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Abstract. This contribution elaborates, classifies and compares features of modern simulation sys-
tems. First a short overview on the CSSL standard is given, with discussion of standard and ex-
tended features for CSSL simulators, and the ARGESIM Benchmarks - Benchmarks for Modelling 
and Simulation Techniques are introduced. . Then main emphasis is put on the developments in the 
last decade: object-oriented approaches, acausal modelling, physical modelling, structural dynamic 
systems, modelling standardisations as Modelica and VHDL-AMS, and impacts from computer 
engineering (e.g. statecharts). Based on solutions of the ARGESIM Benchmarks, finally classifica-
tion and comparison of structural features in modern simulators is given. This classification incor-
porates also the new development with MATLAB’s new physical modelling language Simscape. 

1 Classical features of simulators 
Development of simulation languages, simulators, simulation systems, etc. is essentially influenced by the CSSL 
Standard 1968. Although forty years old, the structures defined in CSSL Standard are used up to now. End of 
90ties, CSSL extended to implicit systems, while a new modelling language, Modelica, was introduced. In prin-
ciple, the modelling paradigm changed from signal flow – oriented modelling (explicit systems) to power – ori-
ented modelling (implicit systems), from ‘causal’ signal modelling to ‘acausal’ physical modelling. The early 
CSSS standard determined basic necessary features for a simulator, the late developments to implicit systems 
fixed extended features for simulation systems – both referred as classical CSSL features. 

1.1 CSSL structure for simulation languages and simulation systems 
In 1968, the CSSL standard set first challenges for features of simulation systems, defining necessary basic fea-
tures for simulators and a certain structure for simulators (Figure 1).  

The CSSL standard suggests structures and features for a model frame and for an experimental frame. This dis-
tinction is based on Zeigler’s concept of a strict separation of these two frames. Model frame and experimental 
frame are the user interfaces for the heart of the simulation system, for the simulator kernel or simulation engine. 
A translator maps the model description of the model frame into state space notation, which is used by the simu-
lation engine solving the system governing ODEs, whereby the model description at least must be sorted and re-
formulated as program code function, which can be called from an ODE – solver. The model sorting capability 
(MS) is an essential classical feature of simulators. The basic structure of a simulator is illustrated in Figure 1; an 
extended structure with service of discrete elements is given in Figure 2. 

Figure 1. Basic structure of a simulation language due to CSSL Standard. 
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Between 1980 and 2000 developers put main emphasis on integration of discrete elements into continuous simu-
lation systems, from simple time events to complex state events, and on extending the model description to 
DAEs. Both extensions are related, because algebraic equations are mainly caused or causing state events by 
means of state constraints.  

While event description (ED) and time event handling (TEH) can be seen as basic feature, state event handling 
(SEH) and DAE support by means of direct or iterative DAE solvers (DAE) with or without index reduction (IR) 
became desirable Extended Features of simulators, supported directly or indirectly – features to be discussed in 
more details in the next subsections. 

1.2 Implicit Models – Differential-Algebraic Equations – DAE Solvers 
For a long time the explicit state space description  
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played the dominant role; additional constraints and implicit models had to be transformed ‘manually’. From the 
1990s on, the simulators started to take care on these very natural phenomena of implicit structures. Conse-
quently, they started to deal with implicit state space descriptions and constraints, in general with so-called DAE 
models (differential algebraic equations): 
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The so-called extended state vector )(ty�  can be splitted into the differential state vectors )(tx�  and into the alge-
braic state vector )(tz� : 
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The above given DAEs can be solved by extended ODE solvers and by implicit DAE solvers. Three different 
approaches may be used: 
 

1. Nested Approach, using classical ODE solver 
a. given xn , solving first numerically )(ˆ)(0),( 1

nnnnnn xgxzzzxg ����� ,  
e. g. by modified Newton iteration, and  

b. applying ODE method, evolving )),(,(1 nnnnEn txzxx ��� . 

2. Simultaneous Approach, using an implicit DAE solver; 
given xn , solving 0),( 11 ��� nn zxg  and 0),,,( 111 �� ��� nnnnI tzxx simultaneously. 

3. Symbolic Approach, determining in advance the explicit form solving  
)(ˆ)(0),( 1 xgxzzzxg �����   

by symbolic computations e.g. within the model translator, and using classical ODE solvers. 

The Symbolic Approach requires a symbolic inversion of the algebraic equations, which in many cases is not 
possible or not adequate; furthermore the model translator must not only sort equations, it must be able to per-
form symbolic manipulations on the equations.  

The Nested Approach – up to now most commonly used – requires a numerical inversion of the algebraic equa-
tions: each evaluation of the vector of derivatives (called by the ODE solver) has to start an iterative procedure to 
solve the algebraic equation. This approach can be very expensive and time-consuming due to these inner itera-
tions. Here classical ODE solvers can be used. 

The Simultaneous Approach requires an implicit ODE solver – usually an implicit stiff equation solver. Although also 
working with iterations, these solvers show much more efficiency and provide more flexibility for modelling (DASSL, 
IDA-DASSL, and LSODE – solvers). 

However, hidden is another problem: the ‘DAE index’ problem. Roughly speaking, a DAE model is of index n, if 
n differentiations of the DAE result in an ODE system (with an increased state space). The implicit ODE solvers 
for the Simultaneous Approach guarantee convergence only in case of DAE index n = 1. Models with higher 
DAE index must / should be transformed to models with DAE index n = 1 . This transformation is based on 
symbolic differentiation and symbolic manipulation of the high index DAE system, and there is no unique solu-
tion to this index reduction. The perhaps most efficient procedure is the so-called Pantelides Algorithm. Unfor-
tunately, in case of mechanical systems modelling and in case of process technology modelling indeed DAE 
models with DAE index n = 3 may occur, so that index reduction may be necessary. Index reduction is a new 
challenge for the translator of simulators, and still point of discussion. 
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In graphical model descriptions, implicit model structures are known since long time as algebraic loops: the 
directed graph of signals has one or more signal feedback loops without any memory operator (integrator, delay, 
etc). Again, in evaluating the problem of sorting occurs, and the model translator cannot build up the sequence 
for calculating the derivative vector. Some simulators, e.g. SIMULINK, recognise algebraic loops and treat them 
as implicit models. When a graphical model contains an algebraic loop, SIMULINK calls a loop solving routine 
at each time step - SIMULINK makes use of the Nested Approach described before. This procedure works well 
in case of models with DAE index n = 1, for higher index problems may occur. In object-oriented simulation 
systems, like in Dymola, physical a-causal modelling plays an important role, which results in DAEs with some-
times higher index. These systems put emphasis on index reduction (in the translator) to DAEs with index n = 1 
in order to apply implicit ODE solvers (Simultaneous Approach). 

1.3 Time Events and State Events 
The CSSL standard also defines segments for discrete actions, first mainly used for modelling discrete control. 
So-called DISCRETE regions or sections manage the communication between discrete and continuous world 
and compute the discrete model parts.  

For incorporating discrete actions, the simulation engine must interrupt the ODE solver and handle the event. For 
generality, efficient implementations set up and handle event lists, representing the time instants of discrete ac-
tions and the calculations associated with the action, where in-between consecutive discrete actions the ODE 
solver is to be called. In order to incorporate DAEs and discrete elements, the simulator’s translator must now 
extract from the model description the dynamic differential equations (derivative), the dynamic algebraic equa-
tions (algebraic), and the events (event i) with static algebraic equations and event time, as given in Figure 2 
(extended structure of a simulation language due to CSSL standard). In principle, initial equations, parameter 
equations and terminal equations (initial, terminal) are special cases of events at time t = 0 and terminal time. 
Some simulators make use of a modified structure, which puts all discrete actions into one event module, where 
CASE - constructs distinguish between the different events. 

 

Figure 2. Extended structure of a simulation system due to extensions of  
the CSSL standard with discrete elements and with DAE modelling. 

These so-called time events are known in advance, so that scheduling of the time events can be handled easily, 
e.g. in the same manner than simulators schedule output events. Much more complicated, but defined in CSSL, 
are the so-called state events. Here, a discrete action takes place at a time instant, which is not known in advance, 
it is only known as a function of the states.  
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For state events, the classical state space description is extended by the so-called state event func-
tion )),(),(( ptutxh ��� , the zero of which determines the event: 

0),),(),((),,),(),(()( �� tptutxhtptutxftx ��������  
 

Generally, state events (SE) can be classified in four types:  

� Type 1 – parameters change discontinuously (SE-P), 
� Type 2 - inputs change discontinuously (SE-I), 
� Type 3 - states change discontinuously (SE-S), and 
� Type 4 - state vector dimension changes (SE-D), including total change of model equations. 

