
MODELLING STRUCTURAL DYNAMIC SYSTEMS: STANDARD MODELICA VS
MOSILAB STATECHART

G. Zauner1,2, N. Popper1, F. Breitenecker2
1”Die Drahtwarenhandlung”- Simulation Services, Vienna, Austria;

2Vienna University of Technology, Vienna, Austria;

Corresponding Author: G. Zauner, ”Die Drahtwarenhandlung”- Simulation Services, Vienna, Austria
Neustiftgasse 57-59, 1070 Wien, Austria; guenther.zauner@drahtwarenhandlung.at

Abstract. Object-Oriented modelling is a fast-growing area of modelling and simulation that pro-
vides a structured, computer-supported way of mathematical and equation-based modelling.
Modelica is today the most promising modelling and simulation language in that it effectively uni-
fies and generalizes previous object oriented modelling languages and provides a fundament for
the basic concepts.
The Modelica modelling language offers easy to use multi domain physical modelling approaches
as well as acausal equation based modelling and simulation. Classical hybrid systems can be im-
plemented using if-then-else or when equations, these are conditional equations. But for advanced
models dealing with structural dynamic systems the standard does not provide adequate solution
methods.
MOSLIAB (Modelling and Simulation Laboratory), developed by Fraunhofer-Gesellschaft in a
cooperation of six Fraunhofer-Institutes (FIRST, IIS/EAS, ISE, IBP, IWU and IPK) in the research
project GENSIM, is a Modelica based multi domain modelling and simulation environment. Be-
sides the classical way of modelling, as defined in the Modelica standard, MOSILAB offers an ex-
tension in graphical and textual way for representing structural dynamic systems by using the lan-
guage extension MOSILA.
The main focus of the presented work lies on the comparison of standard Modelica implementa-
tions of structural dynamic systems and the additional possibilities offered by MOSILAB. Using
two examples from classical physics, the constrained pendulum and the free pendulum on a string,
and one from electronics we show the influence and power of state event modelling using the
graphical environment in MOSILAB in combination with the textual description to implement hy-
brid structures. The graphical hybrid structure layer in MOSILAB is UML (Unified Modelling
Language) based, and thereby intuitive handling is supported.

1 Motivation
Modelling and simulation of physical based systems and solution of DAE systems is getting more and more
important in modern development and system testing. As the complexity of the systems of interest is growing
fast, the importance of new techniques for model coupling and standardization is given.

On the one hand, modern simulation models have to deal with changing conditions and model types during a
simulation run because the system of interest includes events. On the other hand the model parts included in a
system are often modelled in different depth or a system only has to be modelled in detail while special condi-
tions are fulfilled. This case is somewhat harder to handle, because it includes structural dynamic system prob-
lems which cannot be handled as events of type 1 (parameter change) or type 2 (one or more inputs change dis-
continuously), but have to be implemented as type 3 (one or more states change discontinuously) or type 4 (the
dimension of the state vector changes discontinuously) events [3].

Two developments helped to overcome this problem. On modelling level, the idea of physical modelling gave
new input and thereby the development of the Modelica [9] standard plays an important role, and on implemen-
tation level the object oriented view helped to leave the constraints of input/output relations. Furthermore, UML
offers new input for hybrid modelling. In the domain abstract modelling techniques the Unified Modelling Lan-
guage (UML) [4] is an established standard for development and graphical description of object oriented soft-
ware systems. It is standardized by ISO (ISO/IEC 19501) and wide spread in the tools for software development
and has an intuitive structure. The standard includes a broad basis of graphical diagrams which highlight differ-
ent aspects of the software in the diverse development phases.

We look at a simulation environment called MOSILAB [7] which is Modelica based and extends this standard
with UML H components for modelling and simulation of structural dynamic systems and evaluates the addi-
tional features in comparison with pure Modelica.

