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Abstract. Flexibilities of a machine’s structure have to be taken into account if high precision and
high speed positioning are desired. Thus, the system’s efficiency can be increased by consideration
of its flexibilities in the control design instead of using a stiffer and, therefore heavier structure. For
linearly actuated robots, like placement machines or rack feeders, an explicitly parametrized feed for-
ward control law is presented. Positioning of elastic structures with a constant mass distribution can
be performed, by avoiding residual vibrations using a flatness based control law. The efficiency and
aspects of robustness of this approach are investigated numerically using a finite element and a finite
difference model.

1 Introduction
For systems with a flat output it is simple to calculate feedforward control trajectories. For linear distributed pa-
rameter systems a well developed flatness based theory can be found in [2, 3, 4, 6]. Based on this theoretical
background a flatness based planning approach based on a very simple mechanical model for a real world mech-
anism can be found in [1]. Here the simple — yet already very useful — mechanical model used in [1] is further
developed into a more detailed mechanical model for unilaterally actuated linear manipulators with a perpendic-
ularly mounted arm subject to vibrations. In view of parametric uncertainties occuring in practice robustness and
efficiency of this approach are numerically studied.

2 Moving beam with point mass
In Figure 1 the mechanical model considere is sketched. The vertical structure is modelled by an Euler Bernoulli
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Figure 1: Linear actuator with attached elastic structure.
Elasticities of the slide bar are modeled by a rotational
stiffness kT . The structure between the actuator and the
payload mL — for instance a tool like a gripper — as also
the structure beyond the mass mL are taken into account
as two Euler-Bernoulli beams.

beam separated into two sections below and above the payload mL situated at a distance l from the base point. The
stiffness of the slide bar is modeled as a rotational spring situated at the base point. This leads to a boundary value
problem with eight boundary conditions.

The independent variables, i.e., the positions x1 and x2 along the beam segments as well as the time t, are normal-
ized for the calculation:

x1 =
x1
L

, x2 =
x2
L

, t =
1
L2

√
EI

√
ρA

t, l =
l
L

. (1)

The (normalized) partial differential equations can then be written as

∂ 4
x1

w1(x1, t)+ ẅ1(x1, t) = 0 (2)

∂ 4
x2

w2(x2, t)+ ẅ2(x2, t) = 0. (3)
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Here ∂ 4
xi

wi is used to denote the partial derivative ∂ 4wi
∂x4

i
while ẅi denotes ∂ 2wi

∂ t2 , i = 1,2. The (normalized) boundary
conditions read as follows:

α ∂ 2
x1

w1(0, t) = ∂x1 w1(0, t) (4)

∂ 3
x1

w1(0, t) = ũ(t) (5)
w1(l, t) = w2(l, t) (6)

∂x1 w1(l, t) = ∂x2 w2(l, t) (7)

∂ 2
x1

w1(l, t) = ∂ 2
x2

w2(l, t) (8)

∂ 3
x1

w1(l, t)+ϕ ẅ1(l, t) = ∂ 3
x2

w2(l, t) (9)

∂ 2
x2

w2(1, t) = 0 (10)

∂ 3
x2

w2(1, t) = 0. (11)

Here α , ϕ , and ũ(t) are defined as

α =
EI
kT L

, ϕ = −
mL

ρLA
, ũ(t) = −

L3

EI
u(t). (12)

Table 1: Short description of boundary conditions
Eq-Nr. Meaning

(4) Bending moment at base point equals spring torque.
(5) Shear force at foot is equal to actuator force.
(6) Beam deflections at the crosspoint are equal.
(7) Beam inclinations at the crosspoint are equal.
(8) Bending moments at the crosspoint are equal.
(9) Shear forces and inertial force due to load mL are balanced.

(10) No torque at the free end of the beam.
(11) No shearing force at the free end of the beam.