State events type 1 (SE-P) could also be formulated by means of IF-THEN-ELSE constructs and by switches in 
graphical model descriptions, without synchronisation with the ODE solver. The necessity of a state event for-
mulation depends on the accuracy wanted. Big changes in parameters may cause problems for ODE solvers with 
stepsize control. 

State events of type 3 (SE-S) are essential state events. They must be located, transformed into a time event, and 
modelled in discrete model parts. State events of type 4 (SE-D) are also essential ones. In principle, they are 
associated with hybrid modelling: models following each other in consecutive order build up a sequence of dy-
namic processes. And consequently, the structure of the model itself is dynamic; these so-called structural dy-
namic systems are at present (2008) discussion of extensions to Modelica, see next chapters. 

State events of type 2 (SE-I) are not really state events, they are time events. They are usually put in the list of 
state events, if a synchronisation of the ODE solver with an input jump should be forced. 

 
As example, we consider the pendulum with constraints. This example is basis for detailed investigations in 
ARGESIM Benchmark C7 Constrained Pendulum. Let � define pendulum angle, and l, m and d parameters for 
length, mass, and damping. If the pendulum is swinging, it may hit a pin positioned at angle  �p  with distance lp 
from the point of suspension. In this case, the pendulum swings on with the position of the pin as new point of 
rotation. The shortened length is ls = l - lp.  and the angular velocity  ��   is changed from   ��   to   sll /	��  at 
position  �p , etc. These discontinuous changes are state events, not known in advance.  

With event function notation, the model for Constrained Pendulum is given by 
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The example involves two different events: change of length parameter (SE-P), and change of state (SE-S), i.e. 
angular velocity).  

In general, the handling of a state event requires four steps:  

1. Detection of the event, usually by checking the change of the sign of h(x)  
within the solver step over [ti, ti+1]  

2. Localisation of the event by a proper algorithm determining the time t* when  
the event occurs and performing the last solver step over [ti, t*] 

3. Service of the event: calculating / setting new parameters, inputs and states; switching to new equations 
4. Restart of the ODE solver at time t* with solver step over [ t*= ti+1, ti+2] 

State events are facing simulators with severe problems. Up to now, the simulation engine had to call independ-
ent algorithms, now a root finder for the state event function h needs results from the ODE solver, and the ODE 
solver calls the root finder by checking the sign of h. For finding the root of the state event function h(x), either 
interpolative algorithms (MATLAB/Simulink) or iterative algorithms are used (ACSL, Dymola).  

Figure 2 (extended structure of a simulation language due to CSSL standard) also shows the necessary exten-
sions for incorporating state events. The simulator’s translator must extract from the model description addition-
ally the state event functions (state event j) with the associated event action – only one state event shown in the 
figure). In the simulator kernel, the static event management must be made dynamically: state events are dy-
namically handled and transformed to time events. In principle, the kernel of the simulation engine has become 
an event handler, managing a complex event list with feedbacks. It is to be noted, that different state events may 
influence each other, if they are close in time – in worst case, the event finders run in a deadlock. Again, modified 
implementations are found. It makes sense to separate the module for state event function and the module for the 
associated event – which may be a single module, or which may be put into a common time event module. 

1448

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



In case of a structural change of the system equations (state event of type 4 – SE-D), simulators usually can 
manage only fixed structures of the state space. The technique used is to ‘freeze’ the states that are bound by 
conditions causing the event. In case of a complete change of equations, both systems are calculated together, 
freezing one according to the event. One way around is to make use of the experimental frame: the simulation 
engine only detects and localises the event, and updates the system until the event time. Then control is given 
back to the experimental frame. The state event is now serviced in the experimental frame, using features of the 
environment. Then a new simulation run is restarted (modelling of the structural changes in the experimental 
frame).  

___________________________________ 
 
PROGRAM constrained pendulum 
CONSTANT m = 1.02, g = 9.81, d =0.2 
CONSTANT lf=1, lp=0.7 
DERIVATIVE dynamics 
  ddphi = -g*sin(phi)/l – d*dphi/m 
  dphi  = integ ( ddphi, dphi0) 
  phi   = integ ( dphi, phi0) 
  SCHEDULE hit   .XN. (phi-phip) 
  SCHEDULE leave .XP. (phi-phip) 
END ! of dynamics 
 
DISCRETE hit 
  l = ls; dphi = dphi*lf/ls 
END ! of hit 
 
DISCRETE leave 
  l = lf; dphi = dphi*ls/lf 
END ! of leave 
 
END ! of constrained pendulum 
___________________________________ 
 

Listing 1.ACSL model description for  Constrained Pendulum, dynamics and hit/release of pendulum. 

The Constrained Pendulum example involves a state event of type 1 (SE-P) and type 3 (SE-S). A classical 
ACSL model description works with two discrete sections hit and leave, representing the two different modes, 
both called from the dynamic equations in the derivative section (Listing 1). Dymola defines events and their 
scheduling implicitly by WHEN – or IF - constructs in the dynamic model description (Listing 2). In case of 
more complex event descriptions, the WHEN – or IF – clauses are put into an ALGORITHM section similar to 
ACSL’s DISCRETE section. 

 
_________________________ 
 
   WHEN phi-phip=0  
        AND phi>phip  
  THEN l = ls;  
       dphi = dphi*lf/ls 
________________________ 

 

Listing 2. Dymola model description for  Constrained Pendulum, hit of pendulum. 

In graphical model descriptions, we are faced with the problem that calculations at discrete time instants are 
difficult to formulate. For the detection of the event, SIMULINK provides the HIT CROSSING block (in new 
Simulink version implicitly defined). This block starts state event detection (interpolation method) depending on 
the input, the state event function, and outputs a trigger signal, which may call a triggered subsystem servicing 
the event. It is to be noted, that discrete elements with time events and state events and DAEs may also change 
the structure of the model.  
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2 ARGESIM Benchmarks on Modelling and Simulation Approaches and Techniques 
In 1990, the journal SNE – Simulation News Europe – started a series on Comparison of Simulation Software, 
which has been developed to Benchmarks for Modelling and Simulation Approaches and Techniques. Up to 
now, 21 comparisons and benchmarks have been defined, and about 250 solutions have been published – being a 
very valuable source for discussing and documenting various aspects of modelling and simulation approaches.  

For the evaluation and comparing features of simulation systems and for the feature comparison documented in 
this contribution, the following benchmarks were mainly used: 

� C 1 - Lithium-Cluster Dynamics under Electron Bombardment 
� C 3 - Analysis of a Generalized Class-E Amplifier 
� C 5 - Two State Model 
� C 7 - Constrained Pendulum 
� C 9 - Fuzzy Control of a Two Tank System 
� CP1 - Parallel Comparison 
� C 11 - SCARA Robot 
� C 12 - Collision Processes in Rows of Spheres 
� C 13 - Crane Crab with Embedded Control 
� C 15 - Clearance Identification 
� C 17 - Spatial Dynamics of SIR-Type Epidemic 
� C 18 - Neural Networks versus Transfer Functions - Identification of Nonlinear Systems 
� C 19 - Pollution in Groundwater Flow 
� C 20 – Hybrid Modelling 

In this contribution, examples mainly concentrate on Benchmark C5 Constrained Pendulum, because it is a 
small model and comparison results can be documented in a concentrated manner. At present (December 2008), 
further benchmarks are in preparation, among them C 20 – Hybrid Modelling. This comparison is a benchmark 
of new type, which not only concentrates on one specific model; C20 evaluates hybrid modelling approaches by 
means of different systems, from simple to more complex: bouncing ball, switching circuit, and rotor-stator 
dynamics. Basic idea is to compare the hybrid modelling techniques on basis of classifications discussed in this 
contribution in section 4. 

 

Figure 3. ARGESIM / SNE webpage with definition of ARGESIM Benchmarks; www.argesim.org. 
 