1432

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

2 Introduction on physical modelling with Modelica
A typical procedure for physical modelling is to cut a system into subsystems and to account for the behaviour at
the interfaces. Each subsystem is modelled by balances of mass, energy and momentum and material equations.
The complete model is obtained by combining the descriptions of the subsystems and the interfaces. This ap-
proach requires a modelling paradigm different to classical input/output modelling. A model is considered as a
constraint between system variables, which leads naturally to DAE descriptions. The approach is very conven-
ient for building reusable model libraries [1].

An international effort was initiated in September 1996 for the purpose of bringing together expertise in object-
oriented physical modelling (port-based modelling) and defining a modern uniform modelling language, called
Modelica. Modelica is intended for modelling within many application domains and their combinations. It sup-
ports several modelling formalisms: ODEs, DAEs, bond graphs, finite state automata, Petri Nets, etc. Modelica
is intended to serve as a standard format so that models arising in different domains can be exchanged between
tools and users.

Modelica is no simulator, Modelica is a modelling language, supporting and generating mathematical models in
physical domains. It covers the broad area of physical modelling as well as features from Petri nets and, further-
more, finite automata are developed in the standard to boost the ability for solutions in application area. Mode-
lica offers a graphical model frame, where the connections are bidirectional physical couplings. The graphical
model layout corresponds with a textual model representation. This code can be changed and extended by the
user, so that graphical and textual modelling can be combined.

Modelica can handle very different modelling approaches, not only ODEs and DAEs, but also finite state auto-
mata. By means of state automata conditions can be described more clear and transparent. The translator from
Modelica into the target simulator is not only able to sort equations; it also has to be able to process the implicit
equations symbolically and to perform DAE index reduction.

3 The Mosilab simulator

3.1 History and general
In the project GENSIM [8] a cooperation of the six institutes FIRST, IIS/EAS, ISE, IBP, IWU and IPK of Fraun-
hofer Forschungsgesellschaft the Modelica based simulation environment MOSILAB (MOdelling and SImula-
tion LABoratory) is developed, which offers different modelling approaches, and supports structural dynamic
systems
The new in MOSILAB used simulation language MOSILA [6] is close leaned to Modelica simulation standard.
From the point of modellers view MOSILA is somewhat expansion of Modelica. That is why already defined
models developed in another Modelica based simulator as well as the free accessible Modelica standard library
can be used directly or with small adjustments only.

Beyond MOSILA offers additional concepts to support dynamical object structures and model switching in an
adequate and practicable way. MOSILAB simulation environment provides modelling and simulation using
UML H, an adapted subset of UML. The graphical modelling techniques are the basis for implementing the goal
of modelling structural dynamic systems or models with variable modelling depth depending on the global
model status.
The models developed in the graphical UML H model layer of the simulation environment, called “State Dia-
gram”, are part of the MOSILA language and can thereby be transferred and adjusted in the textual editor of the
modelling mode of the MOSILAB environment. The language MOSILA is a result of a combination of modern
modelling techniques for complex heterogenic technical systems with the main focus on a combination of
graphical, textual and block based modelling techniques.

3.2 Extensions and communication
The MOSILA based models are translated in MOSILAB into C++ class description. Additionally extra functions
written in C or C++ can be included in the model. Another way of including external software is by using the
data interface for in- and output of model states. There predefined variables and the current value are written in a
file or read from there at well defined time points. Afterwards the simulation is started again with the new/actual
allocation. Model structure information is not yet communicated for the file, so that the user has to care about the
structural equality of the input data himself [6].
An interface to MATLAB, one of the most common numerical computer packages, and to the finite element
solver FEMLAB are implemented in the standard version.

1433

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

3.3 Simulation flow and model initialization
In the current state of the simulation environment only analysis in time domain is supported. Thereby the model
passes a sequence of alternating discrete and continuous phases:

1 During discrete phases the simulation time is stopped. Thus changes on variables and structures can be
done in “no time”. First it has to be proofed if the changed discrete variable results in a structure change.
If not, new starting values for the actual parameter values have to be found for the start of the next con-
tinuous phase. In this case we are talking about an inner simulation loop. In the other case, when the
change of the discrete variables results in a structural switch, the according events are generated and
sent to the reactive objects. Afterwards the state machines of these objects are cyclic updated until all
state machines are in a steady state. This means that there are no more changes in the configuration of
the state machines. The system works hierarchically, this means that the state machines of subsystems
are always updated before the state machine of the parent object is updated. When all state machines are
in the steady state a new equation system and consistent starting values have to be defined for the next
continuous phase. At the end the transition to the next phase is realized.

