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Abstract. Improving the control of activated sludge process is necessary in reducing discharges to 
the environment. Process models can be used for predicting the discharges to help plan corrective 
control actions. A data driven modelling method utilising process data from pulp and paper mill 
database for predicting the mill activated sludge plant effluent chemical oxygen demand (COD) 
concentration is presented in this paper. Self-organising maps (SOM) and K-means clustering are 
used to cluster the process data according to different operating regions of the process. Multilayer 
perceptron (MLP) artificial neural network models are trained and validated with the data from 
each cluster. The choice of input variables for each submodel is optimised by genetic algorithm. 
The results show that the presented method is capable of constructing process models that can pre-
dict the effluent COD concentration two days ahead. 

1 Introduction 
Biological wastewater treatment in an activated sludge process is the most common way of treating pulp and 
paper mill effluents in Finland. With the annual production of 7 million tons of chemical pulp and 14 million 
tons of paper and the water consumption of 20-50 m3 per ton on pulp and 7-15 m3 per ton of paper produced, 
proper control of activated sludge processes treating pulp and paper mill wastewater is of great importance. The 
treatment of forest industry wastewaters has improved a lot since 1970’s in Finland while the total production of 
pulp and paper has increased. Nowadays effluent discharges under normal operation of biological wastewater 
treatment are not so much an issue as they used to be. However, the microbial population in biological wastewa-
ter treatment is sensitive to unusual discharges from the mill and changes in operating conditions. Incidental 
discharges in the wastewater treatment effluent have become a significant proportion of the total amount of dis-
charges. [14] Due to these reasons, there is a need for better methods of predicting discharges from the treatment 
plants. 

Modelling the activated sludge process and using the model for predicting discharges is a possible method for 
achieving better control of the process. However, modelling of the activated sludge process is a very challenging 
task because the reactions of the microorganism are very nonlinear and time varying, and there are variations in 
flow rates and composition of the incoming wastewater. [11] Both mechanistic white-box and data based black-
box modelling have been used with the activated sludge process. The Activated Sludge Model (ASM) No. 1 
developed by the International Water Association can be considered as the reference model in white-box model-
ling. The capabilities of the ASM model family have been extended to also describe biological nitrogen and 
phosphorus removal with the ASM2 and ASM3 models. However, the ASM models were developed for model-
ling activated sludge plants treating municipal wastewater and therefore may not be directly applicable to indus-
trial wastewater treatment plants. [3] 

Studies using either data from the mill databases or from measurement campaigns for black-box modelling of the 
activated sludge process have been reported in the literature. In [12] chemical oxygen demand (COD) concentra-
tion of a municipal wastewater treatment plant effluent was modelled using multilayer perceptron (MLP) artifi-
cial neural network. The architecture and the choice of input variables of the network were optimised with a 
MATLAB® script which went through different combinations of parameters and calculated the correlation coef-
ficient between the modelled and measured effluent COD. The models were only used for calculating the current 
value of effluent COD based on other available measurements from the influent and the activated sludge plant 
and therefore no attempt was made to predict COD discharges. The best MLP model was able to calculate the 
effluent COD with reasonable accuracy. In [5] MLP models were used for predicting the effluent COD concen-
tration of an activated sludge plant treating pulp and paper mill wastewater. 22 variables from the mill databases 
were chosen by a process expert and used as the input variables of the MLP model. The model was trained to 
predict the effluent COD 1-5 days ahead. The prediction of the MLP model was good for one day and moderate 
for two days ahead. Recently there have also been studies about combining mechanistic and data based ap-
proaches into hybrid model structures. For example, in [10] and [11] hybrid model consisting of a modified 
ASM1 model and artificial neural network has been applied for modelling a full-scale cokes wastewater treat-
ment plant. 
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Reactions of the microorganisms are time varying and therefore correlations between the model input and output 
variables will also vary with time. Time varying behaviour of the activated sludge process data was studied in [6] 
using self-organising maps (SOM). Four years of process data were used as an input in the training of a SOM. 
The SOM was then clustered using K-means algorithm according to the reference vectors. It was discovered that 
there is a tremendous variation in the behaviour of the process in different clusters of the process data. Therefore 
it would be very difficult to train one black-box model to take into account the time varying behaviour of the 
activated sludge process over a long time period such as several years. In [6] it was also found that some of the 
variation is seasonal, making it difficult to train one black-box model even with one year of process data. 

