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Abstract. Like for all mechatronic systems, the role of control software in unmanned aerial vehicle
design is becoming more important. As part of an automated control software development frame-
work, this paper discusses the development of a simulation model generation method. As a basis, the
application of knowledge-based engineering is suggested, requiring the definition of an ontology to
capture the various domain concepts and relationships. The initial knowledge base represents concepts
and relations to create models with Modelica, the object oriented modelling language used to construct
the simulation model. The need for high-fidelity simulation models using the latest design parameters
is illustrated by investigating the model of a quadrotor UAV. Further work will extend the knowledge
base to include the link between system and simulation model components, enabling the inclusion of
behavior in various physical domains.

1 Introduction
According to [1], “mechatronic design deals with the integrated design of a mechanical system and its embedded
control system.” With the advances in computing capabilities, the role of the embedded control system in the
mechatronic system design is becoming more and more prominent. The ‘traditional’ sequential design approach,
in which mechanical, electrical, electronics and software components are designed and optimized sequentially, is
therefore becoming less suitable.

The increasingly important role of control software is prominent in the aerospace field, where both aircraft and
spacecraft operations benefit from the application of software. Apart from passenger jets, using software with
millions of lines of code, and modern fighter jets that require computers to be able to fly in the first place, software
has enabled the use of unmanned aerial vehicles (UAVs). UAVs come in a range of sizes, forms, and purposes,
from the fixed-wing Global Hawk, with a wingspan of 35 meters and with a primary focus on military surveillance
and intelligence gathering, to the X-Ufo quadrotor, a remotely controlled toy of 50 centimeters wide weighing less
than 350 grams. However, all UAVs share the characteristic that flight is either remotely controlled by a pilot on
the ground, or performed autonomously. In the first case the pilot uses the signals from on-board visual sensors to
fly the aircraft. In the second case, a combination of visual, inertial and positioning sensors is used to guide the
aircraft along its predefined path, in the mean time performing additional tasks when required. Autonomous flight
is then obtained by a combination of control software acting like an auto-pilot, and ’external input’ that defines the
flight profile and the tasks to be performed during the mission.

(a) Northrop Grumman RQ-4 Global
Hawk [2].

(b) Silverlit X-Ufo.

Figure 1: Examples of unmanned aerial vehicles.

As controller design can often not be performed without a suitable dynamic model of the aircraft, these models
should be available from early on in the design process. Using control theory, the control algorithms are subse-
quently developed and implemented as software. To test and verify the control software a mix of hardware and
software-based test setups can be applied, ranging from full software-based simulations to prototype hardware
tests. A common practice in aircraft design is the use of ‘Iron birds’, which combine the real aircraft systems
hardware with a virtual flight environment. In this way, the control of the electric, hydraulic and other systems can
be tested in flight condition without having to perform an actual flight test. Due to the large amount of systems,
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it is not possible to model and simulate the behaviour of all of them, therefore, a combination of hardware and
software is used.

In Section 2, the research and its relation to a control software generation framework will be introduced. Section 3
discusses the simulation model generation process, followed by an overview of related research. In Section 5
the model for the quadrotor UAV case study is discussed and the results are presented. Finally, in Section 6 the
conclusions are drawn.

2 Control software generation framework
To support the development of control software and to cope with the multidisciplinary nature of mechatronic
systems, an automatic control software generation framework has been proposed previously [3, 4]. Depicted in
Figure 2, the framework contains a combination of to be further developed and existing commercial tools, sup-
ported by a high-level model description providing both a functional view on the system, as well as an integration
platform.

A design process with not only simultaneous multidisciplinary involvement, but also focussing on multidisciplinary
architecture design, will provide possibilities to increase the synergetic effects characterising mechatronic systems.
Starting the design process with the requirements specification, the initial system can subsequently be build-up
from basic, domain independent system components, satisfying the high-level function requirements. Further
requirement and system decomposition results in a system specification serving as the backbone for detailed design
and analysis. Implemented in software, this backbone also acts as a data exchange facility.