1 During a continuous phase the differential and algebraic state variables and the simulation time are up-
dated. The discrete state variables and the model structure and thereby the equations stay the same dur-
ing this phase. As soon as a discrete state variable changes the value the continuous phase is breaking
and a new discrete phase is starting. Furthermore the calculation is stopped when the simulation end
time is reached.

The following figure depicts the upper description.

Figure 1 General structure for the system simulation including a discrete and a continuous phase for simulation of structural

dynamic systems

4 Extension of the standard connector structure
As defined in the Modelica standard, a special kind of port, the so called connector class is implemented in
MOSILA. Accounting the special structure of this Modelica extension the Mosilab connectors have an additional
feature: They can be dynamically built and cleared and thereby used for implementation of structural dynamic
systems. We can switch off parts from a graphical block based model by simply changing the connectors list.

1434

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

As shown in the third example this speciality can be used for modelling and simulation of structural dynamic
systems modelled with predefined components from the Modelica standard library but also for self defined or
commercial ones.

4.1 Additional language elements – Statecharts
This extension to Modelica is made to model reactive subcomponents in a direct very compact form. As defined
before the elements can be defined by a graphical editor on the modelling level and then be expanded using the
textual layer of the modelling level. Now we look at the most important additional components that are used to
implement the hybrid project definitions [2].

new() – operator, add() and remove()
In context with structural dynamic systems it is reasonable to create objects, add objects to the list of numerical
active objects or delete objects from this active object list during a simulation run. To implement the creation of
new objects (instances of a predefined model) the operator new() is developed [2].

To make such objects numerically active from the viewpoint of the simulation environment, it has to be added by
using x.add(). During this operation it also has to be proofed that the new element is compatible, which means
that the connector structure has to be checked for equality. This is done by the MOSILAB simulator. If this is
assured variables with the same name in the sub components are connected just like with the connect() state-
ment in standard Modelica case.

Certainly this concept is also implemented to abolish the connection in the case of switching to numerically
inactive objects for a part of the model. This is realized by using the remove() function.

Not yet implemented language elements and properties - index reduction

The implemented solution methods deal with index-0 and index-1 differential algebraic systems in a correct way.
Higher order index problems are not supported in the actual version. Another missing part in MOSILAB com-
pared to the Modelica standard notation is: matrices. If necessary matrices have to be split into vectors which are
already implemented.

5 Examples

5.1 Constrained Pendulum
The constrained pendulum is a classical nonlinear model in simulation techniques. To make the problem simpler
than it is in real life, we assume the mass m is large enough so that, as an approximation, the mass of the rigid
shaft of the pendulum is assumed negligible. This basic model definition is taken from the ARGESIM compari-
son C7 [5, 10]. There is no exact analytical solution to this problem. Therefore, the results have to be obtained by
numerical methods. In this section a description of the model will be given.

::: ��� dlmgml ���)sin(
Hereby � denotes the angle in radiant measured in counter clockwise direction from the vertical position. The
parameters in the model are the mass m and the length of the rope l. The damping is realized with the constant d.
In Mosilab it is an important difference, if the modeler is using constant or parameter!

As it is a constrained pendulum a pin is fixed at a certain position. Every time when the rope of the pendulum
hits the pin the length of the pendulum has to be shortened. In this case the pendulum swings on with the posi-
tion of the pin as the point of rotation and the shortened length. The motion of the pendulum is usually defined
with � and der(�) as states. But using the tangential velocity instead of angular velocity has the benefit, that
only the length of the pendulum has a discrete change in case of hitting and leaving the pin.
A standard Modelica solution can be performed by using an algorithm section with an if - or when – condi-
tion:

algorithm
 if (phi<=phipin) then length:=ls; end if;

 if (phi>phipin) then length:=ls1; end if;

equation

 ... here /*pendulum*/ -equations

end model

1435

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

This way of modelling the constrained pendulum can be implemented in any Modelica compatible simulator.
Now we are looking at the speciality of MOSILAB and the possibilities of implementation we can get using the
statechart structure. The first way is to implement the pure parameter event within a statechart instead of
using the algorithm section. This can be done with the following code:

event Boolean lengthen(start=false), shorten(start = false);

equation

 lengthen=(phi>phipin); shorten=(phi<=phipin);

