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Abstract. We investigate the homogenization of an evolution problem modelled by a parabolic equa-
tion, where the coefficient describing the structure is periodic in space but may vary in time in a non-
periodic way. This is performed applying a generalization of two-scale convergence called λ -scale
convergence. We give a result on the characterization of the λ -scale limit of gradients under certain
boundedness assumptions. This is then applied to perform the homogenization procedure. It turns out
that, under a certain condition on the rate of change of the temporal variations, the effective property of
the given structure can be determined the same way as in periodic cases.

1 Introduction
We study an evolution process in a heterogeneous material possible to model by a parabolic equation, e.g. heat
conduction. Consider the equation

∂tuh(x, t)−∇ · (a(hx,β h(t))∇uh(x, t)) = f (x, t) in ΩT =Ω× (0,T ) ,

uh(x, t) = 0 on ∂Ω× (0,T ), (1)

uh(x,0) = u0(x) in Ω,

where Ω is an open bounded set in RN and the function a is periodic in both arguments with respect to the unit
cube Y in RN and (0,1), respectively. We assume that the material coefficient

ah(x, t) = a(hx,β h(t)) (2)

and hence may develop in a non-periodic fashion in time while the structure is periodic in space with period
ε = h−1 for each fixed t and h. Under certain assumptions on a the sequence of solutions uh will converge (as
h→ ∞) towards a limit function u, which solves an equation of the same type as above with identical boundary
and initial data but with a coefficient b which is constant. This equation is called the homogenized problem. This
means that the effective property of a material as described above, for small ε , will be close to that of a material
whose properties does not vary in space or time. Problems of this kind, with oscillations in both space and time,
have been investigated e.g. in [FlOl1], where the oscillations in space are on several scales, and in [FlOl2], which
includes several scales of periodic temporal oscillations. The contribution in this paper concerns the oscillations in
time where the periodicity assumption is relaxed.

2 λ -scale convergence
The special case of periodic homogenization, where we have periodic time oscillations according to

β h(t) = hrt, (3)

can be treated e.g. utilizing two-scale convergence, see [Ng]. For the more general case (2) we apply a generaliza-
tion of this concept, which also allow non-periodic structures, called λ -scale convergence, see [HoSi], [Si], [Pe]
and [MaTo].

Definition 1 Let {αh} be a sequence of functions αh :ΩT → Y × (0,1). A sequence in L2(ΩT ) is said to λ -scale
converge to u0 ∈ L2(ΩT ×Y × (0,1)) with respect to {αh} if

lim
h→∞

∫
ΩT

uh(x, t)v(x, t,αh(x, t)) dxdt =
∫
ΩT

1∫
0

∫
Y

u0(x, t,y,s)v(x, t,y,s) dydsdxdt

for all v ∈ L2(ΩT ;C�(Y × (0,1))).
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A compactness result with respect to this kind of convergence holds if αh(x, t) is asymptotically uniformly dis-
tributed, cf. [HoSi], [Si] and [Pe]. To give a short explanation of this concept we consider functions αh depending
only on x, as originally introduced in [Si]. Let us cover αh(Ω) with a collection {Yk} of unit cubes. Moreover,

divide each such cube into identical smaller cubes Y j
k . The asymptotically uniform distribution of αh means that

for any such partition the quotient between the volume of the part ofΩ needed for αh to produce Y j
k and the volume

of the part of Ω used to obtain the entire cube Yk approaches the portion of Yk occupied by Y j
k , i.e. the volume of

Y j
k , when h→ ∞. Moreover the radius of (αh)−1(Y j) should approach zero uniformly when h→ ∞.

The compactness result states that if αh(x, t) is asymptotically uniformly distributed, then any bounded sequence
in L2(ΩT ) λ -scale converges up to a subsequence, see [Si], Definition 5, Theorem 6, Definition 10 and Proposition
30. Thus if

αh(x, t) = (hx,β h(t)) (4)

is asymptotically uniformly distributed it holds for a subsequence that

lim
h→∞

∫
ΩT

uh(x, t)a(x, t,hx,β h(t)) dxdt =
∫
ΩT

1∫
0

∫
Y

u0(x, t,y,s)a(x, t,y,s) dydsdxdt (5)

for any a in L2(ΩT ;C�(Y × (0,1))). It is easy to see that αh given in (4) is asymptotically uniformly distributed if

β h is. Furthermore, if we have strong convergence of {uh} in L2(ΩT ) we obtain

lim
h→∞

∫
ΩT

uh(x, t)a(x, t,hx,β h(t)) dxdt =
∫
ΩT

1∫
0

∫
Y

u(x, t)a(x, t,y,s) dydsdxdt, (6)

i.e. the local variables y and s vanishes in the λ -scale limit, see Corollary 31 in [Si].

To homogenize (1) we need information about the limit of the gradients of the solutions uh. Utilizing (5) and (6)
we can characterize the λ -scale limit for gradients following the method used in periodic cases, see e.g. [Ng],
[Ho], to obtain the following theorem.

Theorem 2 Let {uh} be a sequence bounded in H1(0,T ;H1
0 (Ω),H−1(Ω)). Then it holds that

lim
h→∞

∫
ΩT

∇uh(x, t)a(x, t,hx,β h(t)) dxdt =
∫
ΩT

1∫
0

∫
Y

(∇u(x, t)+∇yu1(x, t,y,s))a(x, t,y,s) dydsdxdt, (7)

where u is the strong L2(ΩT )-limit of {uh} and u1 ∈ L2(ΩT × (0,1);H1
� (Y )/R).