Labeled as ‘Control Model Generation’ in Figure 2, part of the supported development process consists of creating
models used for control algorithm and control software design and verification. Often referred to as plant or
simulation models, these come in the form of system dynamics models. Though an integrated finite element
simulation, taking into account structural, aerodynamical, and electrical physical phenomena, might be attractive
in terms of accuracy, the computational effort and time required for large scale systems makes them unsuitable
for controller design and verification. Instead, these different types of simulations can be used in a sequential
order. For example lift, drag and moment coefficients and stability derivatives determined by using computational
fluid dynamics (CFD) methods can be used in flight mechanics models during controller design. In the current
framework, this analysis data is directly tied to the system components it is related to. For the implementation, the
Systems Modelling Language (SysML) has been proposed [3]. Being a visual language, SysML provides a way to
give an overview of the systems architecture, while at the same time the XML-based XMI representation makes it
possible to process the model data.

Figure 2: Architecture of the integration framework. The white blocks represent tools to be further developed. Dashed-
line blocks correspond to existing commercial software tools.

1369

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



3 Control model generation
As introduced in the previous section, in the framework the multi-disciplinary system architecture is build-up
from mechatronic system components. However, in control design the system is often represented as a set of
(linear) transfer functions, either in the time or in the frequency domain. The link between the parameters in
this representation and those of the physical system is small, in the sense that the former have no direct physical
meaning, but are based in the mathematical domain. For a simple mass-spring-damper system these can still be
traced back to parameters of the original system, but for more complex systems, this becomes troublesome, if not
impossible.

The Modelica language has been designed to model large, complex and hybrid physical systems and is based
on differential and algebraic equations. It supports noncausal and object-oriented modelling techniques, and as
such stimulates the reuse of modelling knowledge. In contrast to the use of transfer functions, with this ‘physical
modelling’ paradigm a component-based model corresponding to physical elements, using parameters directly
related the real world, can be obtained. These parameters can then be obtained via the integration framework,
which binds the model data and analysis results directly to the system components. As often control design relies
on linear models at certain design conditions, the obtained component-based non-linear model must be linearised.

The relation between elements on system component, control and mathematical model can be represented as in
Figure 3, adapted from [12].

componentmechatronic 
system

physical 
description

Modelica 
element

equation

1

1..*

1 1..*

1 1..*

1

1..*

physical 
component

classes

1 1..*

system model

control model

mathematics

Figure 3: Relationships between components and elements at different viewpoints.

Although a direct, one-to-one mapping from system component to control model component is relatively straight-
forward, this kind of mapping ignores the possible interaction occurring in or between elements of different do-
mains. As a single system component can show behaviour in different physics domains, e.g. the mechanical and
aerodynamical domains, a combination of elements will be required to obtain the correct interaction. For example,
the main functionality of a DC-motor is to act as a torque generator. However, when attached to a rotor it will
also serve as an element introducing the aerodynamic forces into the structure, for which the dimensions of the
DC-motor might come into play. The relative vertical position of the rotors with respect to the overall center of
gravity has a strong effect on the stability.

3.1 Requirements

To be able to generate control models in the context of the software development framework the following require-
ments have been recognized:

• It must be possible to build-up the system architecture from elementary technical components.
• These components must have one or multiple representations in the physical modelling world, see Figure 3.
• When connecting elements the port compatibility must be checked to prevent the coupling of incompatible

elements. See e.g. [15].
• Not only the intended behaviour, but also ‘secondary’ or ‘unintended’ behaviour must be recognised and

included.

To handle the third requirement, the interfaces of the elements should not be fixed to the main behaviour of the
element, or those that fulfill the main, expected, functionality. Reference [5] denotes the additional interaction as
‘unpredictable interaction’, resulting in behaviour which occurs either within a domain or by interactions between
domains.

The solution presented in [5] links physical phenomena, like e.g. gravity or thermal radiation, to system model
elements in a library. When the system is build-up by instantiating these elements, a qualitative reasoner reasons
out all possible behaviour [6]. In combination with a model representing the intended behavior, the unpredictable
interactions are discovered. The knowledge base containing the model elements, physical phenomena and related
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concepts is implemented in the Knowledge Intensive Engineering Framework (KIEF) [7]. The use of expert
knowledge in engineering applications enables the automation of that part of the design and analysis process that
is repetitive, non-creative and time-consuming. This can be supported by applying knowledge-based engineering
techniques and tools, featuring rule based design and object-oriented programming [8]. In general, a knowledge
base is build-up from concepts, attributes to these concepts, values, and the relations between concepts. Most
knowledge bases can be represented as in a diagram with concepts connected via relations, see Figure 5, or with
the focus on attributes, shown as a frame as in Figure 4 [9].