 ... here /*pendulum*/ -equations

statechart

 state LengthSwitch extends State;

 state Short,Long,Initial(isInitial=true);

 transition Initial -> Long end transition;

 transitionLong->Shortevent shorten action

 length := ls;

 end transition;

 transitionShort->Longeventlengthen action

 length := l1;

 end transition;

end LengthSwitch;

This MOSILA source code has to produce an equivalent internal code and as can be seen, the numerical results
are the same. The computation time of the second implementation lasts longer. This can be explained by the
more complex structure of the resulting source code.

The shown mode of using the statechart way of modelling is not the only implementation we can get along
with. Another way, showing more about the power of the MOSILA language is the way of hybrid model decom-
position for solving the constrained pendulum. To explain the structure the pendulum is switched in two models.
The first one is the normal pendulum complying with equation above. The second is also a pendulum but now,
the length is shortened by the distance between the main centre and the pin and the position of the pin defines the
new centre.

Now we can define a new statechart for the constrained pendulum. Instead of switching by using parameters
we switch between instances of our short and long pendulum (structure shown in the figure below).

Figure 2 Stucture of the state chart for the MOSILAB implementation of the constrained pendulum

1436

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

In this model it is also possible to define only one model class and then produce instances with different parame-
terisation. As can be seen, MOSILAB offers a wide range of model implementations in comparison to standard
Modelica. In this example, the standard notation will be favourable because it is the fastest way of implementa-
tion and also the solution takes less time then with the state chart approach, but when the system gets more com-
plex this structure cannot handle it.

5.2 Free pendulum on a string
Until now we looked at a system were the state space dimension does not change during simulation. The state
events can all be interpreted as simple parameter events. Now a system is given where the state space dimension
has to be changed for real.

This example is a little bit more complicated. Let us again consider a pendulum. The massive bob of the pendu-
lum is fixed on a string. In case of a roll-over of the pendulum it can start to fall freely until the constraints of the
string apply again. This can happen if the pendulum swings higher than ±�/2 and the centrifugal force is smaller
than the gravitational force. Accordingly, the so defined model has two different states which are the normal
pendulum movement and the free fall case.

The movement of the pendulum is given in equation (1). We have to define the equations for the free fall case.
They are given by

0�

��

x

y

v
gv

�
�

For our model we have an additional constraint, which is based on the fixed length l of the pendulum:

lyx D� 22

This model cannot be solved using simple parameter state events
and is defined here to give an example that problems with hybrid
structure can occur in simulation of technical systems as well as
in biology, genetics, etc. not only in very sophisticated systems.
As can be seen here the need for state space switching in
nowadays modelling and simulation techniques is quite
common. The number of equations necessary to describe the
model is changing during simulation.

The implementation in MOSILAB can be done again by
defining two separate models, the normal swinging pendulum
and the free fall of the mass. The Boolean condition used as the
switching conditions for the state chart approach is the length of
the rope. MOSILAB offers a closed physical system for the
hybrid problem.

5.3 Class-E amplifier
The definition of a class-E amplifier as defined in ARGESIM Benchmark 3 is used to show another advantage of
modelling and simulation with MOSILAB in comparison with pure Modelica implementations.

The basic class-E power amplifier is a switching-mode amplifier that operates with zero voltage and zero slope
across the switch at switch turn-off. Kirchhoff laws for voltage and current deliver the following differential
equations:

4/3/4
3/)43*2(/3
2/)3)(/21(/2

1/)2(/1

Cxdtdx
LxxRLxdtdx
CxtRxxdtdx

LVDCxdtdx

�
���
���

���

The main difficulty of this equations go together with the time dependent resistor R(t) which has the form of a
trapezoid with very fast slopes (up to 1e-13 sec) and an OFF value of 5M� and an ON value of 50m�.