3 Flatness based trajectory planning
It is assumed that the mechanism is at the beginning of the motion at rest:

w1(x1,0) = 0, w2(x2,0) = 0, ẇ1(x1,0) = 0, ẇ2(x2,0) = 0. (13)

Thus, the following ordinary differential equations can be derived by replacing the operator s for derivation w.r.t. t
(by Laplace transform or Mikusiński’s operational calculus):

∂ 4
x1

ŵ1(x1)+ s2ŵ1(x1) = 0 (14)

∂ 4
x2

ŵ2(x2)+ s2ŵ2(x2) = 0. (15)

The following ansatz functions are chosen for ŵ1 and ŵ2:

ŵ1(x1) = aC1(x1)+bC2(x1)+ c S1(x1)+d S2(x1) (16)
ŵ2(x2) = eC+(x2)+ f C−(x2)+g S+(x2)+h S−(x2) (17)

with the operational functions C1, C2, S1, and S2 in (16) defined as

C1(x) =
cosh(

√
jsx)+ cos(

√
jsx)

2
, C2(x) =

cosh(
√

jsx)− cos(
√

jsx)
2 js

,

S1(x) =
sinh(

√
jsx)+ sin(

√
jsx)

2
√

js
, S2(x) =

sinh(
√

jsx)− sin(
√

jsx)
2( js)3/2 .

With these C+, C−, S+, and S− in (17) are defined as

C+(x) =
C +C

2
=

∂S−

∂x
, C−(x) =

C−C
2 j

=
∂S+

∂x
, (18)

S+(x) =
S + jS
2h
√

s
= −

1
s

∂C+

∂x
, S−(x) =

−S + jS
2h̄
√

s
=

1
s

∂C−

∂x
(19)
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with C(x) = cosh [h
√

s(1− x)], S(x) = sinh [h
√

s(1− x)], j =
√
−1, and h = exp( jπ/4) . Moreover, C, S, and h

denote the complex conjugates of C, S, and h. Using the ansatz (16)–(17) in the boundary conditions (4), (5), (10),
and (11) it follows that c = αb, d = ˆ̃u, f = 0, g = 0. Thus, (16) and (17) simplify to

ŵ1(x1) = aC1(x1)+bC2(x1)+α b S1(x1)+ ˆ̃u S2(x1) (20)
ŵ2(x2) = eC+(x2)+h S−(x2). (21)

Using (20), (21) in the other boundary conditions (6)–(9), an (inhomogeneous) linear system of equations for the
four unknown parameters a,b,e,h can be derived:

aC1(l)+b[C2(l)+αS1(l)]+ ˆ̃uS2(l) = eC+(l)+hS−(l)
−as2S2(l)+b [S1(l)+αC1(l)]+ ˆ̃uC2(l) = −seS+(l)+hC+(l)

−as2C2(l)+b[C1(l)−αs2S2(l)]+ ˆ̃uS1(l) = −seC−(l)− shS+(l)−as2S1(l)
+ ˆ̃uC1(l)−b[s2S2(l)+αs2C2(l)]

ϕs2[aC1(l)+b[C2(l)+αS1(l)]+ ˆ̃uS2(l)] = −s2eS−(l)− shC−(l).

Replacing these parameters in the solution (20), (21) one obtains a representation of the form

Q1ŵ1(x1) = P1(x1) ˆ̃u (22)
Q2ŵ2(x2) = P2(x2) ˆ̃u. (23)

After multiplication of (22) with P2 and (23) with P1, ˆ̃u can be eliminated, thus

P2(x2)Q1ŵ1(x1) = P1(x1)Q2ŵ2(x2). (24)

Here a new “free parameter” ŷ0 is introduced:

ŵ1(x1) = P1(x1)Q2ŷ0 (25)
ŵ2(x2) = P2(x2)Q1ŷ0 (26)

ˆ̃u = Q1Q2ŷ0. (27)

This new variable ŷ0 is called a flat output of the system [2, 4]. Use of this flat output would allow a parameteriza-
tion of the complete system trajectories.

