate reaction. In a pure batch operation the reactants are completely fed into
the reactor at the beginning. This could result in undesired heating of the reactor, so progresive adddition of
the reactants is also a possibility, called fed-batch or semibatch mode. We will only consider the batch mode.
Fed-batch mode is treated in [4].

2.3.1 Isothermal Batch Reactor

We study the case of a batch reactor with no change in temperature. This can be justified for reactive flows where
no net heat is generated or when the temperature is efficiently controlled during the reaction.

If we look at the design equation (4), operating in batch mode implies that IX as well as OX are zero. Remembering
the assumption of homogeneity during the chemical reaction process and taking the volume of the reactor as contant
we have an equality of two terms, GX is given by (3) and AX represents the change in molar mass of X with time.
With the homogeneity assumption above we can divide by the volume and finally get

dηi

dt
= Ri, i = 1, ..., N. (6)

We have thus to deal with a set of N ordinary differential equations.

3 Polynomial Chaos
3.1 Polynomial Chaos Expansion

Due to Wiener [12] homogeneous chaos is defined as a span of Hermite polynomial functionals of a Gaussian
process. According to the theorem of Cameron and Martin [2], the Fourier-Hermite series can approximate any
functionals in L2 and converges in the L2 sense. So second-order random processes can be expanded in terms of
orthonormal Hermite polynomials. A general second order random process x(θ ), with θ being the random event,
can be represented in the form

x(θ ) =
∞

∑
i=0

aiΨi(ξ ) (7)
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where there is a one-to-one correspondence between the functions Hj(ξ ) and Ψi(ξ ). The polynomial basis Ψi
forms a complete orthonormal basis of the Hilbert space H and the coefficients ai in (7) may be computed very
efficiently by a multi-dimensional Gauss-Hermite quadrature [3]

It can be proved, [6], that by truncating the expansion (7) after

N + 1 =
(n + p)!

n!p!
(8)

terms, we get an approximation of order p for the random variable x. The expectation value and the variance can
be then computed as follows

E(x) = a0 (9)

σ2(x) =
N

∑
i=1

a2
i < Ψi,Ψi > . (10)

For normal distributed random variables the exponential convergence of the homogeneous chaos expansion can be
shown, [13]. For random variables distributed other than normal, homogeneous chaos expansion still works, but
its convergence is no good as it is for the normal distribution.

The same exponential convergence can be achieved when using the generalized polynomial chaos. In this general-
ization not only the Hermite polynomials are used, but a series of orthogonal hypergeometric polynomials grouped
in the so called Askey scheme can be taken to construct the expansion.

Thus, the expansion for the random process x(θ ) in the generalized expression reads

x(θ ) =
∞

∑
i=0

ciΦi(ξ ) . (11)

It is shown that for each distributed random variable a polynomial expansion from the Askey-scheme can be found
for which the convergence is exponential.

3.1.1 Karhunen-Loève Expansion

When dealing with a model it is usual to have parameters which are of random nature. Thus, it is necessary to
introduce these random processes in the model. A way to do that is using the Karhunen-Loève expansion [8, 10].

Let φi(x) and λi denote the eigenfunctions and eigenvectors respectively of the covariance matrix of the random
variable x. Then, x has the representation

x(t,ζ ) = E(x(t,ζ ))+ σ(x(t,ζ ))
∞

∑
i=1

√
λiφi(t)ζi, (12)

with {ζi}i∈N a set of uncorrelated random variables which build a basis of L2. E(x(t,ζ )) and σ(x(t,ζ )) have the
usual meanings of expectation or mean value and standard deviation.

The truncated version of the Karhunen-Loève expansion reads

x(t,ζ ) = E(x(t,ζ ))+ σ(x(t,ζ ))
N

∑
i=1

√
λiφi(t)ζi . (13)

3.2 Polynomial Chaos Expansion for the Batch Reactor

We apply now the polynomial chaos expansion to the isothermal batch reactor from section 2. The system of
equations consists of n differential equations for n dynamical variables describing the system

ηi(t), i = 1, ...,N (14)

Every variable represents a stochastic process

ηi(t,�ξ ) ∈ L2([0,τ]× (Ω,F ,P)), �ξ := (ξ1, ...,ξd)
T , (15)
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with τ ∈ R+ and �ξ the vector of the random variables. d is thus the dimension of the probability space.