Administration and publication of benchmark definitions and benchmark solutions is done via web, via ARGE-
SIM webpage and SNE webpage www.argesim.org (Figure 3). 
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3 Comparison of Classical-Feature availability in selected simulator 
Model sorting (MS), event description (ED), time event handling (THE), state event handling (SEH), and DAE 
support (DAE) with or without index reduction (IR) became desirable Classical Features of simulators, sup-
ported directly or indirectly in simulation systems. Evaluation of ARGESIM Benchmark solutions allow to 
evaluate the availability of these features in simulation software. Table 1 compares the availability of these fea-
tures in the MATLAB / Simulink System, in ACSL and in Dymola. 
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MATLAB no no no (yes) (yes) no 

Simulink yes (yes) yes (yes) (yes) no 

MATLAB / Simulink yes yes yes yes (yes) no 

ACSL yes yes yes yes yes no 

Dymola yes yes yes yes yes yes 

 

Table 1. Availability of Classical Features in selected simulators; 
yes / no – available / not available 

(yes) / (no) – available, , but difficult to use / yet not available, but foreseen or way around. 

In Table 1, the availability of features is indicated by ‘yes’ and ‘no’; a ‘yes’ in parenthesis ‘(yes)’ means, that the 
feature is complex to use. MS - ‘Model Sorting’, is a standard feature of a simulator – but missing in MATLAB (in 
principle, MATLAB cannot be called a simulator). On the other hand, MATLAB’s ODE solvers offer limited fea-
tures for DAEs (systems with mass matrix) and an integration stop on event condition, so that SHE and DAE get a 
(‘yes’). In Simulink, event descriptions are possible by means of triggered subsystems, so that ED gets a ‘(yes)’ 
because of complexity. A combination of MATLAB and Simulink suggest putting the event description and han-
dling at MATLAB level, so that ED and SHE get both a ‘yes’. DAE solving is based on modified ODE solvers, 
using the nested approach (see before), so DE gets only a ‘(yes)’ for all MATLAB/Simulink combinations. Time 
events are not supported in MATLAB, but they are basic feature in Simulink. 

ACSL is a classical simulator with sophisticated state event handling, and since version 10 (2001) DAEs can be 
modelled directly by the residuum construct, and they are solved by the DASSL algorithm (a well-known direct 
DAE solver, based on the simultaneous approach), or by modified ODE solvers (nested approach) – so ‘yes’ for 
ED, SHE, and DAE. In case of DAE index n = 1, the DASSL algorithm guarantees convergence, in case of 
higher index integration may fail. ACSL does not perform index reduction (IR ‘no’). ACSL comes with a so-
phisticated state event handling, so that all kind of events can be modelled and handled in a comfortable manner. 

Dymola is a modern simulator, implemented in C, and based on physical modelling. Model description may be 
given by implicit laws, symbolic manipulations extract a proper ODE or DAE state space system, with index 
reduction for high index DAE systems – all classical features are available. Dymola started a new area in model-
ling and simulation of continuous and hybrid systems (see Section 4). 

 

4 Physical modelling and state chart modelling 
There are three basic developments to extend the structure of simulators. First, the extension from ODEs to DAE 
stimulated the evolvement of Physical Modelling – modelling based on laws and physical ‘modules’, textually 
und graphically – Dymola started the development. Second, influences from computer engineering suggest use 
of UML – Unified Modelling Language, especially UML the use of UML state charts for discrete events. And 
third, as consequence of the hybrid decomposition of models by state charts, and influenced by experiences from 
co-simulation, handling of Structural Dynamic Systems became important. 
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4.1 Physical modelling 
In the 1990s, many attempts have been made to improve and to extend the CSSL structure, especially for the task of 
mathematical modelling. The basic problem was the state space description, which limited the construction of 
modular and flexible modelling libraries. Two developments helped to overcome this problem. On modelling level, 
the idea of physical modelling gave new input, and on implementation level, the object-oriented view helped to 
leave the constraints of input/output relations. 

In physical modelling, a typical procedure for modelling is to cut a system into subsystems and to account for the 
behaviour at the interfaces. Balances of mass, energy and momentum and material equations model each subsys-
tem. The complete model is obtained by combining the descriptions of the subsystems and the interfaces. This 
approach requires a modelling paradigm different to classical input/output modelling. A model is considered as a 
constraint between system variables, which leads naturally to DAE descriptions. The approach is very convenient 
for building reusable model libraries. 

In 1996, the situation was thus similar to the mid 1960s when CSSL was defined as a unification of the tech-
niques and ideas of many different simulation programs. An international effort was initiated in September 1996 
for bringing together expertise in object-oriented physical modelling (port based modelling) and defining a mod-
ern uniform modelling language – mainly driven by the developers of Dymola. The new modelling language is 
called Modelica. Modelica is intended for modelling within many application domains such as electrical circuits, 
multibody systems, drive trains, hydraulics, thermo-dynamical systems, and chemical processes etc. It supports 
several modelling formalisms: ordinary differential equations, differential-algebraic equations, bond graphs, 
finite state automata, and Petri nets etc.  

Modelica is intended to serve as a standard format so that models arising in different domains can be exchanged 
between tools and users. Modelica is a not a simulator, Modelica is a modelling language, supporting and gener-
ating mathematical models in physical domains. When the development of Modelica started, also a competitive 
development, the extension of VHDL towards VHDL-AMS was initiated. Both modelling languages aimed for 
general-purpose use, but VHDL-AMS mainly addresses circuit design, and Modelica covers the broader area of 
physical modelling; modelling constructs such as Petri nets and finite automata could broaden the application 
area, as soon as suitable simulators can read the model definitions.  

 

 

Figure 4. Graphical Modelica model for coupled clutches. 

Modelica offers a textual and graphical modelling concept, where the connections of physical blocks are bidirec-
tional physical couplings, and not directed flow. An example demonstrates how drive trains are modelled. The 
drive train consists of four inertias and three clutches, where the clutches are controlled by input signals (Fig-
ure 4). The graphical model layout corresponds with a textual model representation, shown in Listing 3 (abbrevi-
ated, simplified). 

_________________________________________________ 
 
encapsulated model CoupledClutches; "Drive train" 
  parameter SI.Frequency freqHz=0.2; …. 
  Rotational.Inertia J1(J=1,phi(ic=0),w(ic=10)); 
  Rotational.Torque torque; 
  Rotational.Clutch clutch1(peak=1.1, fn_max=20); 
  Rotational.Inertia J3(J=1); …………………………………… 
equation  
  connect(sin1.outPort, torque.inPort); 
  connect(torque.flange_b, J1.flange_a); 
  connect(J1.flange_b, clutch1.flange_a); 
      …………………………………….. 
  connect(step2.outPort, clutch3.inPort); 
end CoupledClutches; 
_________________________________________________ 

Listing 3. Dymola model description for coupled clutches, definition and connection of mechanical elements.  
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The translator from Modelica into the target simulator must not only be able to sort equations, it must be able to 
process the implicit equations symbolically and to perform DAE index reduction (or a way around). Up to now – 
similar to VHDL-AMS – some simulation systems understand Modelica (2008; generic – new simulator with 
Modelica modelling, extension - Modelica modelling interface for existing simulator): 

� Dymola from Dynasim (generic),  
� MathModelica from MathCore Engineering (generic) 
� SimulationX from ISI (generic/extension) 
� Scilab/Scicos (extension) 
� MapleSim (extension, announced) 
� Open Modelica -  since 2004 the University of Lyngby develops an  provides  

an open Modelica simulation environment (generic), 
� Mosilab - Fraunhofer Gesellschaft develops a generic Modelica simulator,  

which supports dynamic variable structures (generic) 
� Dymola / Modelica blocks in Simulink  
� Simscape – the very new physical modelling language in MATLAB/Simulink  

is very similar to Modelica 

As Modelica also incorporates graphical model elements, the user may choose between textual modelling, 
graphical modelling, and modelling using elements from an application library. Furthermore, graphical and tex-
tual modelling may be mixed in various kinds. The minimal modelling environment is a text editor; a comfort-
able modelling environment offers a graphical modelling editor. 

The Constrained Pendulum example can be formulated in Modelica textually as a physical law for angular ac-
celeration. The event with parameter change is put into an algorithm section, defining and scheduling the 
parameter event SE-P (Listing 4). As, instead of angular velocity, the tangential velocity is used as state variable, 
the second state event SE-S ‘vanishes’.  