The approach in the study reported in this paper is to use routinely measured data from the mill databases for 
black-box modelling of the activated sludge process. COD concentration in the effluent of an activated sludge 
plant treating pulp and paper mill wastewater is predicted two days ahead using the measured data as model 
inputs. Due to the time varying behaviour of the process, the process data is first clustered using SOM and K-
means in order to separate data from different operating regions of the process into their own clusters. Submod-
els are trained with the data of each cluster. MLP artificial neural networks are chosen as the model structure for 
the submodels due to the ability of MLP to describe nonlinear processes. In the available process data there are 
over hundred variables measured from the influent water, the process itself and the effluent water. It is very 
difficult to justify the choice of input variables for each submodel if the choice is made manually. Therefore 
automatic variable selection using genetic algorithms (GA) is implemented. Similar variable selection algorithm 
has been used in [13] for feature selection from Barkhausen noise data with good results. 

2 Description of the process and data 
The process data for the study reported in this paper comes from the activated sludge plant of UPM-Kymmene 
corporation pulp mill in Pietarsaari, Finland. The pulp mill produces 800 000 tons of pulp annually and the acti-
vated sludge plant treats an average of 100 000 m3 wastewater per day. The treatment plant is an ordinary acti-
vated sludge plant consisting of primary sedimentation, aeration and secondary sedimentation. Primary sedimen-
tation is used to remove easily settling solids before aeration. In aeration microorganism consume biodegradable 
organic material for producing energy and cell growth. Activated sludge from the aeration is settled in a secon-
dary clarifier. Effluent of the secondary clarifier is discharged to the sea and settled sludge is returned to the 
aeration basin to maintain sufficient solids concentration. Simplified diagram of the process is presented in Fig-
ure 1. 
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Figure 1. Simplified diagram of the activated sludge process. 

Four years of activated sludge plant process data including online and laboratory measurements was extracted 
from the mill databases. For online measurements the extracted values were daily averages. Laboratory analyses 
included in the data were usually made once a day excluding weekends. The most recent one year of data was 
used for the purposes of this study. The data contained some stoppages of production which were marked as 
missing data. Rows of data which were clearly out of the ordinary range due to measurement errors were also 
marked as missing. The data also contained missing values due to the infrequency of some laboratory analyses 
and breakdowns of measurement instruments. A simple linear interpolation algorithm was used for filling the 
gaps in data. In linear interpolation a straight line is fitted between the values before and after the gap and miss-
ing values are calculated using the line equation [8].  

Variables which could have an effect on the effluent COD concentration were pre-selected by a process expert in 
an earlier study [5]. The same selection of variables with some minor changes was used in this study as the basis 
of further variable selection using GA. Pre-selected variable set is presented in Table 2. 

Because process data is used to predict effluent COD concentration two days ahead, the output variable in data 
was shifted two days forward. Finally, the data was filtered to smooth out the noise in the measurements with 
exponentially weighted moving average filter with a damping constant value of 0.5. 
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3 Methodology 

3.1 Self-organising map 
Self-organising maps (SOM) are a class of artificial neural networks based on competitive learning. Neurons 
compete with each other and only one winning neuron can be activated at a time. In SOM the neurons are placed 
in one- or two-dimensional array. During the competitive learning process the locations of the neurons in the 
array become arranged to represent intrinsic statistical features of the input data. [4] 

The SOM defines a mapping from n-dimensional input data into one- or two-dimensional array of neurons. Each 
neuron is associated with an n-dimensional reference vector mi=[�i1, �i2,…,�in]T. During learning each n-
dimensional data vector x = [�1, �1,…, �n]T is compared with all the reference vectors in some metric such as 
Euclidean distance. The parameters of the reference vector of the winning neuron and its neighbourhood are 
updated to match the data vector better. [9] 

3.2 K-means 
K-means is a partitional clustering algorithm where the data is clustered into a predefined number of k clusters. 
The algorithm begins with picking randomly k cluster centres. Each point in data is assigned to its closest cluster 
centre. Cluster centres are recalculated using the current cluster memberships. If a convergence criterion of no or 
minimal reassignment of patterns to new cluster centres or minimal decrease in a sum of squared errors of data 
point and cluster centre locations is not met, then cluster centres are recalculated iteratively. [7] 

3.3 Multilayer perceptron 
Multilayer perceptrons (MLP) belong to the feedforward class of artificial neural networks. MLP consists of 
different layers of computation nodes or neurons: the input layer, one or more hidden layers and an output layer. 
The input signal propagates through each layer in forward direction. An example of the connections of the neu-
rons is presented in Figure 2. Each neuron calculates its output as a function of a weighted sum of its inputs. The 
activation function is usually sigmoidal nonlinear function. An important feature of an MLP with single hidden 
layer is its ability to compute a uniform approximation of an arbitrary continuous function. [4] 
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Input 
signal 

Output 
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Output layer 

Figure 2. An example of the structure of an MLP with an input layer,  
one hidden layer and an output layer. 