3 Homogenization
In periodic homogenization with β h given by (3), we may apply two-scale convergence to the weak form of (1)
with suitable choices of test functions to arrive at so-called local problems, which make it possible to determine
the limit coefficient b. These local problems are of three different types for 0 < r < 2, r = 2 and r > 2 respectively.
For 0 < r < 2 the coefficient turns out to have the entries

bi j =
1∫

0

∫
Y

ai j(y,s)+
N

∑
k=1

aik(y,s)∂yk z j(y,s) dyds, (8)

where z j is Y -periodic in the first argument and (0,1)-periodic in the second and solves the local problem

−∇y · (a(y,s)(e j +∇yz j(y,s))) = 0 in Y × (0,1), (9)

see e.g. [BLP] and [Ho].

To perform the homogenization of our problem which may include non-periodic time oscillations we proceed in a
similar manner as in the periodic case. Under the assumption that

h−2∂tβ h(t)→ 0 in L∞(0,T ), (10)

where we assume that {β h} is asymptotically uniformly distributed, it turns out that the homogenized problem for
the non-periodic case coincides with that of the periodic case (3) for 0 < r < 2. To see this we make two different
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choices of test functions in the weak form of (1), that is∫
ΩT

−uh(x, t)v(x)∂t c(t)+a(hx,β h(t))∇uh(x, t) ·∇v(x)c(t) dxdt = (11)

∫
ΩT

f (x, t)v(x)c(t) dxdt

for all v ∈ H1
0 (Ω) and c ∈ D(0,T ). First we choose test functions without microscopic variations, i.e. as just

mentioned, and pass to the limit using (7) and the strong convergence of {uh} in L2(ΩT ), which results in a
preliminary stage of the homogenized problem, with b not yet fully characterized;

∫
ΩT

−u(x, t)v(x)∂t c(t)+

⎛⎝ 1∫
0

∫
Y

a(x, t,y,s)(∇u(x, t)+∇yu1(x, t,y,s)) dyds

⎞⎠ ·∇v(x)c(t) dxdt = (12)

∫
ΩT

f (x, t)v(x)c(t) dxdt.

Next we study problem (11) choosing test functions

v(x) = h−1v1(x)v2(hx), c(t) = c1(t)c2(β h(t)),

where v1 ∈ D(Ω), v2 ∈C∞� (Y )/R, c1 ∈ D(0,T ) and c2 ∈C∞� (0,1). We obtain∫
ΩT

uh(x, t)v1(x)v2(hx)
(

h−1 (∂t c1(t))c2(β h(t))+h−1c1(t)∂sc2(β h(t))∂tβ h(t)
)

+

a(hx,β h(t))∇uh(x, t) · (h−1∇v1(x)v2(hx)+ v1(x)∇yv2(hx)
)

c1(t)c2(β h(t)) dxdt = (13)∫
ΩT

f (x, t)h−1v1(x)v2(hx)c1(t)c2(β h(t)) dxdt.

Obviously, the first term vanishes as h→ ∞ and so does the right hand side. Due to [AlBr]∫
Ω

hv1(x)v2(hx)(·) dx

is bounded in H−1(Ω) and hence the second term in the left hand side of (13) goes to zero if

h−2∂tβ h(t)→ 0 in L∞(0,T ).

Finally, again benefiting from (7) for the remaining part of the left hand side, we arrive at the weak form of the
local problem (9) after a separation of local and global variables. Applying the same kind of separation of variables
in the homogenized problem (12) attained above we can identify b by means of (8).

Thus it is possible to determine the limit coefficient also in certain non-periodic cases, where the key criterion
concerns the rate of change of the function β h.

4 References
[AlBr] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Roy. Soc. Edin-

burgh Sect. A, 126 (1996), 297–342.
[BLP] A. Bensoussan, J.L. Lions and G. Papanicoloau, Asymptotic analysis for periodic structures, Stud. Math.

Appl., North-Holland Publishing Co., Amsterdam-New York, 1978.
[FlOl1] L. Flodén and M. Olsson, Reiterated homogenization of some linear and nonlinear monotone parabolic

operators, Can. Appl. Math. Q. 14 (2006), no. 2, 149–183.
[FlOl2] L. Flodén and M. Olsson, Homogenization of some parabolic operators with several time scales, Appl.

Math. 52 (2007), no. 5, 431-446.
[Ho] A. Holmbom, Homogenization of parabolic equations. An alternative approach and some corrector-type

results, Appl. Math. 42 (1997), no. 5, 321–343.
[HoSi] A. Holmbom, J. Silfver, On the convergence of some sequences of oscillation functionals, WSEAS

Transactions on mathematics 5 (2006), no.8, 951–956.
[MaTo] M.L. Mascarenhas and A-M. Toader, Scale convergence in homogenization, Numer. Funct. Anal. Optim.

22 (2001), no. 1-2, 127–158.

2629

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



[Ng] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,
SIAM J. Math. Anal. 20 (1989), no. 3, 608–623.

[Pe] J. Persson, A non-periodic and two-dimensional example of elliptic homogenization, arXiv:0811.4112.
[Si] J. Silfver, G-convergence and homogenization involving operators compatible with two-scale conver-

gence, Doctoral Thesis 23, Department of Engineering, Physics and Mathematics, Mid Sweden Univer-
sity, 2007.

2630

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3