_____________________________________________ 
   equation /*pendulum*/ 
     v = length*der(phi); 
     vdot = der(v); 
     mass*vdot/length + mass*g*sin(phi) 
     +damping*v = 0; 
   algorithm 
    if (phi<=phipin) then length:=ls; end if; 
    if (phi>phipin) then length:=l1; end if; 
________________________________________ 
 

Listing 4. Dymola model description for Constrained Pendulum, dynamics and state events. 

Modelica allows combining textual and graphical modelling. For the Constrained Pendulum example, the basic 
physical dynamics could be modelled graphically with joint and mass elements, and the event of length change is 
described in an algorithm section, with variables interfacing to the predefined variables in the graphical model 
part (Figure 5). 

 

 
algorithm 
if (revolute1.phi 
     <= phipin then 
    revolute1.length:=ls; 
end if;  
if (revolute1.phi 
     < phipin then 
    revolute1.length:=ll; 
end if; 
 

 

Figure 5. Mixed graphical / textual Dymola model for Constrained Pendulum  

4.2 UML State Chart Modelling 
In the end of the 1990s, computer science initiated a new development for modelling discontinuous changes. The 
Unified Modelling Language (UML) is one of the most important standards for specification and design of ob-
ject oriented systems. This standard was tuned for real time applications in the form of a new proposal, UML 
Real-Time (UML-RT). By means of UML-RT, objects can hold the dynamic behaviour of an ODE.  
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In 1999, a simulation research group at the Technical University of St. Petersburg used this approach in combi-
nation with a hybrid state machine for the development of a hybrid simulator (MVS), from 2000 on available 
commercially as simulator AnyLogic. The modelling language of AnyLogic is an extension of UML-RT; the 
main building block is the Active Object. Active objects have internal structure and behaviour, and allow encap-
sulating of other objects to any desired depth. Active objects interact with their surroundings through boundary 
objects: ports for discrete communication, and variables for continuous communication. The activities within an 
object are usually defined by state charts (extended state machine). While discrete model parts are described 
state charts, events, timers and messages, the continuous models are described by ODEs and DAEs in CSSL-
type notation and with state charts within an object. 

An AnyLogic implementation of the well-known Bouncing Ball example (see ARGESIM Benchmark C20) 
shows a simple use of state chart modelling (Figure 6). The model equations are defined in the active object ball, 
together with the state chart ball.main. This state chart describes the interruption of the state flight (without any 
equations) by the event bounce (SE-P and SE-S event) defined by condition and action. 

 
 

Figure 6. AnyLogic mixed graphical / textual model for the Bouncing Ball. 

AnyLogic influenced further developments for hybrid and structural dynamic systems, and led to a discussion in 
the Modelica community with respect to a proper implementation of state charts in Modelica. State charts are to 
be seen as comfortable way to describe complex WHEN – and IF – constructs, being part of the model, but state 
charts may also control different models from a higher level. A minor problem is the fact, that the state chart 
notation is not really standardised; AnyLogic makes use of the Harel state chart type. 
 
An AnyLogic implementation for the Constrained Pendulum may follow the implementation for the bouncing 
ball (Figure 6). An primary active object (Constrained Pendulum)‘holds’ the equations for the pendulum, to-
gether with a state chart (main) switching between short and long pendulum. The state chart nodes are empty; the 
arcs define the events (Figure 7). Internally, AnyLogic restarts at each hit the same pendulum model (trivial 
hybrid decomposition). 

 

Figure 7. AnyLogic mixed graphical / textual model for Constrained Pendulum, simple implementation. 
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5 Hybrid modelling and structural-dynamic modelling 
Continuous simulation and discrete simulation have different roots, but they are using the same method, the 
analysis in the time domain. During the last decades a broad variety of model frames (model descriptions) has 
been developed. In continuous and hybrid simulation, the explicit or implicit state space description is used as 
common denominator. This state space may be described textually, or by signal-oriented graphic blocks (e.g. 
SIMULINK), or by physically based block descriptions (Modelica, VHDL-AMS).  

Hybrid systems – systems with state events of essential types, often come together with a change of the dimension 
of the state space, then called Structural-dynamic Systems. The dynamic change of the state space is caused by a 
state event of type SE-D. In contrary to state events SE-P and SE-S, states and derivatives may change continu-
ously and differentiable in case of structural change. In principle, structural-dynamic systems can be seen from two 
extreme viewpoints. The one says, in a maximal state space, state events switch on and off algebraic conditions, 
which freeze certain states for certain periods. The other one says that a global discrete state space controls local 
models with fixed state spaces, whereby the local models may be also discrete or static. 

These viewpoints derive two different approaches for structural dynamic systems modelling, the  

� maximal state space, and the  
� hybrid decomposition. 

5.1 Maximal state space for structural-dynamic systems – internal events 
Most implementations of physically based model descriptions support a big monolithic model description, de-
rived from laws, ODEs, DAEs, state event functions and internal events. The state space is maximal and static, 
index reduction in combination with constraints keep a consistent state space. For instance, Dymola, OpenMode-
lica, and VHDL-AMS follow this approach. This approach can be classified with respect to event implementa-
tion. The approach handles all events of any kind (SE-P, SE-S, and SE-D) within the ODE solver frame, also 
events which change the state space dimension (change of degree of freedoms) – consequently called internal 
events. 

Using the classical state chart notation, internal state events I-SE caused by the model schedule the model itself, 
with usually different re-initialisations (depending on the event type I-SE-P, I-SES, I-SE-D; Figure 8). For in-
stance, VHDL-AMS and Dymola follow this approach, handling also DAE models with index higher than 1; 
discrete model parts are only supported at event level. ACSL and MATLAB / Simulink generate also a maximal 
state space. 

 
Figure 8. State chart control of Internal Events for switching in one singular model (one model instance). 

5.2 Hybrid decomposition for structural-dynamic systems – external events 
The hybrid decomposition approach makes use of external events (E-SE), which control the sequence and the 
serial coupling of one model or of more models. A convenient tool for switching between models is a state chart, 
driven by the external events – which itself are generated by the models. Following e.g. the UML-RT notation, 
control for continuous models and for discrete actions can by modelled by state charts. Figure 9 shows the hy-
brid coupling of two models, which may be extended to an arbitrary number of models, with possible events E-
SE-P, E-SE-S, and ESE-D. As special case, this technique may be also used for serial conditional ‘execution’ of 
one model – Figure 10 (only for SE-P and SE-S). 

This approach additionally allows not only dynamically changing state spaces, but also different model types, 
like ODEs, linear ODEs (to be analysed by linear theory), PDEs, co-simulation, etc. to be processed in serial or 
also in parallel, so that also co-simulation can be formulated based on external events. The approach allows 
handling all events also outside the ODE solver frame. After an event, a very new model can be started. This 
procedure may make sense especially in case of events of type SE-D and SE-S. As consequence, consecutive 
models of different state spaces may be used. 
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Figure 9. State chart control of External Events for 
switching between two different models. 

Figure 10. State chart control of External Events for 
switching between two different instances of one model. 

 

Figure 11 shows a structure for a simulator supporting structural dynamic modelling and simulation. The figure 
summarises the outlined ideas by extending the CSSL structure by control model, external events and multiple 
models. The main extension is that the translator generates not only one DAE model; he generates several DAE 
models from the (sub)model descriptions, and external events from the connection model, controlling the model 
execution sequence in the highest level of the dynamic event list.  

 

Figure 11. Extended CSSL-type simulator structure for structural-dynamic systems and for independent consecutive models. 

Model 1 
Instance 2 

Model 1 
Instance 1 
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There, all (sub)models may be precompiled, or the new recent state space may be determined and translated to a 
DAE system in case of the external event (interpretative technique). Clearly, not only ODE solver can make use 
of the model descriptions (derivatives), but also eigenvalue analysis and steady state calculation may be used and 
other analysis algorithms. Furthermore, complex experiments can be controlled by external events scheduling the 
same model in a loop. A simulator structure as proposed in Figure 7 is a very general one, because it allows as 
well external as ell as internal events, so that hybrid coupling with variable state models of any kind is possible. 

5.3 Mixed hybrid approach with external and internal event 
A simulator structure as proposed in Figure 11 is a very general one, because it allows as well external as ell as 
internal events, so that hybrid coupling with variable state models of any kind with internal and external events is 
possible (Figure 12). 

 

Figure 12. State chart control for different models with Internal and External Events. 