Although the method of [5] is based on qualitative physics, the idea of using physical phenomena linked to system
elements can be extended to quantitative simulation model components linked to these system elements. Whether
a certain submodel is required in a certain system depends then on e.g. orientation and relative position in case
of heat radiation. The interface of a component should therefore not be fixed nor restricted to only the intended
connections, but must depend on the system’s implementation.

3.2 Knowledge base development

The creation of a knowledge base containing the systems components and relations starts with the identification
of the applicable concepts and relations. Such an ontology defines what concepts can be found in the domain, and
what kind of relations between these concepts exist. The three levels indicated in Figure 3 each form a domain by
itself for which a separate ontology can be created.

As a first step for setting up the knowledge base supporting the model generation process, a language ontology for
Modelica models has been created. For this, Epistemics’ PCPack [10] has been used, a tool to capture, structure
and re-use both procedural and conceptual knowledge. The former is related to the expertise to perform a task,
while the latter is related to the expertise on concepts and the relationship between these concepts [9].

Based on the Modelica language specification, the concepts and relations in the ontology are restricted such that
only ‘structurally’ correct models can be created with it. In general, a Modelica class represents the behaviour of a
particular aspect of a physical system component. It contains a declaration of elements, which include component
definitions or class instances, equations and connections, and algorithms. Similar to bond graphs, the connection
between physical components have the dimension of energy or power, while the input to actuators and the output
of sensors is a data stream.

Based on the ontology, a database containing Modelica libraries can be created, initially providing an insight in
the relation between and the properties of classes. Figure 4 shows a model of a rotor actuator in the PCPack
interface. The frame representation contains the class attributes and values as well as related class and element
definitions. Due to the nature of the Modelica language, a class specialization hierarchy based on only class
inheritance relations is not possible. However, using additional attributes indicating the level of specialization
can circumvent this problem, which is easily managed in the knowledge base. Similarly, the applicable physical
phenomena can be seen as a attribute of the class.

Figure 4: Rotor actuator component in knowledge base.

The ‘RotorActuator’ class is part of a library of quadrotor specific components, which can be represented as a tree,
see Figure 5.

To be able to relate components from the system level to the control model components, the obtained ontology and
the related knowledge base should be extended or merged. Whereas the ontology should then be applicable to all
types of mechatronic systems, the knowledge base will be system or application domain specific, as the type of
components and their various representations can vary significantly between domains.
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QuadRotorCS

QuadRotorCS�Controllers

QuadRotorCS�Drives

QuadRotorCS�Rotors

QuadRotorCS�Sensors

QuadRotorCS�Utilities

QuadRotorCS�Body

QuadRotorCS�QuadRotorAssembly

QuadRotorCS�Drives�DCMotor

QuadRotorCS�Drives�DCMotorHeated

QuadRotorCS�Drives�GearWithLoss

QuadRotorCS�Drives�RotorActuator

Figure 5: Quadrotor component library as part of knowledge base.

4 Literature review
The application of knowledge-based techniques in the development of simulation models focusses on various sub-
jects. The application of knowledge engineering for the development of conceptual simulation models is discussed
in [11], focussing on how to capture, represent and organize the knowledge required. A general introduction on
knowledge based systems is given in [9].

Reference [12] describes the architecture of a library of reusable simulation models, and argues that there is a need
for a taxonomy of component classes to handle the complexity associated with large libraries. The structure of the
library is not restricted to be tree-like, instead, a tangled structure can also be obtained. To enable component reuse
the application of web-based hierarchical libraries is introduced in [13]. The method is based on the concepts of
modeling components, abstraction hierarchy and genericity of use.