MLPs are trained by adjusting their synaptic weights for each set of data in a supervised manner with an error 
backpropagation algorithm. Error backpropagation consists of two passes through the network. In the forward 
pass, an input vector is applied to the input layer of the network. The signal propagates through the network and 
produces the output signal. The output signal of the network is subtracted from the desired target signal to calcu-
late an error signal. In the backward pass, this error signal is back-propagated through the network and the syn-
aptic weights are adjusted in order move the response of the network closer to the desired response. The purpose 
of training the network is to teach the network to generalise. The network generalises well when the input-output 
mapping of the network is also correct for test data not used in training the network. [4] 

3.4 Genetic algorithms 
Genetic algorithms are optimisation methods where a population of possible solutions is improved over several 
generations using genetic operators inspired by biological evolution. Population consists of individual solutions 
which are encoded into chromosomes. The most commonly used encoding is the binary alphabet but other en-
codings such as real valued encoding can be used. The information in the chromosomes about the variables in 
the solution is decoded, and the fitness of the solution is evaluated by an objective function. The chromosome 
without knowledge of the encoding provides no information about the optimisation problem. The optimisation 
process, however, operates on the encoded chromosomes using genetic operators. [1] 

Individuals are chosen for reproduction with a probability related to their fitness values. Recombination opera-
tors are used to combine genetic information from the selected parents to produce offspring. Mutation operator is 
applied to the new population in order to guard against losing good genetic material in the selection and cross-
over operations. The new population is then evaluated using the objective function. The GA is usually termi-
nated after predefined number of generations. [1] 
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4 Combined algorithm 
Artificial neural networks, K-means clustering and genetic algorithms have been combined in pre-processing, 
tuning and modelling. 

4.1 SOM and clustering 
The pre-processed data was clustered with SOM and K-means in order to separate data from different operating 
regions of the process. Three important variables describing operating region of the process were chosen as the 
inputs to the SOM: sludge load, DSVI and aeration basin temperature. SOM with 25 x 25 neurons was con-
structed and trained with batch training algorithm for 50 epochs. The reference vectors of the SOM were then 
clustered into six clusters with K-means algorithm. The training data were assigned to the clusters by finding the 
best matching neuron for each row of the data. The states of the process associated with each cluster are pre-
sented in Table 1. 

Cluster Aeration basin temperature DSVI Sludge load

1 4 2-3 1

2 4-5 4-5 3-4 

3 1 2 2 

4 5 1 3-5 

5 3-4 1 3-4 

6 3-4 1-2 1-2 

Table 1. The states of the process associated with each cluster. Numbers indicate the 
levels of variables: 1 – low, 2 – slightly low, 3 – medium, 4 – slightly high and 5 – high. 

4.2 Genetic algorithm 
The choice of input variables for submodel of each cluster was optimised with GA. The information was binary 
coded: the variable is selected if the bit is 1 and not selected if the bit is 0. There were 23 possible input variables 
for each of the six submodels making the size of the chromosome 138 bits. The initial population of 200 chro-
mosomes was generated with the probability of a bit being 1 was 0.5. The parents for the recombination operator 
were chosen with tournament selection. In tournament selection five candidates are randomly chosen for each 
tournament, and the candidate with the lowest value of the objective function to be minimised is chosen as a 
parent. If a randomly generated number is higher than a crossing probability of 0.9, the chosen parents are then 
used to create offspring by single-point recombination with a randomly chosen splitting point. Otherwise the 
parents are directly added to the new population. The parent selection and recombination is carried on until a 
new population with the size of 200 chromosomes has been created. Each bit of every population member is 
subjected to mutation with a probability of 0.02. If mutation happens for a certain bit, the value of the bit is 
changed. Finally, elitism is applied by replacing the worst chromosome of the new population with the best 
chromosome of the previous population. 

The objective function used in evaluating the fitness of solutions utilises correlation coefficients between the 
effluent COD predicted by MLP submodels and measured values. Correlation coefficient isn’t a perfect measure 
of prediction accuracy. Very good correlation coefficient may result from actually a very lousy prediction. 
Therefore correlation coefficients between the outputs of multiple linear regression (MLR) models and measured 
values were also utilised in the objective function. The reason for utilising the correlation coefficients of the 
MLR models is that if some choice of input variables results in a good prediction with two different model struc-
tures, there is a higher chance that the good correlation coefficient is actually due to good prediction. To avoid 
including insignificant input variables in the model, a penalty term calculated from the number of input variables 
is added to the objective function. The objective function used in this study is 
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where RjMLP is the correlation coefficient between the effluent COD values predicted by the MLP submodel and 
the measured values of the validation data of the jth cluster, RjLR is the correlation coefficient between the effluent 
COD values predicted by the linear regression model and the measured values of the validation data of the jth 
cluster, mj is the number of input variables in the submodel of the jth cluster and n is the number of clusters. 