Both approaches have advantages and disadvantages. The classical Dymola approach generates a fast simulation, 
because of the monolithic program. However, the state space is static. Furthermore, Modelica centres on physical 
modelling. A hybrid approach handles separate model parts and must control the external events. Consequently, 
two levels of programs have to be generated: dynamic models, and a control program – today’s implementations 
are interpretative and not compiling, so that simulation times increase - but the overall state space is indeed dy-
namic. 

A challenge for the future lies in the combination of both approaches. The main ideas are: 
 

� Moderate hybrid decomposition 
� External and internal events 
� Efficient implementation of models and control 

For instance, for parameter state events (SE-P) an implementation with an internal event may be sufficient (I-SE-
P), for an event of SE-S type implementation with an external event may be advantageous because of easier state 
re-initialisation (E-SE-S), and for a structural model change (SE-D) an implementation with an external event 
may be preferred (E-SE-D), because of much easier handling of the dynamic state change – and less necessity 
for index reduction. An efficient control of the sequence of models can be made by state charts, but also by a 
well-defined definitions and distinction of IF - and WHEN - constructs, like discussed in extensions of 
Scilab/Scicos for Modelica models. 

6 Structural features in simulators 
While the classical features discussed before address the CSSL-standard, structural features characterise fea-
tures for physical modelling and for structural dynamic systems. This section investigates the availability or of 
structural features in some simulators, and summarises the results in Table 3. The features may be classified as 
follows: 

� Support of a-causal physical modelling  (sometimes called port-based modelling) at textual (PM-T)  
or graphical level (PM-G), 

� Modelica standard (MOD) for a-causal physical modelling , 
� Decomposition of structural dynamic systems with dynamic features (SD) – features for external events, and 
� Support of state chart modelling or a of a similar construct, by means of textual (SC-T) or graphical (SC-G) 

constructs. 
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In principle, each combination of the above features is possible. By means of the maximal state space approach, 
each classic simulator can handle structural dynamic systems, but a-causal modelling may be supported or not, 
and state chart modelling may be available or not. Simulators with a-causal modelling may support hybrid de-
composition or not, and state chart modelling may be available or not. Simulators with features for state chart 
modelling may support hybrid decomposition or not, and a-causal modelling may be offered or not. In general, 
interpreter-oriented simulators offer more structural flexibility, but modern software structures would allow also 
flexibility with precompiled models or with models compiled ‘on the fly’. 

In addition, of interest are also structural features as 

� simulation-driven visualisation (with visualisation objects defined with the model objects; VIS), 
� frequency domain analysis and linearization for steady state analysis (FA), and 
� extended environment for complex experiments and data pre- and postprocessing (ENV). 

6.1 MATLAB / SimuLink / Stateflow / SimScape 
The mainly interpretative systems MATLAB / Simulink offer different approaches. First, MATLAB itself allows 
any kind of static and dynamic decomposition (SD ‘yes’), but MATLAB is not a simulator, because the model 
equations have to be provided in a sorted manner, to be called from an ODE solver (MS ‘no’). Second, MAT-
LAB allows hybrid decomposition at MATLAB level with Simulink models. There, from MATLAB different 
Simulink models are called conditionally, and in Simulink, a state event is determined by the hit-crossing block 
(terminating the simulation). Simulink is MATLAB’s simulation module for block-oriented dynamic models (di-
rected signal graphs), which can be combined with Stateflow, MATLAB’s module for event-driven state changes 
described by state charts (SC-T and SC-G ‘yes’). 

At Simulink level, Stateflow, Simulink’s state chart modelling tool, may control different submodels. But Simu-
link can only work with a maximal state space and does not allow hybrid decomposition (SD ‘no). Neither basic 
MATLAB nor basic Simulink support a-causal modelling. First MATLAB/Simulink modules for physical mod-
elling (e.g. Hydraulic Blockset and others, 2004 - 2008) were precompiled to a classical state space (PM-T and 
PM-G ‘no’), Modelica modelling is not supported (MOD ‘no’).  

For DAEs, MATLAB and Simulink offer modified LSODE solvers (implicit solvers) for the nested DAE solving 
approach. In MATLAB any kind of simulation – driven visualisation can be programmed and used in MATLAB 
or Simulink or in both, but not based on the model definition blocks (VIS ‘(yes)’). From the beginning on, 
MATLAB and Simulink offered frequency analysis (FA ‘yes’), and clearly, MATLAB is a very powerful envi-
ronment for Simulink, Stateflow, for all other Toolboxes, and for MATLAB itself (ENV ‘yes’). 

 

 

 

Figure 13. Physical modelling basic libraries in Simulink – physical 
components modelled in Simscape language. 

Figure 14. Acausal physical modelling in Simscape 
language – basis for graphic physical components. 
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In 2008, Mathworks introduced a basic physical modelling language, Simscape, with a basic graphic component 
library (Figure 13) – based on Simscape language (Figure 14). This modelling language is similar to Modelica, 
and it is not clear, whether the developers at Mathworks will keep Simscape compatible to Modelica, or whether 
they will set a competing standard. Simscape is the textual basis for large physical modelling libraries. The Sim-
scape translator is also capable of index reduction (IR ‘yes’). So combinations of MATLAB / Simulink / 
Stateflow with Simscape would offer any modelling possibilities (PM-T and PM-G ‘yes’, SD ‘yes’, etc.). 

6.2 ACSL 
ACSL – Advanced Continuous Simulation Language – has been developed since more than 25 years. ACSL’ 
software structure is a direct mapping of the CSSL structure in Figure 1. The new developers (Aegis Technolo-
gies) concentrate on application-oriented simulation solutions, with models are tailor-made for the specific ap-
plication. Last extensions were a change to C as basic language (instead of FORTRAN), and DAE features using 
the nested approach with classical solvers, or direct implicit DAE solving with DASSL Code (DAE ‘yes’, IR 
‘no’). From the beginning on, steady state calculation, linearization and frequency analysis was a standard fea-
ture of ACSL’s simulator kernel (FA ‘yes’). Since 2000, the environment has been enriched by modules for 
modelling and environment modules. The first module was a graphical modeller, which seems to make use of 
physical modelling, but in behind a classical state space is used – PM-T and PM-G ‘no’. Furthermore, a simula-
tion-driven visualisation system (third party) is offered (but hard to use) – VIS ‘(yes)’. 

ACSLMath was intended to have same features as MATLAB; available is only a subset, but powerful enough 
for an extended environment (ENV ‘yes’), which can be used for hybrid decomposition of a structural dynamic 
model in almost the same way than MATLAB does (SD ‘yes’). Unfortunately the development of ACSLMath 
has been stopped. In general, there is no intention to make a-causal physical modelling available, also Modelica 
is not found in the developers’ plans (PM-T, PM-G, and MOD ‘no’). 

6.3 Dymola 
Dymola, introduced by F. E. Cellier as a-causal modelling language, and developed to a simulator by 
H. Elmquist, can be called the mother of Modelica. Dymola is based on a-causal physical modelling and initiated 
Modelica; consequently, it fully supports Modelica these structural features (PM-T, PM-G, and MOD ‘yes’). 
Together with the model objects, also graphical objects may be defined, so that simulation based pseudo-3D 
visualisation is available (VIS ‘yes’). A key feature of Dymola is the very sophisticated index reduction by the 
modified Pantelides algorithm, so Dymola handles any DAE system, also with higher index, with bravura (DAE 
and IR ‘yes’). For DAE solving, modified DASSL algorithms are used. In software structure, Dymola is similar 
to ACSL, using an extended CSSL structure as given in Figure 1 – with the modification that all discrete actions 
are put into one event module, where CASE - constructs distinguish between the different events (this structure 
is based on the first simulator engine Dymola used, the DS-Block System of DLR Oberpfaffenhofen). 

Dymola comes with a graphical modelling and basic simulation environment, and provides a simple script lan-
guage as extended environment; new releases offer also optimisation, as built-in function of the simulator. Fur-
thermore, based on Modelica’s matrix functions some task of an environment can be performed – so ENV 
(‘yes’) – available, but complex/uncomfortable. Dymola offers also a Modelica – compatible state chart library, 
which allows to model complex conditions (internally translated into IF-THEN-ELSE or WHEN constructs - SC-T 
and SC-G ‘(yes)’).  