Anyhow, a slight simplification results by parametrizing trajectories of the lower beam only. To this end, one may
introduce ŷ as

ŷ = Q2ŷ0. (28)

It is obvious from (25) and (27) that this allows to parameterize trajectories of w1 and ũ. This is done in the sequel.

By a calculation similar to what is done in [2, 4], viz. a series expansion of the (transcendental) operational
functions involved in the expressions of P1 and Q1, sorting, interpretation of powers of s as differentiation w.r.t.
time, the beam deflection w1(x1, t) is obtained as

w1(x1, t) =
∞

∑
n=0

(−1)n

(
p1,n(x1)

y(2 n)(t)
(4 n)!

+ p2,n(x1)
y(2 n+2)(t)
(4 n+2)!

+ p3,n(x1)
y(2 n+2)(t)
(4 n+3)!

)
, (29)

and the actuator force is

u(t) =
EI
L3

(
α

y(2)(t)
2

−
∞

∑
n=0

(−1)n

(
q1,n

y(2n+2)(t)
(4n+1)!

+q2,n
y(2n+4)(t)
(4n+3)!

))
. (30)
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Here

p1,n(x1) =
1
2

(
x4n

1 +(Re+ Im){(1− x1 + j)4n}
)
,

p2,n(x1) =
αϕ
4

(Im{(x1 −1+ j)4n+2}+ Im{(x1 − l + l j)4n+2})

+
αϕ
8

[
(Re− Im){(l −1+ x1 +(l −1) j)4n+2}

−Re{(x1 − l +1− (l−1) j)4n+2}+ Im{(x1 − l +1+(l−1) j)4n+2}
]

+
αϕ
8

[
(Re− Im){(x1 −1− (2l −1) j)4n+2}

−(Re− Im){(x1 −2l +1+ j)4n+2}
]
,

p3,n(x1) =−
α
2

x4n+3 +(
α
2
−

ϕ
4

)Re{(x−1− j)4n+3}−
α
2

Im{(x−1− j)4n+3}

+
ϕ
2

Re{(l − x+ l j)4n+3}+
ϕ
8

[
(Re− Im){(l −1+ x+(l−1) j)4n+3}

+(Re− Im){(l −1− x+(l−1) j)4n+3}
]

−
ϕ
8

[
(Re− Im){(x−2l +1− j)4n+3} +(Re− Im){(x−1+(2l−1) j)4n+3}

]
,

q1,n =[(−4)n
(α

2
−

ϕ
4
− l

ϕ
2

)
+(2l −1+ j)4n ϕ

8
(−1− j)+

+(2l −1− j)4n ϕ
8

( j−1)] (4n+1)+(−4)n ,

q2,n =

{
(−4)n+1 (1+2l4n+3 −2(l −1)4n+3)+2Re{(1+(2l −1) j)4n+3}

}
ϕα
8

.

4 Parametrization of the flat output trajectory
In order to satisfy the homogeneous initial conditions and in order to guarantee series convergence trajectories
t �→ y(t) are chosen in such a way that the following conditions are met [2, 4]:

• y : R → R is a C ∞ function,
• y(t) = 0 for t ≤ 0,
• y(t) = y∗T for t ≥ t∗,
• y is a Gevrey function of class α < 2.

This means that y(i)(0) = 0 for i ≤ 0 and y(i)(t∗) = 0 for i > 0 is accomplished. Thus, the function must be smooth
and cannot be an analytical function unless it is identical to zero.

An appropriate choice for such trajectories is

t �→ y∗(t) = y∗T Θ(t) (31)

where y∗T defines the final position at which the device should be positioned. Furthermore, Θ is defined by

Θ(t) =

⎧⎪⎨⎪⎩
0 t ≤ 0∫ t

0 Θσ ,T (τ)dτ∫ T
0 Θσ ,T (τ)dτ

t ∈ (0,T )

1 t ≥ 0
(32)

and Θσ ,T (t) = exp
(
−1/

[(
1− t

T
) t

T
]σ

)
on the interval (0,T ) and vanishes outside.
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5 Planning results
The following planning results for a highly dynamic positioning of the device can be achieved with the analytical
planning algorithm proposed. The field of deflection over the time t is plotted in Figure 2, while snapshots of the
system during a planned motion are shown in Figure 3.
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Figure 2: Field of beam deflection over time
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Figure 3: Phases of positioning movement

