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Abstract. Object-Oriented modelling is a fast-growing area of modelling and simulation that pro-
vides a structured, computer-supported way of mathematical and equation-based modelling. 
Modelica is today the most promising modelling and simulation language in that it effectively uni-
fies and generalizes previous object oriented modelling languages and provides a fundament for 
the basic concepts.
The Modelica modelling language offers easy to use multi domain physical modelling approaches 
as well as acausal equation based modelling and simulation. Classical hybrid systems can be im-
plemented using if-then-else or when equations, these are conditional equations. But for advanced 
models dealing with structural dynamic systems the standard does not provide adequate solution 
methods. 
MOSLIAB (Modelling and Simulation Laboratory), developed by Fraunhofer-Gesellschaft in a 
cooperation of six Fraunhofer-Institutes (FIRST, IIS/EAS, ISE, IBP, IWU and IPK) in the research 
project GENSIM, is a Modelica based multi domain modelling and simulation environment. Be-
sides the classical way of modelling, as defined in the Modelica standard, MOSILAB offers an ex-
tension in graphical and textual way for representing structural dynamic systems by using the lan-
guage extension MOSILA. 
The main focus of the presented work lies on the comparison of standard Modelica implementa-
tions of structural dynamic systems and the additional possibilities offered by MOSILAB. Using 
two examples from classical physics, the constrained pendulum and the free pendulum on a string, 
and one from electronics we show the influence and power of state event modelling using the 
graphical environment in MOSILAB in combination with the textual description to implement hy-
brid structures. The graphical hybrid structure layer in MOSILAB is UML (Unified Modelling 
Language) based, and thereby intuitive handling is supported.  

1 Motivation 
Modelling and simulation of physical based systems and solution of DAE systems is getting more and more 
important in modern development and system testing. As the complexity of the systems of interest is growing 
fast, the importance of new techniques for model coupling and standardization is given. 

On the one hand, modern simulation models have to deal with changing conditions and model types during a 
simulation run because the system of interest includes events. On the other hand the model parts included in a 
system are often modelled in different depth or a system only has to be modelled in detail while special condi-
tions are fulfilled. This case is somewhat harder to handle, because it includes structural dynamic system prob-
lems which cannot be handled as events of type 1 (parameter change) or type 2 (one or more inputs change dis-
continuously), but have to be implemented as type 3 (one or more states change discontinuously) or type 4 (the 
dimension of the state vector changes discontinuously) events [3]. 

Two developments helped to overcome this problem. On modelling level, the idea of physical modelling gave 
new input and thereby the development of the Modelica [9] standard plays an important role, and on implemen-
tation level the object oriented view helped to leave the constraints of input/output relations. Furthermore, UML 
offers new input for hybrid modelling. In the domain abstract modelling techniques the Unified Modelling Lan-
guage (UML) [4] is an established standard for development and graphical description of object oriented soft-
ware systems. It is standardized by ISO (ISO/IEC 19501) and wide spread in the tools for software development 
and has an intuitive structure. The standard includes a broad basis of graphical diagrams which highlight differ-
ent aspects of the software in the diverse development phases. 

We look at a simulation environment called MOSILAB [7] which is Modelica based and extends this standard 
with UML H components for modelling and simulation of structural dynamic systems and evaluates the addi-
tional features in comparison with pure Modelica. 
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2 Introduction on physical modelling with Modelica 
A typical procedure for physical modelling is to cut a system into subsystems and to account for the behaviour at 
the interfaces. Each subsystem is modelled by balances of mass, energy and momentum and material equations. 
The complete model is obtained by combining the descriptions of the subsystems and the interfaces. This ap-
proach requires a modelling paradigm different to classical input/output modelling. A model is considered as a 
constraint between system variables, which leads naturally to DAE descriptions. The approach is very conven-
ient for building reusable model libraries [1]. 

An international effort was initiated in September 1996 for the purpose of bringing together expertise in object-
oriented physical modelling (port-based modelling) and defining a modern uniform modelling language, called 
Modelica. Modelica is intended for modelling within many application domains and their combinations. It sup-
ports several modelling formalisms: ODEs, DAEs, bond graphs, finite state automata, Petri Nets, etc. Modelica 
is intended to serve as a standard format so that models arising in different domains can be exchanged between 
tools and users. 

Modelica is no simulator, Modelica is a modelling language, supporting and generating mathematical models in 
physical domains. It covers the broad area of physical modelling as well as features from Petri nets and, further-
more, finite automata are developed in the standard to boost the ability for solutions in application area. Mode-
lica offers a graphical model frame, where the connections are bidirectional physical couplings. The graphical 
model layout corresponds with a textual model representation. This code can be changed and extended by the 
user, so that graphical and textual modelling can be combined.  