Up to now (2008) the Modelica definition says nothing about structural dynamic systems, and Dymola builds up 
a maximal state space. And up to now, Modelica does not directly define state charts, and in Dymola a state chart 
library in basic Modelica notation is available, but working only with internal events within the maximal state 
space (SD ‘no’). For Modelica extension, a working group on hybrid systems has been implemented, in order to 
discuss and standardise hybrid constructs like state charts, and hybrid decompositions (independent submodels). 

6.4 MathModelica 
MathModelica, developed by MathCoreAB, was the second simulation system, which understood Modelica 
modelling. MathModelica is an integrated interactive development, from modelling via simulation to analysis 
and code integration. As the MathModelica translator is very similar to Dymola’s model translator, clearly all 
related features are available, including index reduction and use of implicit solvers like DASSL (all DAE, IR, 
PM-T, PM-G and MOD ‘yes’). 

MathModelica follows a software model different to CSSL standard. The user interface consists of a graphical 
model editor and notebooks. There, a simulation center controls and documents experiments in the time domain. 
Documentation, mathematical type setting, and symbolic formula manipulation are provided via Mathematica, as 
well as Mathematica acts as extended environment for MathModelica (ENV ‘yes’) – performing any kind of 
analysis and visualisation (FA and VIS ‘yes’). By means of the Mathematica environment, also a hybrid decom-
position of structural dynamic systems is possible, with the same technique like in MATLAB (SD – ‘yes’).  
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6.5 Mosilab 
Since 2004, Fraunhofer Gesellschaft Dresden develops a generic simulator Mosilab, which also initiates an ex-
tension to Modelica: multiple models controlled by state automata, coupled in serial and in parallel. Furthermore, 
Mosilab puts emphasis on co-simulation and simulator coupling, whereby for interfacing the same constructs are 
used than for hybrid decomposition. Mosilab is a generic Modelica simulator, so all basic features are met (ED, 
SEH, DAE, PM-T, and PM-G ‘yes’, and MOD ‘(yes)’ – because of subset implementation at present, 2008). For 
DAE solving, variants of IDA-DASSL solver are used. 

Mosilab implements extended state chart modelling, which may be translated directly due to Modelica standard 
into equivalent IF – THEN constructs, or which can control different models and model executions (SC-T, SC-
G, and SD ‘yes’). At state chart level, state events of type SE-D control the switching between different models 
and service the events (E-SE-D). State events affecting a state variable (SE-S type) can be modelled at this ex-
ternal level (E-SE-S type), or also as classic internal event (I-SE-S). Mosilab translates each model separately, 
and generates a main simulation program out of state charts, controlling the call of the precompiled models and 
passing data between the models.  

Mosilab is in developing, so it supports only a subset of Modelica, and index reduction has not been imple-
mented yet, so that MOD gets a ‘(yes)’ in parenthesis, and IR gets a  ‘(no)’. Index reduction at present not avail-
able in Mosilab, but planned (IR ‘(no)’) § has become topic of discussion: case studies show, that hybrid decom-
position of structural dynamic systems results mainly in DAE systems of index n = 1, so that index reduction 
may be bypassed.. 

Mosilab allows very different approaches for modelling and simulation tasks. In a standard Modelica approach, 
the Constrained Pendulum is defined in the MOSILAB equation layer as implicit law; the state event, which 
appears every time when the rope of the pendulum hits or ‘leaves’ the pin, is modelled in an algorithm sec-
tion with if (or when) – conditions. A state chart approach replaces the if- conditions in the algorithm sec-
tion with (textual) state chart construct – with same results, but different implementation of the switching algo-
rithm for the state event (Listing 5). 

 
________________________________________________ 
 
event Boolean lengthen(start = false),  
              shorten(start = false); 
 end 
equation 
   lengthen=(phi>phipin); shorten=(phi<=phipin); 
 equation /* pendulum*/ 
   v = l1*der(phi); vdot = der(v); 
   mass*vdot/l1 + mass*g*sin(phi)+damping*v= 0; 
 end / equation 
statechart 
state LengthSwitch extends State; 
   State Short,Long,Initial(isInitial = true); 
   transition Long -> Short event shorten  
      action length := ls; 
   end transition; 
   transition Short -> Long event lengthen 
      action length := l1; 
   end transition; 
 end LengthSwitch; 
________________________________________________ 

Listing 4. Mosilab model for Constrained Pendulum – state chart model with Internal Events (I-SE-P). 

But Mosilab’s state chart construct allows also any kind of hybrid composition of models with different state 
spaces and of different type (from ODEs to PDEs, etc.). Listing 6 shows a Mosilab implementation of the Con-
strained Pendulum making use of two different pendulum models, controlled externally by a state chart. The 
transitions organise the switching between the pendulums (remove, add). 

Mosilab offers also strong support for simulator coupling (e.g. MATLAB) and time-synchronised coupling of 
external programs. This feature may be used for any kind of visualisation not based the model definition (VIS 
‘(yes)’). For complex experiments, Mosilab allows to mix model frame and experimental frame and sets up a 
common extended environment (ENV ‘yes’), where also frequency analysis can be implemented (FA ‘(no)’). 
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__________________________________________________ 
 
model Long 
  equation 
     mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
end Long; 
model Short 
  equation 
     mass*vdot/ls + mass*g*sin(phi)+damping*v = 0; 
end Short; 
event discrete Boolean lengthen(start=true), 
                       shorten(start=false); 
equation 
   lengthen = (phi>phipin); 
   shorten  = (phi<=phipin); 
statechart 
 state ChangePendulum extends State; 
   State Short,Long,startState(isInitial=true); 
   transition Long -> Short event shorten action 
      disconnect ….; remove(L); add(K); connect … 
   end transition; 
   transition Short -> Long event lengthen action 
      disconnect …; remove(K); add(L); connect … 
   end transition; 
  end / equation 
end ChangePendulum; 
__________________________________________________ 

Listing 5. Mosilab model for Constrained Pendulum – state chart switching between different  
pendulums models by External Events (E-SE-P). 

6.6 Open Modelica 
The goal of the Open Modelica project is to create a complete Modelica modelling, compilation and simulation 
environment based on free software distributed in binary and source code form.  

The whole OpenModelica environment consists of open software (Figure 15): OMC – the Open Modelica Com-
piler translates Modelica models (with index reduction); OMShell as interactive session handler is a minimal 
experiment frame; Modelica models may be set up by a simple text editor or by a graphical model editor (here, 
for teaching purposes the model editor of MathModelica is allowed to be used!); the purpose of OMNotebook is 
to provide an advanced Modelica environment and teaching tool; the DrModelica notebook provides all the 
examples from P.  Fritzson's book on Modelica; the other modules support environment interfacing and Open 
Modelica development. 
 

 

Figure 15. Software Modules of Open Modelica. 
 

Open Modelica is a generic Modelica simulator, so all basic features are met (ED, SEH, DAE, PM-T, PM-G, IR 
and MOD ‘yes’; for DAE solving, variants of DASSL solver are used). P. Fritzson, the initiator of Open Modelica 
puts emphasis on discrete events and hybrid modelling, so documentation comes with clear advice for use of IF – 
and WHEN – clauses in Modelica, and with state chart modules in DrModelica – so SC-T gets ‘yes’. Figure 16 and 
Listing 6 show the equivalence of a state chart and the correct definition as Modelica submodel. For graphical state 
chart modelling the experimental Modelica state chart library can be used – so SC-G ‘(yes)’.  
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________________________________ 
partial model SimpleBacklash 
Boolean backward, slack, for-
ward; 
parameter …… 
equation 
phi_dev = phi_rel - phi_rel0; 
 backward = phi_rel < -b/2;  
 forward = phi_rel > b/2;  
 slack = not (backward or for-
ward);  
 tau = if forward then  
             c*(phi_dev – b/2)  
       else (if backward then  
                c*(phi_dev + 
b/2) 
             else 0);  
end SimpleBacklash 

________________________________ 

Figure 16. State chart model for backlash function. Listing 6. Modelica implementation for state 
chart model of backlash function (Figure 16). 

 

The notebook features allow interfaces and extensions of any kind, e.g. for data visualisation and frequency analysis – 
FA and VIS ‘(yes)’; they allow also for controlled executive of different models, so that hybrid decomposition of 
structural dynamic systems is possible – SD ‘(yes)’. 