 

 

1017

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



4.3 MLP submodels 
MLP submodels predicting effluent COD two days ahead were created and trained using input variables decoded 
from the chromosomes. Data from each cluster was split into training and validation data. Three fifths of the data 
was used for training the MLP models and two fifths for stopping the training and validating the models. Each 
submodel has one hidden layer with seven neurons. Neurons in the hidden layer have hyperbolic tangent sigmoid 
transfer functions and the output layer neuron has linear transfer function. Determining the required number of 
hidden layer neurons for submodels is difficult because the clusters have different lengths of training data. 
Therefore the networks were trained with Levenberg-Marquardt algorithm with Bayesian regularisation. The 
regularisation prevents overfitting the data by making sure that the effective number of parameters in the net-
work remains the same regardless of the total number of parameters [2]. 

5 Results and discussion 
The optimisation of the choice of input variables with the algorithm described in Section 4 was run ten times to 
avoid the effect of randomly generated initial population. In each run of the algorithm, the number of generations 
in the genetic algorithm was 50. The best set of submodels from these results was chosen by looking at the 
measured effluent COD and the outputs of the submodels, because the best objective function value doesn’t 
necessarily correspond with the best model. Measured and two days ahead prediction of effluent COD are pre-
sented in Figure 3. Data in Figure 3 is grouped by clusters and it is not presented in chronological order.  

From the Figure 3 it can be seen that the predicted effluent COD follows the measured values quite closely. The 
exact values are not always predicted perfectly, but the submodels are able to predict the direction of change. 
Clusters represent different operating regions of the process as can be seen in Table 1. Clusters 4-6 represent the 
normal operation of the process with low DSVI values. These clusters contain most of the process data. Even 
though the DSVI stays at low constant value, there is significant variation in the effluent COD due to changes in 
the influent COD concentration, biodegradability of the organic load and the microbial population. The submod-
els are apparently able to take into account the effect of these changes to predict the resulting change in effluent 
COD concentration.  
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Figure 3. Measured effluent COD and the outputs of the submodels for each cluster.  
Validation data is in the upper picture and network training data in the lower picture.  

Black vertical lines indicate cluster breaks. Data before first vertical line belongs 
to cluster one, data before second vertical line belongs to cluster two and so on. 

The choice of input variables for submodel of each cluster is presented in Table 2. The number of input variables 
in submodels is quite high, indicating that the penalty term calculated from the number of input variables didn’t 
have enough effect and there are still redundant input variables left. The previous value of the predicted variable, 
effluent COD concentration wasn’t included as an input variable in any of the submodels even though it has 
good correlation with the predicted variable. Therefore other input variables provided enough information of the 
future effluent COD, and the previous value would have been a redundant variable. Sludge indices and nutrient 
concentrations in the effluent were included in many of the submodels. Sludge indices provide information of the 
state of the biomass and effluent nutrient concentrations provide information of the excess soluble nutrients 
which are required for biomass growth and reducing the organic load in the wastewater. 
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Variable \ Cluster 1 2 3 4 5 6 

COD concentration, 3
Flow rate, 4 x x
Flow rate, 3 
Solids concentration, 1 x x
Solids concentration, 2 x x
Solids concentration, 3 x x
Solids concentration, 4 x x
COD concentration, 1 x x
pH, 1 x x
pH, 4 x
Conductivity, 1 x
Total nitrogen concentration, 1
Total nitrogen concentration, 3 x x x
Total phosphorus concentration, 1 x x
Total phosphorus concentration, 3 x x x x
Dissolved oxygen, 2 x x
Temperature, 1 x
Temperature, 2 x x
Settling of sludge, 2 x
DSVI, 2 x x x x
SVI, 2 x x x
Sludge retention time x x x
Sludge load x x

Table 2. Pre-selected set of variables and their use as input variables of the submodels. 
Numbers after variable name indicate the measurement location. 1 - before aeration,  

2 - after aeration, 3 - after secondary clarification and 4 - from return sludge. 

6 Conclusions 
Reducing incidental discharges from activated sludge plants treating pulp and paper mill wastewater is important 
in order to reduce the total amount of discharges to the environment. Modelling the activated sludge process and 
using the model to improve process control is a possible method for reducing discharges. The results presented 
in this paper show that using SOM and K-means for finding different operating regions of the process and train-
ing MLP submodels for the operating regions with input variable selection by genetic algorithms is an efficient 
way to predict COD concentration in the activated sludge plant effluent.  
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