We assume that the variables are normal distributed, so

ηi(t,�ξ ) ∈ L2([0,τ]× (Rd,Bd ,Nm,σ 2)). (16)

As seen above we can write the stochastic processes with the polynomial chaos expansion. Truncation after term
P yields the approximation

ηi(t,�ξ ) =
P

∑
j=0

ai
j(t)Ψd

j (
�ξ ) (17)

where Ψd
j are the Hermite polynomials, cfr. [13]. The next step is the substitution of the polynomial chaos

expansion of the random variables into equation (6)

d
dt

(
P

∑
j=0

ai
j(t)Ψd

j (
�ξ )

)
= R

(
P

∑
j=0

(ai
j(t))Ψd

j (
�ξ )

)
, i = 1, ...,N. (18)

Now the equations (18) are projected on the chaos space H P and the result is

〈
d
dt

(
P

∑
j=0

ai
j(t)Ψd

j (
�ξ )

)
,Ψd

m

〉
=

〈
R

(
P

∑
j=0

(ai
j(t))Ψd

j (
�ξ )

)
,Ψd

m

〉
, i = 1, ...,N, m = 0, ...,P. (19)

d/dt is a linear operator acting on the temporal coordinate. We can use the orthogonality property of the Hermite
polynomials to write

d
dt

(ai
m(t))

〈
(Ψd

m(�ξ ))2
〉

=

〈
R

(
P

∑
j=0

(ai
j(t))Ψd

j (
�ξ )

)
,Ψd

m

〉
, i = 1, ...,N, m = 0, ...,P. (20)

The integrals
〈
(Ψd

m(�ξ ))2
〉

for homogeneous chaos are listed up to dimension 4 in [5]. The integrals of the r.h.s.
of equation (20) are calculated using a multidimensional Gauß-Hermite quadrature.

We see that through projection on the chaos space H P the system of stochastic differential equations has been
reduced to a system of ordinary differential equations, which can be now solved by standard integration schemes.
As a drawback the new system has (P+1)×N differential equations, that means P+1 times more than the original
system. Also the multidimensional quadrature. whose complexity increases exponentially with the dimension of
the chaos space H p is a challenge, which can be overcome by implementing adaptive Gauß quadrature methods.

3.3 Numerical Implementation

Ordinary differential equations arising from chemical kinetics are a paradigmatic example of stiff differential
equations, [11]. Hence, care must be taken when choosing the integration scheme.

The code RADAU5 is used to solve the system [7]. It is a 5th order implicite Runge-Kutta technique, offering an
efficient and stable performance for stiff differential equations.

Once the solution of the system is computed, mean values and standard deviation for the concentration of the
species are given by equations (9), (10). In case some parameters are assumed to be of random nature, e.g. some
activation energies, or the temperature, they can be introduced in the equation via the Karhunen-Loève expansion,
equation (13).

4 Decomposition of acetylated castor oil ester
We study the case of decomposition on acetylated castor oil (ACO) in an isothermal batch reactor. Treatment of
castor oil has a large variety of applications in industry, like cosmetics, inks, or lubricants [9]. Through dehydration
drying oil (DO) is obtained, which is extensively used in paints and varnishes. The overall reaction is

ACO(l) −→ DO(l) + CH3COOH(g) (21)

and the reaction rate is [4]
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Figure 1: Fractional conversion in time for different temperatures.

k =

(
1

60

)
exp

(
35.2−

22450
T

)
s−1 (22)

The usual operation temperature is 613K. A final conversion of 70% to drying oil is desired. The fractional
conversion is defined as

xA =
[ACO]− [DO]

[ACO]
. (23)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600

F
ra

ct
io

n
al

 c
o

n
ve

rs
io

n
 x

a

Time [s]

T = 613K
T ~ N(613K, (20K)2)

Figure 2: Comparison of fractional conversion for deterministic and normal distributed temperature.

Fractional conversion progress with time at isothermal conditions for different temperatures is plotted in figure 1. It
can be seen that for lower temperatures the time needed to reach 70% conversion explodes, while for temperatures
higher than 613K the time saved to reach 70% decreases fast.
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In the practice, isothermal conditions are not easy to maintain. We assume that the temperature can not be kept
constant but varies, following a normal distribution with mean value μ = 613K and standard deviation σ = 20K.
If we calculate considering a deterministic approach, with no temperature change, an error is being introduced.
Plotting the conversion progress for deterministic and for stochastic temperature we get picture 2. The deterministic
simulation estimated 298s to reach 70% conversion. For the stochastic simulation 371s were needed, This amounts
to about 20% relative error, showing a clear underestimation of the reaction time for the deterministic computation.
This shows that neglection of uncertainties can be a source of relevant misestimation.
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