Instead of mapping components, the Composable Object concept combines different views in a single object [14].
Using parametric descriptions the consistency between form and behaviour can be maintained. The interaction
between objects is port-based, and connected they represent both a system-level design description and a virtual
prototype of the system. Due to the port-based approach, views can be replaced by more elaborate models if
necessary, which are possibly build-up from other objects.

Reference [15] discusses more a port ontology in light of automatic model composition, and the need to take into
account the type of interaction taking place. Often, these interaction models depend on the parameters of both
subsystems involved. This principle is also applied in [5] to discover unpredictable interactions in and between
system components, based on qualitative physics. Similarly, a framework to capture the interaction in component-
based design is presented in [16]. To prevent connecting incompatible components, the interaction type is checked.

5 Example application results
5.1 Modelling of quadrotor UAV

In the group of quad- or multirotor UAVs, the systems are highly componentised. As the four actuators are used
both for propulsion and control purposes, and there are no other moving components, the dynamics are mainly
determined by these rotor actuators and the supportive structure. The type and quality of the sensors strongly
influences the amount of autonomomy that can be achieved.

In its most basic form, the model of the quadrotor UAV can be built-up from the following components:

• Body with mass, inertia and area of total system
• 4 actuators consisting of a DC motor, gear, and rotor, taking into account gyroscopic effects, see Figure 7.
• Sensor package, including drift and noise characteristics, see Figure 6
• Environmental effects, i.e. gravity and aerodynamic effects

The effect of electrical and thermodynamical phenomena on system behavior has not been taken into account at
this point, nor the electrical and control hardware subsystem. Various system components require multiple control
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model elements to be represented correctly. Although the main effect of the rotor is the creation of thrust and
torque, the gyroscopic effects have large influence on the dynamics of the system. Furthermore, the aerodynamic
drag on the body can not be discarded despite the low flight speeds. A description of an accurate simulation model
used for testing and validation purposes in the Matlab/Simulink environment is given in [17].

Although on system component level the input to the actuators and the output of sensors will be an electrical
current, using either an analog or digital signal, the model represents this as a stream of data which can directly be
used for control purposes, see Figure 6. The sensor package used in the example consists of an inertial measurement
unit (IMU), containing three gyroscopes and a tri-axial accelerometer, and a magnetic compass. Additional sensors
can include barometric or infrared altitude sensors and infrared distance sensors for indoor flight.

SensorPackageQuadRotor[System] ibd [   ]

<<subsystem>>
 : ElectronicsSub [1]

<<subsystem>>
 : SensorSub [1]

<<block>>
 : Compass [1]

 : I2CData

<<block>>
 : IMU [1]

 : AnalogData

<<block>>
 : VoltageRegulator [3 ]

 : ElectricalPower

 : ElectricalPower

<<block>>
 : Battery [1]

<<block>>
 : Body [1]

 : MechEnergy

(a) Sensor assembly on system component level.

IMU components

Compass

No electrical connections
No digital/analog output signals

Mechanical 
connector

Data stream

(b) Modelica model of sensor assembly.

Figure 6: Sensor package on quadrotor UAV.

The simplest way to calculate the thrust and torque of a single rotor actuator is given in Eq. 1, only taking into
account a variable rotor speed Ω. The constants b and d are the thrust and torque constants, respectively, determined
by experiment or computational fluid dynamics (CFD) calculations.

F = Ω2 [ 0 0 b ]T

Q = Ω2 [ 0 0 d ]T (1)

However, as the effect of altitude, flight speed, and flight direction on the rotor performance is significant, these
variables have to be taken into account. Eqs. 2-3 uses local airspeed and flow directions to calculate 3D forces
and moments at the rotor hub. In here, λ is the dimensionless rotor inflow velocity, μ the dimensionless in-plane
velocity, with subscript X and Y denoting in x and y axis direction, respectively. The thrust and torque coefficient
are defined by [18]:

CT = σa
(

4 + 6μ2

24
θ0 −

1 + μ2

8
θtw −

1
4

λ
)

CQ = σa
(

1 + μ2

8a
Cd + λ

(
1
6

θ0 −
1
8

θtw −
1
4

λ
))

(2)

The solidity σ is a measure for what part of the rotor disc is covered by the rotor blades, and θ0 and θtw are the
root pitch angle and twist angle, respectively. a is the derivative of the lift coefficient CL with respect to the angle
of attack α . The forces and moments are:

F = ρAΩ2R2 [ ChX ChY CT ]T

Q = ρAΩ2R3 [ CrX CrY CQ ]T (3)

where ρ is the air density, A the area of the rotor disc, and R the rotor radius.