Modelica can handle very different modelling approaches, not only ODEs and DAEs, but also finite state auto-
mata. By means of state automata conditions can be described more clear and transparent. The translator from 
Modelica into the target simulator is not only able to sort equations; it also has to be able to process the implicit 
equations symbolically and to perform DAE index reduction. 
 

3 The Mosilab simulator 

3.1 History and general 
In the project GENSIM [8] a cooperation of the six institutes FIRST, IIS/EAS, ISE, IBP, IWU and IPK of Fraun-
hofer Forschungsgesellschaft the Modelica based simulation environment MOSILAB (MOdelling and SImula-
tion LABoratory) is developed, which offers different modelling approaches, and supports structural dynamic 
systems  
The new in MOSILAB used simulation language MOSILA [6] is close leaned to Modelica simulation standard. 
From the point of modellers view MOSILA is somewhat expansion of Modelica. That is why already defined 
models developed in another Modelica based simulator as well as the free accessible Modelica standard library 
can be used directly or with small adjustments only. 

Beyond MOSILA offers additional concepts to support dynamical object structures and model switching in an 
adequate and practicable way. MOSILAB simulation environment provides modelling and simulation using 
UML H, an adapted subset of UML. The graphical modelling techniques are the basis for implementing the goal 
of modelling structural dynamic systems or models with variable modelling depth depending on the global 
model status. 
The models developed in the graphical UML H model layer of the simulation environment, called “State Dia-
gram”, are part of the MOSILA language and can thereby be transferred and adjusted in the textual editor of the 
modelling mode of the MOSILAB environment. The language MOSILA is a result of a combination of modern 
modelling techniques for complex heterogenic technical systems with the main focus on a combination of 
graphical, textual and block based modelling techniques. 

3.2 Extensions and communication 
The MOSILA based models are translated in MOSILAB into C++ class description. Additionally extra functions 
written in C or C++ can be included in the model. Another way of including external software is by using the 
data interface for in- and output of model states. There predefined variables and the current value are written in a 
file or read from there at well defined time points. Afterwards the simulation is started again with the new/actual 
allocation. Model structure information is not yet communicated for the file, so that the user has to care about the 
structural equality of the input data himself [6]. 
An interface to MATLAB, one of the most common numerical computer packages, and to the finite element 
solver FEMLAB are implemented in the standard version. 
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3.3 Simulation flow and model initialization 
In the current state of the simulation environment only analysis in time domain is supported. Thereby the model 
passes a sequence of alternating discrete and continuous phases: 

1 During discrete phases the simulation time is stopped. Thus changes on variables and structures can be 
done in “no time”. First it has to be proofed if the changed discrete variable results in a structure change. 
If not, new starting values for the actual parameter values have to be found for the start of the next con-
tinuous phase. In this case we are talking about an inner simulation loop. In the other case, when the 
change of the discrete variables results in a structural switch, the according events are generated and 
sent to the reactive objects. Afterwards the state machines of these objects are cyclic updated until all 
state machines are in a steady state. This means that there are no more changes in the configuration of 
the state machines. The system works hierarchically, this means that the state machines of subsystems 
are always updated before the state machine of the parent object is updated. When all state machines are 
in the steady state a new equation system and consistent starting values have to be defined for the next 
continuous phase. At the end the transition to the next phase is realized. 

1 During a continuous phase the differential and algebraic state variables and the simulation time are up-
dated. The discrete state variables and the model structure and thereby the equations stay the same dur-
ing this phase. As soon as a discrete state variable changes the value the continuous phase is breaking 
and a new discrete phase is starting. Furthermore the calculation is stopped when the simulation end 
time is reached. 

The following figure depicts the upper description. 

 
Figure 1 General structure for the system simulation including a discrete and a continuous phase for simulation of structural 

dynamic systems 

4 Extension of the standard connector structure 
As defined in the Modelica standard, a special kind of port, the so called connector class is implemented in 
MOSILA. Accounting the special structure of this Modelica extension the Mosilab connectors have an additional 
feature: They can be dynamically built and cleared and thereby used for implementation of structural dynamic 
systems. We can switch off parts from a graphical block based model by simply changing the connectors list. 
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As shown in the third example this speciality can be used for modelling and simulation of structural dynamic 
systems modelled with predefined components from the Modelica standard library but also for self defined or 
commercial ones.  

4.1 Additional language elements – Statecharts 
This extension to Modelica is made to model reactive subcomponents in a direct very compact form. As defined 
before the elements can be defined by a graphical editor on the modelling level and then be expanded using the 
textual layer of the modelling level. Now we look at the most important additional components that are used to 
implement the hybrid project definitions [2]. 