6.7 SimulationX 
SimulationX is a new Modelica simulator developed by ITI simulation, Dresden. This almost generic Modelica 
simulator is based on ITI’s simulation system ITI-SIM, where the generic IT-SIM modelling frame has been 
replaced by Modelica modelling. From the very beginning on, ITI-SIM concentrated on physical modelling, with 
a theoretical background from power graphs and bond graphs. Figure 17 shows graphical physical modelling in 
ITI-SIM – very similar to Modelica graphical modelling. The simulation engine from ITI-SIM drives also Simula-
tionX, using a sophisticated implicit integration scheme, with state event handling. 

 
Figure 17. Physical modelling in ITI-SIM / SimulationX. 

Consequently, all features related to physical modelling are available: (ED, SEH, DAE, PM-T, PM-G, and MOD 
‘yes’; index reduction is not really implemented – IR ‘(no)’.  State chart constructs are not directly supported 
(SC-T ‘no’), but due to Modelica compatibility the Modelica state chart library can be used (SC-G – ‘(yes)’. 
Frequency analysis is directly supported in the simulation environment (FA – ‘yes’), as well as interfaces to 
other systems (ENV – ‘(yes)’) and pseudo-3D visualisation (VIS – ‘yes’). 

 

6.8 AnyLogic 
AnyLogic – already discussed in a previous section) is based on hybrid automata (SC-T and SC-G - ‘yes’). Con-
sequently, hybrid decomposition and control by external events is possible (ED, SD ‘yes’). AnyLogic can deal 
partly with implicit systems (only nested approach, DAE ‘(yes)’), but does not support a-causal modelling (PM-
T, PM-G - ‘no’) and does not support Modelica (MOD - ‘no’). Furthermore, new versions of AnyLogic concen-
trate more on discrete modelling and modelling with System Dynamics, but without event detection (SEH ‘(no)’. 
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AnyLogic offers many other modelling paradigms, as System Dynamics, Agent-based Simulation, and DEVS. 
AnyLogic is Java-based and provides simulation-driven visualisation and animation of model objects (VIS ‘yes’) 
and can also generate Java web applets. From software engineering view, AnyLogic is a programming environ-
ment for Java – so ENV – ‘(yes)’.  

In AnyLogic, various implementations for the Constrained Pendulum are possible. A classical implementation is 
given in Figure 7 following classical textual ODE modelling, whereby a state chart is used for switching (I-SE-P, 
I-SE-S).  

AnyLogic E-SE-P Model with State Charts. A hybrid decomposed model may make use of two different models, 
each defined in substate / submodel Short and Long. – both part of a state chart switching between these submod-
els. The events defined at the arcs stop the actual model, set new initial conditions and start the alternative model 
(Figure 13). 

AnyLogic E-SE-P Model with Parallel Models.  AnyLogic works interpretatively, after each external event 
state equations are tracked and sorted anew for the new state space. This makes it possible, to decompose model 
not only in serial, but also in parallel. In Constrained Pendulum example, the ODE for the angle, which is not 
effected by the events, may be put in the main model, together with transformation to Cartesian coordinates 
(Figure 14), which seems to run in parallel with different velocity equations. 

  
Figure 18. Anylogic model for Constrained Pendulum, hybrid 

model decomposition  with two Pendulum models  
and External Events 

Figure 19. Anylogic model for Constrained Pendulum, hybrid 
model decomposition with two models  

for angular velocity and overall model for angle 
 

6.9 SCILAB / SCICOS 
Scilab is a scientific software package for numerical computations with a powerful open computing environment 
for engineering and scientific applications. Scilab is open source software. Scilab is since 2003 in the responsi-
bility of the Scilab Consortium. Scicos is a graphical dynamical system modeller and simulator toolbox included 
in Scilab. Scilab / Scicos is an open source alternative to MATLAB /  Simulink, developed in France. So it has 
nearly the same features than MATLAB: no equation sorting– MS – ‘no’!; DE, IR, PM-T, PM-G, MOD, SC-T, 
and SC-G – ‘no’; SEH, DAE, and VIS – ‘(yes)’, remarkably – SD, FA and ENV – ‘yes’. Similarly, Scicos has 
classical features ED, SEH, and DAE – ‘yes’. 

The developers of Scicos started early with a kind of physical modelling (PM-T, PM-G – yes) - Figure 20 shows 
an electrical modelling palette of Scicos. They are working on extensions in two directions: 

� extending the model description by full Modelica models (text/graphic) – so MOD and IR ‘(yes)’ 
� refining the IF-THEN-ELSE and WHEN clause introducing different classes of associated events,  

resulting ‘state chart clauses’ - so SC-T – ‘yes’ 

Standalone Scicos has no features for frequency analysis, structural decomposition and extended environment 
(FA, SD, ENV – ‘no’), but limited visualisation (VIS – ‘(yes)’); Scicos controlled by Scilab has all these features 
(VIS, FA, SD, ENV – ‘yes’). 
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Figure 20. Scicos Physical Modelling Palette for electrical applications 

6.10 Maple 
Maple – developed by Maplesoft, Canada, has developed a toolbox MapleSim, which will understand Modelica 
models (PM-T, PM-G, and MOD – ‘yes’). MapleSim comes with a big library of physical components, basically 
modelled in Maple code (Figure 21). Maple also acts as environment and provides sophisticated DAE solvers, as 
well as symbolic algorithms for index reduction (DAE, IR, ENV, VIS, and FA – ‘yes’).  

 

 

Figure 21. Physical modelling definition in MapleSim library. 

In development are constructs for events and event handling (ED–‘yes)’, SEH–‘(no)’); textual state chart model-
ling has not been discussed yet, graphical state chat notation may com from the experimental Modelica state 
chart library (SC-T – ‘no’, SC-G – ‘(yes)’). 

 

6.11 Model Vision Studium MVS 
Model Vision Studium (MVS) – is an integrated graphical environment for modelling and simulation of complex 
dynamical systems. Development of MVS started in the 1990ies at Technical University of St. Petersburg; for end 
of 2008, an English version is announced. 

Basis of MVS are hybrid state charts (SC-T, SC-G - ‘yes’), allowing any parallel, serial, and conditional combina-
tion of continuous models, described by DAEs, and controlled and interrupted by state events (ED, SHE - ‘yes’). 
State models itself are objects to be instantiated in various kinds, so that structural dynamic systems of any kind can 
be modelled (SD - ‘yes’). Textual physical and DAE modelling is supported by an editor capable of editing mathe-
matical formula (DAE and PM-T ‘yes’, PM-G no), but no Modelica compatibility (MOD – ‘no’).  
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For MVS, a subset of UML Real Time was chosen and extended to state chart activities (Java – based). Other mod-
ules (simulation kernel, environment) are linked modules (e.g. C-modules), e.g. Java-base simulation driven visu-
alisation (VIS - ‘yes’). In principle, MVS and AnyLogic have been developed in parallel. The continuous elements 
in AnyLogic have been taken from MVS, because AnyLogic started as pure discrete simulator. 

State charts are similar to AnyLogic, consisting of different implicit state space descriptions – and also defining 
complex experiments (calling different models; ENV – ‘yes), but without frequency analysis (FA – ‘no’). As 
example, two states pendulum and flight, and a state chart handling the external event of type E-SE-D (Figure 22) 
describe a breaking pendulum. 

 

 
 

Figure 22. MVS model for Breaking Pendulum - hybrid model decomposition into pendulum and flight model. 
 

7 Comparison of Structural Features availability in selected simulators 
While the Extended Features address the CSSL-standard and its extensions, Structural Features characterise fea-
tures for physical modelling and for structural dynamic systems, the main development from the year 2000 on. The 
Structural Features may be classified as follows: 

� Support of a-causal physical modelling at textual (PM-T) or graphical level (PM-G), 
� Modelica standard (MOD) for physical modelling, 
� Decomposition of structural dynamic systems with dynamic features (SD) 
� Support of state chart modelling or of a similar construct, by means of textual  

(SC-T) or graphical (SC-G) constructs. 

Simulators with a-causal modelling may support hybrid decomposition or not, and state chart modelling may be 
available or not. Simulators with features for state chart modelling may support hybrid decomposition or not, and 
a-causal modelling may be offered or not. In general, interpreter-oriented simulators offer more structural flexi-
bility, but modern software structures would allow also flexibility with precompiled models. In addition, of in-
terest are also structural features as: 

� simulation-driven visualisation (visualisation  
objects defined with model objects; VIS), 

� frequency domain analysis and linearization for steady state analysis (FA), and 
� extended environment for complex experiments and data processing (ENV). 