A third way to calculate the rotor forces and moments, known as the blade element method, applies a discretisation
to the rotor blades, and calculates the forces and moments on each blade segment based on the local flow field. The
composition of the rotor actuator assembly is given in Figure 7.

5.2 Trim routine results

The obtained non-linear models can be further used for control law design purposes, using linearization or system
identification techniques. As a first step, to find the condition in which steady flight is achieved is obtained, a
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ActuatorAssemblyQuadRotor[Model] bdd [   ]

<<block>>
Rotor

values
airfoil : String
rotorRadius : Length
chord : Length
bladeTwist : Angle
bladeTwistDistribution : String
numberOfBlades : Integer
thrustCoeff : double
dragCoeff : double
Jr : Inertia

<<block>>
DCMotor

values
R : Resistance
alpha : TemperatureCoefficient
Jt : Inertia
k : TorquePerAmpere
C : HeatCapacity
G : ThermalConductance
d : RotationalDamping

<<subsystem>>
ActuatorAssembly

<<block>>
Gear

values
gearRatio : double
efficiency : double

+rotor

1

1

+gear

1

1

+dCMotor

1

1

(a) Actuator assembly components.

Mechanical 
connector

Electrical pin

DC motor Gear Rotor

(b) Modelica model of actuator assembly.

Figure 7: Actuator assembly on quadrotor UAV.

generic rotorcraft trim routine is used, based on the Jacobian method, which uses numerical perturbation of the
model in combination with a Newton-Raphson iteration scheme [19].

Using a trim routine the steady flight condition for a fixed turn rate, flight path angle and/or sideslip angle for a
range of flight speeds is determined. In Figure 8 the control inputs for a flight speed 0-5m/s in forward flight and
in a 3◦/s turn. The inputs are force and torques, which are transformed to motor voltages using a simplified inverse
model. To balance the torque, two clockwise and two counterclockwise rotating actuators are needed.
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(a) Control inputs in forward flight.
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(b) Control inputs in a turn.

Figure 8: Results of trim routine, for an airspeed 0-5m/s. Left in forward flight, right in a 3◦/s turn.

By taking into account the local flow field for each rotor, the required thrust input and rotor speeds are reduced,
as the component of the flight speed perpendicular to the rotor becomes larger, and the thrust increases. The pitch
angle, which is positive nose up, decreases for increasing flight speed, controlled with a small pitch input.

As seen in Figure 9, there is on the other hand no effect on the trimmed velocities in the body reference frame and
the attitude of the UAV, as expected. As a quadrotor UAV has the capability to hover, a 3◦/s turn with zero airspeed
corresponds to a turn around the top axis. In forward, level flight, when the aircraft has a small pitch angle, there
is a small component of the velocity in the body z-axis (positive downward).

6 Conclusions and future work
The increasing importance of control software in mechatronic systems requires a design approach that addresses
both simultaneous multi-disciplinary involvement as well as multi-disciplinary architecture design. Based on this
idea, a framework supporting the development of control software for mechatronic systems was previously pro-
posed. This paper has introduced a knowledge-based approach for generating simulation models as part of this
framework, and illustrated the need for, and advantages of such approach by considering the development of non-
linear simulation models of a quadrotor UAV.

With respect to the case study, the linearisation of the quadrotor model will have to performed to be able to use it
for future control design. The development of an ontology underlying the knowledge base has started at the level
of the modelling language, and in the next step will be extended to include the concepts and relations representing
the mechatronic system components. To be able to include the representation of the behavior of a component
in various domains, if required, knowledge on the applicable physical phenomena will be have to added to the
knowledge base.
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(a) Rotation angles and translational velocities in forward flight.
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Figure 9: Results of trim routine, for an airspeed 0-5m/s. Left in forward flight, right in a 3◦/s turn.
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