 

new() – operator, add() and remove() 
In context with structural dynamic systems it is reasonable to create objects, add objects to the list of numerical 
active objects or delete objects from this active object list during a simulation run. To implement the creation of 
new objects (instances of a predefined model) the operator new() is developed [2]. 

To make such objects numerically active from the viewpoint of the simulation environment, it has to be added by 
using x.add(). During this operation it also has to be proofed that the new element is compatible, which means 
that the connector structure has to be checked for equality. This is done by the MOSILAB simulator. If this is 
assured variables with the same name in the sub components are connected just like with the connect() state-
ment in standard Modelica case. 

Certainly this concept is also implemented to abolish the connection in the case of switching to numerically 
inactive objects for a part of the model. This is realized by using the remove() function. 

 

Not yet implemented language elements and properties - index reduction 

The implemented solution methods deal with index-0 and index-1 differential algebraic systems in a correct way. 
Higher order index problems are not supported in the actual version. Another missing part in MOSILAB com-
pared to the Modelica standard notation is: matrices. If necessary matrices have to be split into vectors which are 
already implemented. 

5  Examples 

5.1 Constrained Pendulum 
The constrained pendulum is a classical nonlinear model in simulation techniques. To make the problem simpler 
than it is in real life, we assume the mass m is large enough so that, as an approximation, the mass of the rigid 
shaft of the pendulum is assumed negligible. This basic model definition is taken from the ARGESIM compari-
son C7 [5, 10]. There is no exact analytical solution to this problem. Therefore, the results have to be obtained by 
numerical methods. In this section a description of the model will be given.  

::: ��� dlmgml ��� )sin(  
Hereby � denotes the angle in radiant measured in counter clockwise direction from the vertical position. The 
parameters in the model are the mass m and the length of the rope l. The damping is realized with the constant d. 
In Mosilab it is an important difference, if the modeler is using constant or parameter! 

As it is a constrained pendulum a pin is fixed at a certain position. Every time when the rope of the pendulum 
hits the pin the length of the pendulum has to be shortened. In this case the pendulum swings on with the posi-
tion of the pin as the point of rotation and the shortened length. The motion of the pendulum is usually defined 
with � and der(�) as states. But using the tangential velocity instead of angular velocity has the benefit, that 
only the length of the pendulum has a discrete change in case of hitting and leaving the pin. 
A standard Modelica solution can be performed by using an algorithm section with an if - or when – condi-
tion: 

algorithm
 if (phi<=phipin) then length:=ls; end if; 

 if (phi>phipin) then length:=ls1; end if; 

equation 

 ...  here /*pendulum*/  -equations 

end model 
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This way of modelling the constrained pendulum can be implemented in any Modelica compatible simulator. 
Now we are looking at the speciality of MOSILAB and the possibilities of implementation we can get using the 
statechart structure. The first way is to implement the pure parameter event within a statechart instead of 
using the algorithm section. This can be done with the following code: 

event  Boolean  lengthen(start=false), shorten(start  =  false); 

equation 

 lengthen=(phi>phipin);  shorten=(phi<=phipin); 

 ...  here /*pendulum*/  -equations 

statechart 

 state  LengthSwitch  extends  State; 

 state  Short,Long,Initial(isInitial=true); 

 transition  Initial  ->  Long  end  transition; 

 transitionLong->Shortevent  shorten  action 

  length  :=  ls; 

 end  transition; 

 transitionShort->Longeventlengthen  action 

  length  :=  l1; 

 end  transition; 

end  LengthSwitch; 

This MOSILA source code has to produce an equivalent internal code and as can be seen, the numerical results 
are the same. The computation time of the second implementation lasts longer. This can be explained by the 
more complex structure of the resulting source code. 
 
The shown mode of using the statechart way of modelling is not the only implementation we can get along 
with. Another way, showing more about the power of the MOSILA language is the way of hybrid model decom-
position for solving the constrained pendulum. To explain the structure the pendulum is switched in two models. 
The first one is the normal pendulum complying with equation above. The second is also a pendulum but now, 
the length is shortened by the distance between the main centre and the pin and the position of the pin defines the 
new centre. 

Now we can define a new statechart for the constrained pendulum. Instead of switching by using parameters 
we switch between instances of our short and long pendulum (structure shown in the figure below). 

 
Figure 2 Stucture of the state chart for the MOSILAB implementation of the constrained pendulum 
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In this model it is also possible to define only one model class and then produce instances with different parame-
terisation. As can be seen, MOSILAB offers a wide range of model implementations in comparison to standard 
Modelica. In this example, the standard notation will be favourable because it is the fastest way of implementa-
tion and also the solution takes less time then with the state chart approach, but when the system gets more com-
plex this structure cannot handle it. 