The evaluation of the feature availability is mainly based on solutions of the ARGESIM Benchmarks. In sec-
tion 3 these benchmarks have been introduced, citing the ‘continuous benchmarks, which gave information for 
this evaluation. Table 2 indicates, which features (E – classical feature, S – structural feature) occurred in which 
benchmarks. The table list also features which may be also of interest for further investigations: 

� optimisation and identification (OPT/ID) 
� VHDL-AMS standard (V-AMS) 
� System Dynamics modelling (SYS-D) 
� Real-time Simulation (RT) 
� Co-Simulation (COS) 
� Spatial Dynamics (SPAT) 
� Parallel Simulation (PAR) 
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Feature Type Benchmarks 
MS C C1, C3, C5, C7, C9, C11, C13 
ED C C3, C5, C7, C9, C11, C12, C13, C18, (C20) 
TEH C C3, C9, C12, C13, C18 
SEH C C5, C7, C11, C12, C13, (C20) 
DAE C C7, C11, C13, (C20) 
IR C C11, C13, (C20) 
PM-T S C1, C3, C5, C7, C9, C11, C13, C15, C19, (C20) 
PM-G S C1, C3, C5, C7, C9, C11, C13, C15, C19, (C20) 
VIS S C1, C3, C7, C9, C11, C12, C17 
MOD S C1, C3, C5, C7, C9, C11, C13, C15, (C20) 
SC-T S C3, C5, C7, C9, C11, C12, C13, (C20) 
SC-G S C3, C5, C7, C9, C11, C12, C13, (C20) 
SD S C5, C7, C9, C11, C13, C15, (C20) 
FA S C1, C3, C11, C13 
ENV S C1, C3, C5, C7, C9, C11, C12, C13, C15, C17, C18, C19, (C20) 
   

OPT/ID (S) C7, C15, C17, C18, (C20) 
V-AMS (S) C3, C5, C7, C9, C13, (C20) 
SYS-D (C) C1, C7, C15, C17 
RT (C) C3, C9, C13, C18 
COS (C) C9, C11, C18 
SPAT (C) C17, C19 
PAR (S) CP-1, C19 

Table 2. Register of benchmarks and associated investigated features  
– first 15 lines indicate evaluated features,  

- last 7 lines indicate features for planned evaluation.  

Main results of the availability evaluation for extended features (sometimes also referred as classical feature) are 
summarised in Table 3. The availability of features - is indicated by ‘yes’ and ‘no’; a ‘yes’ in parenthesis ‘(yes)’ 
means, that the feature is complex to use, a ‘no’ in parenthesis ‘(no)’ means, that the feature is either foreseen or 
there is a way around. The evaluation will be refined and completed by further benchmark solutions – mainly 
C20 – Hybrid Approaches and Hybrid Modelling – and by further features as given in Table 2. 

8 References 
As a really adequate reference list, with details on structures, features, and detailed developments and background 
would cover again 10 pages, alternatively the list is restricted to only few main sources. For information modelling 
approaches, it is referred to the journal SNE – Simulation News, where regularly benchmarks, also for Modelica 
modelling, are published (sne.argesim.org, ww.argesim.org). For simulator information, see webpages of distribu-
tors / developers. 

[1] F. Breitenecker F., I. Troch. Simulation Software – Development and Trends. In Modelling and Simulation 
of Dynamic Systems / Control Systems, Robotics, and Automation. H. Unbehauen, I. Troch, and F. Bre-
itenecker (Eds.). Encyclopedia of Life Support Systems (EOLSS), Oxford ,UK, www.eolss.net, 2004. 

[2] Cellier, F.E. (1991). Continuous System Modeling. Springer, New York.  
[3] Cellier, F.E., and E. Kofman. 2006. Continuous System Simulation. Springer, New York. 
[4] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica. Wiley IEEE Press, 2005. 
[5] Fritzson, P., F.E.Cellier, C. Nytsch-Geusen, D. Broman, M. Cebulla, Eds. 2007. EOOLT'2007 -  Proc. 1st 

Intl. Workshop on Equation-based Object-oriented Languages and Tools. TU Berlin Forschungsberichte, 
Vol. 2007-11. 

[6] C. Nytsch-Geusen P. Schwarz. MOSILAB: Development of a Modelica based generic simulation tool sup-
porting model structural dynamics. In Proc. 4th Intern. Modelica Conference, G. Schmitz (Ed.), Modelica 
Association - www.modelica.org, 2005, 527 – 535. 

[7] N. Popper, F. Breitenecker. Extended and Structural Features of Simulators – A Comparative Study. SNE 
18/3-4, 2008, 27-39. 

[8] J. C. Strauss. The SCi continuous system simulation language (CSSL). Simulation 9, SCS Publ. 1967, 281-303. 

1466

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



 

M
S 

- M
od

el
 

So
rt

in
g 

 

E
D

 -E
ve

nt
  

D
es

cr
ip

tio
n 

SE
H

 -S
ta

te
 E

ve
nt

 
H

an
dl

in
g 

D
A

E
 - 

D
A

E
  

So
lv

er
 

IR
 - 

In
de

x 
 

R
ed

uc
tio

n 

PM
-T

 - 
Ph

ys
ic

al
 

M
od

el
lin

g 
-T

ex
t 

PM
-G

 - 
Ph

ys
ic

al
 

M
od

el
lin

g 
-G

ra
ph

ic
s 

V
IS

 –
 ‘O

nl
ie

’ -
  

V
is

ua
lis

at
io

n 

M
O

D
 –

 M
od

el
ic

a 
M

od
el

lin
g 

SC
-T

 –
 S

ta
te

 C
ha

rt
 –

 
M

od
el

lin
g 

- T
ex

t 

SC
-G

 –
 S

ta
te

 C
ha

rt
  

M
od

el
lin

g 
- G

ra
ph

ic
s 

SD
 –

 S
tr

uc
tu

ra
l D

y-
na

m
ic

 S
ys

te
m

s 

FA
 –

 F
re

qu
en

cy
 

A
na

ly
si

s 

E
N

V
 –

 E
xt

en
de

d 
E

n-
vi

ro
nm

en
t 

MATLAB no no (yes) (yes) no no no (yes) no no no yes yes yes 

Simulink yes (yes) (yes) (yes) no no (no) (yes) no no no no yes (yes) 

MATLAB /  
Simulink yes yes yes (yes) no no (no) (yes) no no no yes yes yes 

Simulink / 
Stateflow yes yes yes yes no no (no) (yes) no (yes) yes no yes (yes) 

Simulink / 
 Simscape yes yes yes yes (yes) yes yes (yes) (no) no no no yes (yes) 

Simulink / 
Simscape/ 
Stateflow 

yes yes yes yes (yes) yes yes (yes) (no) (yes) yes no yes (yes) 

ML/Simulin
k Simscape 
Stateflow 

yes yes yes yes (yes) yes yes (yes) (no) (yes) yes yes yes yes 

ACSL yes yes yes yes no no (no) (yes) no no no no yes yes 

Dymola yes yes yes yes yes yes yes yes yes (yes) (yes) no (no) (yes) 

Math 
Modelica yes yes yes yes yes yes yes (yes) yes (no) (yes) no (no) (no) 

MathMode-
lica/ Mathe-
matica 

yes yes yes yes yes yes yes yes yes (no) (yes) yes yes yes 

Mosilab yes yes yes yes (no) yes yes (no) (yes) yes yes yes no (yes) 

Open  
Modelica yes yes yes yes yes yes (no) (no) yes (no) (yes) no no no 

SimulationX yes yes yes yes yes yes yes yes yes (no) (yes) no yes (yes) 

AnyLogic yes yes (yes) (yes) no no no yes no yes yes yes no no 

Model  
Vision yes yes yes yes yes yes no yes no yes yes yes yes no 

Scilab no no (yes) (yes) no no no (yes) no no no yes yes yes 

Scicos yes (yes) yes yes (yes) yes yes (yes) (yes) yes (yes) no no no 

Scilab 
/ Scicos yes yes yes yes (yes) yes yes (yes) (yes) yes (yes) yes yes yes 

MapleSim yes (yes) (yes) yes yes yes yes yes yes no no (yes) (yes) yes 

Table3. Availability of Classical and Structural Features in selected simulators; 
yes / no – available / not available 

(yes) / (no) – available, but difficult to use / yet not available, but foreseen or way around. 
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