6 Simulation results
6.1 Using a FEM model

A simulation result performed with the multi body simulation program MBSIM1 is shown in Figure 4. Here a
device with a pylon height of 10 m is simulated. Positioning of the device over 1.15 m with about 800 kg overall
mass is performed in 1 s. This yields a manoeuvre with force amplitudes according to the available maximum of a
real world device. The total payload mL is 180 kg, where 80 kg are the mass of the tool itself. Residual vibrations
have an amplitude of about 1 mm. The load is in a height of 9 m.
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Figure 4: Simulation results: Fig A: movement of Tool Center Point (TCP), Fig B: difference between TCP- and foot-z
position, Fig C: x-position of payload, Fig D :actuator force

1Multi-Body Simulation software: http://mbsim.berlios.de
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6.2 Using a finite difference model

For a controller design — e.g., a state feedback controller - a discrete model of the system dynamics is desirable.
A model based on finite differences is presented here. The mechanical model is shown in Figure 5. Note that here
torques of inertia caused by the payload are neglected. For systems consisting of two pylons there are indeed no
such torques, because of the parallel kinematics. For systems consisting of a single beam, it has to be verified,
whether the assumption that the payload’s torques of inertia have negligible effect on the beam’s dynamic. The
Euler Bernoulli Beam is modeled by finite differences (Figure 6), the payload mL is attached to the beam through
a horizontally translational stiffness cTCP.
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Figure 5: Mechanical model
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Figure 6: Discrete model

Because this discrete model is much faster than the high level fem model, it will be used further on for investigations
about the robustness of the planning approach. In Figures 7, 8 and 9 the residual vibrations are plotted as a function
of nodes and the stiffness cTCP. For a high spring stiffness the magnitude of residual vibrations is a measure for
the error introduced by the discretization. For the further investigations, twenty nodes will be used.
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Figure 7: Amplitudes at the top
of the beam
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Tool Center Point (TCP)
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Figure 9: Vibration amplitudes
at the bottom of the device

7 Investigation of robustness
The robustness of the presented planning approach is numerically investigated. Two different actuator forces
generated by flatness based trajectory planning are considered — for 1 second and 2 second transition time —
shown in Figure 10. The effects of parameter deviations on the occurring residual vibrations are investigated by
systematic parameter variation and numerical simulation. In Figure 11 and 12 simulation results for various TCP
heights are plotted. As expected, the height of the mass is a very sensible parameter. For instance, with a real
world TCP height of 7 m residual vibrations have got an amplitude of more than 10 mm.
In Figure 13 the amplitudes of residual vibrations are given for different TCP heights and several transition times.
It is obvious that the robustness increases with longer transistion times. In Figure 14 the payload mL is varied and
Figure 15 shows a Variation of the beam length.
In Figure 16 the robustness for the bending stiffness EI, in Figure 17 the robustness for the beam mass ρA, and in
Figure 18 the robustness for the rotational stiffness kT are shown. Thus, it appears that big amplitudes of residual
vibrations (>10mm) must only be expected for big differences of parameters (>15%) and short transition times
(<2s).
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Figure 13: Variation of the
TCP height
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Figure 14: Variation of the
payload from 0 kg up to 100 kg
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Figure 15: Variation of the
beam length
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Figure 16: Variation of the
bending stiffness EI
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beam mass ρA
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8 Conclusion
Using the here presented flatness based planning approach positioning with very low residual vibrations can be
performed. Robustness against variations of the payload and its height has been studied numerically. Compared
to standard trajectories of today’s drives the results are very good even with large parameter variations. For faster
trajectories the robustness decreases. Therefore, this planning approach may be considered as rather robust. For
heights larger than 10 m this enhanced approach shows better characteristics than the simple approach presented
in [1].
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