5.2 Free pendulum on a string 
Until now we looked at a system were the state space dimension does not change during simulation. The state 
events can all be interpreted as simple parameter events. Now a system is given where the state space dimension 
has to be changed for real. 

This example is a little bit more complicated. Let us again consider a pendulum. The massive bob of the pendu-
lum is fixed on a string. In case of a roll-over of the pendulum it can start to fall freely until the constraints of the 
string apply again. This can happen if the pendulum swings higher than ±�/2 and the centrifugal force is smaller 
than the gravitational force. Accordingly, the so defined model has two different states which are the normal 
pendulum movement and the free fall case. 

The movement of the pendulum is given in equation (1). We have to define the equations for the free fall case. 
They are given by 

0�

��

x

y

v
gv

�
�

 
For our model we have an additional constraint, which is based on the fixed length l of the pendulum: 

lyx D� 22
 

 

This model cannot be solved using simple parameter state events 
and is defined here to give an example that problems with hybrid 
structure can occur in simulation of technical systems as well as 
in biology, genetics, etc. not only in very sophisticated systems. 
As can be seen here the need for state space switching in 
nowadays modelling and simulation techniques is quite 
common. The number of equations necessary to describe the 
model is changing during simulation. 

The implementation in MOSILAB can be done again by 
defining two separate models, the normal swinging pendulum 
and the free fall of the mass. The Boolean condition used as the 
switching conditions for the state chart approach is the length of 
the rope. MOSILAB offers a closed physical system for the 
hybrid problem. 

 

 

5.3 Class-E amplifier 
The definition of a class-E amplifier as defined in ARGESIM Benchmark 3 is used to show another advantage of 
modelling and simulation with MOSILAB in comparison with pure Modelica implementations. 

The basic class-E power amplifier is a switching-mode amplifier that operates with zero voltage and zero slope 
across the switch at switch turn-off. Kirchhoff laws for voltage and current deliver the following differential 
equations: 

4/3/4
3/)43*2(/3
2/)3)(/21(/2

1/)2(/1

Cxdtdx
LxxRLxdtdx
CxtRxxdtdx

LVDCxdtdx

�
���
���

���

  

The main difficulty of this equations go together with the time dependent resistor R(t) which has the form of a 
trapezoid with very fast slopes (up to 1e-13 sec) and an OFF value of 5M� and an ON value of 50m�. 

Figure 3 Force diagram of the pendulum 
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Three different ways have been chosen to model these equations in the MOSILAB simulation environment. The 
first solution is using textual Modelica notation. Designing the model is relatively easy in Modelica by using the 
exact equations as given above in the equation section and declaring all variables in the beginning section. The 
time dependent resistor R(t) is modelled using an algorithm section 

For the second solution the MOSILA language extension for statechart modelling is used, dividing the system in 
separated model parts, depending on the state of the time dependent resistor R(t). It switches between the state 
OFF(state1) and the state ON(state2). Before simulation, state1 is set up as initial state. Thus, the model will 
change to state2 when the time dependent resistor R(t) reaches value 50m� and the model will again change to 
state1 when R(t) reaches 5M�. By using the same code in an algorithm section as defined in the previous solu-
tion for R(t), the value of the time dependent resistor is implemented. 

The third solution deals with another speciality of MOSILA language: namely, to connect statements in the state 
chart description of a model. Therefore the class-E amplifier is not implemented in the textual modelling layer 
but in the component diagram. Instead of implementing the input of the time dependent resistor R(t) as trapezoid 
function standard output signal blocks from the Modelica standard library are used. Now it has to be switched 
back to textual model description because the time dependent connection between the four outputs of the stan-
dard blocks and the input of R(t) has to be defined. This is again modelled with state charts by using the com-
mands connect and disconnect and thereby switching parts of a graphically produced model active and inac-
tive by closing and opening the physical coupling. 

6 Conclusion
The MOSILAB environment offers a real extension regarding modelling power and applicability in comparison 
with the Modelica standard notation. The extension with UML based state chart notation leads to a better read-
able modelling structure and higher flexibility from modeller’s point of view. The quality of the results stays the 
same for all different implementation methods – an indispensable result, because the solution quality must not 
depend on the way of implementation in one and the same simulation system using the equivalent numerical 
solution method. 
Although some parts of the Modelica standard notation (e.g. matrices) are not yet implemented, MOSILAB can 
handle a wide range of Modelica based models defined in other simulators and, thereby, provide an interesting 
alternative.  
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