Figure 3 Force diagram of the pendulum

1437

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

Three different ways have been chosen to model these equations in the MOSILAB simulation environment. The
first solution is using textual Modelica notation. Designing the model is relatively easy in Modelica by using the
exact equations as given above in the equation section and declaring all variables in the beginning section. The
time dependent resistor R(t) is modelled using an algorithm section

For the second solution the MOSILA language extension for statechart modelling is used, dividing the system in
separated model parts, depending on the state of the time dependent resistor R(t). It switches between the state
OFF(state1) and the state ON(state2). Before simulation, state1 is set up as initial state. Thus, the model will
change to state2 when the time dependent resistor R(t) reaches value 50m� and the model will again change to
state1 when R(t) reaches 5M�. By using the same code in an algorithm section as defined in the previous solu-
tion for R(t), the value of the time dependent resistor is implemented.

The third solution deals with another speciality of MOSILA language: namely, to connect statements in the state
chart description of a model. Therefore the class-E amplifier is not implemented in the textual modelling layer
but in the component diagram. Instead of implementing the input of the time dependent resistor R(t) as trapezoid
function standard output signal blocks from the Modelica standard library are used. Now it has to be switched
back to textual model description because the time dependent connection between the four outputs of the stan-
dard blocks and the input of R(t) has to be defined. This is again modelled with state charts by using the com-
mands connect and disconnect and thereby switching parts of a graphically produced model active and inac-
tive by closing and opening the physical coupling.

6 Conclusion
The MOSILAB environment offers a real extension regarding modelling power and applicability in comparison
with the Modelica standard notation. The extension with UML based state chart notation leads to a better read-
able modelling structure and higher flexibility from modeller’s point of view. The quality of the results stays the
same for all different implementation methods – an indispensable result, because the solution quality must not
depend on the way of implementation in one and the same simulation system using the equivalent numerical
solution method.
Although some parts of the Modelica standard notation (e.g. matrices) are not yet implemented, MOSILAB can
handle a wide range of Modelica based models defined in other simulators and, thereby, provide an interesting
alternative.

7 References

[1] Fritzson P.:
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1.”, Wiley-IEEE Press, 939 pages,
ISBN 0-471-471631

[2] Nytsch-Geusen, C. et. al.:
“MOSILAB: Development of a Modelica based generic simulation tool supporting model structural dynam-
ics.” Proceedings of the 4th International Modelica Conference, TU Hamburg-Harburg, 2005.

[3] Breitenecker F., Judex F., Popper N., Troch I., Funovits J.:
"Structure of Simulators for Hybrid Systems - General Development and Introduction of a Concept of Exter-
nal and Internal State Events"; Proc. EUROSIM 2007 - 6th EUROSIM Congress on Modeling and Simula-
tion; B. Zupancic, R. Karba, S. Blazic (Hrg.); ARGESIM / ASIM, Vienna (2007), ISBN: 978-3-901608-32-
2; 14

[4] Meyer Urs B., Creux Simone E., Weber Marin Andrea K.:
„Grafische Methoden der Prozessanalyse“, Hanser Verlag, 2005

[5] Breitenecker F., Ecker H. and Bausch-Gall I.:
„Simulation mit ACSL: eine Einführung in die Modellbildung, numerischen Methoden und Simulation“,
Braunschweig, Vieweg, 1993. -XI, 399 S

[6] Ernst T., Nordwig A., Nytsch-Geusen C., Claus C., Schneider A.:
„MOSILA Modellbeschreibungssprache, Spezifikation, Version 2.0“, from webpage:
www.mosilab.de/downloads/dokumentation

[7] http://www.mosilab.de/
[8] http://mosilab.de/forschungsprojekt-gensim
[9] http://www.modelica.org/

[10] http://www.argesim.org/

1438

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

