
LEARNING ORDER INVARIANT AGGREGATION FUNCTIONS

WITH RECURRENT NEURAL NETWORKS

W. Heidl
1
, C. Eitzinger

1
, M. Gyimesi

2

1
Profactor GmbH, Steyr, Austria;

2
Vienna University of Technology, Vienna, Austria

Corresponding Author: W. Heidl, Profactor Gmbh

Im Stadtgut A2, 4407 Steyr-Gleink, Austria; wolfgang.heidl@profactor.at

Abstract. Numerous applications benefit from parts-based representations resulting in sets of fea-

ture vectors. To apply standard machine learning methods, these sets of varying cardinality need to

be aggregated into a single fixed-length vector. Since, per-se, no order is imposed on the set ele-

ments the aggregation function has to be order invariant. We have evaluated three common recur-

rent neural network (RNN) architectures, Elman, Williams & Zipser and Long Short Term Memo-

ry networks, on approximating eight aggregation functions of varying complexity. The most diffi-

cult to approximate function computes the minimum distance (MinDist) between any two ele-

ments when interpreted as points in Euclidean space. On this function only the LSTM network can

be trained to perform order invariant. However, further investigation into the state-space behaviour

reveals that the LSTM network is actually only approximating a function dependent on the ele-

ment count of the sets. Due to the distribution of the test data this simplification still yields 40%

correlation of the network‘s output with the target value. This behaviour has been verified by using

a modified version of MinDist where any correlation between target value and input length has

been removed.

1 Introduction
Numerous applications benefit from parts-based representations resulting in sets of feature vectors. As an exam-

ple, the good/bad decision in surface inspection tasks often depends on the whole set of extracted fault features,

such as their spatial distribution, their total area and similar quantities. This information cannot be utilized if

faults are processed one-by-one. Learning the decision process in this context thus requires methods for classifi-

cation of sets of feature vectors extracted from the faults [8].

To apply standard machine learning methods, these sets of varying cardinality need to be aggregated into a sin-

gle fixed-length vector. We define the classification task over sets of feature vectors

 (1)

 (2)

as the composition of the aggregation function computing the fixed length k-aggregate

 and the classification function Since, per-se, no order is imposed on the set ele-

ments, the aggregation function has to be order invariant.

Related Work. Some work has been done on classification of structures containing an unknown number of

elements [2,5], where the authors propose to use generalized recursive neurons to represent the structure of a

graph. In order to achieve this, they make use of the linked structured of the graph and directly represent the

graph topology in the network. The problem is similar to ours in that the number of input elements can vary,

however their approach uses the structure present in the input to deduce the order in which to present the ele-

ments to the network. Recently kernel functions have been proposed operating on sets of features [3]. These

approaches either assume that direct correspondences exist between the elements of sets or require sets of equal

cardinality.

We investigate the capability of common RNN architectures to learn order invariant aggregation functions rele-

vant the context of surface inspection. Section 2 describes the architectures and special mode of operation of

RNNs. Section 3 presents the experimental setup and detailed results on one of the aggregation problems. Con-

cluding remarks are given in Section 4.

2 Recurrent Neural Networks for Feature Aggregation
Due to their recurrent structure, RNNs can deal with a variable number of input vectors without growing with the

number of objects that we want to process. Furthermore aggregation and succeeding processing steps such as

classification can be integrated into a homogenous structure, which allows for training of both components in a

uniform manner. The principle structure is shown in Figure 1.

2540

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

Figure 1: Recurrent Neural Network architecture for classification of sets of feature vectors.

The n input vectors x1, x2, …, xn will be processed by the network as if they were a time sequence. The classifica-

tion result will be available at the output after n “time steps”. However, this sequence of vectors lacks an impor-

tant property of time series, as it has no inherent ordering. Order invariance of RNNs is realized by reshuffling of

the data during training: The sequence of the feature vectors in the set will be randomly permuted after each

training epoch of the network. The neural network should thus learn to be order-invariant. Another option is

sorting as a pre-processing step that establishes order invariance among the set elements. For dimensions greater

than 1 sorting is non-trivial and requires problem-specific order relations (e.g. [4]).

2.1 Network Architectures
We consider three common RNN architectures for learning aggregation functions producing

fixed length aggregates out of sets of varying cardinality . The Elman network [1] and the architecture pro-

posed by Williams & Zipser (WZ) [9] date back to the late 1980s and introduce feedback loops to the then well

known Multilayer Perceptron (MLP) feed forward neural networks. While Elman limited the feedback to within

the hidden layer of the network, Williams & Zipser added feedback loops within the output layer, from the out-

put to input layer and feedforward connections bypassing the hidden layer to their so-called fully connected

network.

Long short-term memory (LSTM) networks have been introduced by Hochreiter [6] as a solution to the vanish-
ing gradient problem. Standard RNNs can hardly learn long-term dependencies between the data, since the error

gradient with respect to the weights vanishes for larger time-lags between output and input. The error signal used

to adapt the weights during training thus decreases exponentially when going back through time. Long short-

term memory (LSTM) networks solve this problem, by incorporating constant error carrousels (CEC), neurons

that propagate the error unchanged, thus avoiding the decaying gradient. Access to the CEC is controlled by

multipliers which are driven by dedicated neurons called input and output gates. The inputs of the gates are con-

nected the network inputs and the outputs of all cells in the network.

3 Experiments
We have evaluated Elman, WZ and LSTM RNN architectures, on approximating eight aggregation functions

of varying complexity (Table 1). The data sets have been generated by applying aggregation functions to sets of

scalar entries . We have trained each network on both sorted and shuffled representations of the data

sets. The goal is to establish baseline results showing whether these existing RNNs can in principle learn order

invariant aggregation functions.

3.1 Data Set
The aggregation functions used for the experiments have been designed with visual quality inspection in mind.

For example, the Sum function could describe the total area of detected faults. Another example is the minimum

geometric distance between faults (MinDist), which is an important measure to decide if local build-ups of

otherwise uncritical faults can be tolerated.

 Max MaxAbs
 Norm MeanNorm

 SumMax2 ,

 SumMax2Abs

 Sum MinDist
Table 1: Definition of the aggregation functions underlying the data sets used in the experiments.

x
x

i1

i2

Recurrent part
(Aggregation)

Feedforward part
(Classifier)

 State
(aggregated features)

Input

Output

2541

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

Data sets have been produced by applying aggregation functions to sets of scalar entries . The number of

elements in each set is uniformly distributed with a minimum of 15 and a maximum of 30 elements. The range

has been chosen such that the networks cannot memorize all set elements. The entries itself are also generated

randomly, . Target values for the data sets are generated by scaling

 (3)

with and , such that almost all values are in the range [0,1], com-

patible with the logistic sigmoid activation function at the network’s output.

3.2 Training
During training the set elements are fed into the networks as a sequence, target values are presented to the net-

work with the last set element only. Adaptation of the network weights has been performed using Backpropaga-

tion through time (BPTT) algorithm [1] for the Elman and Williams & Zipser network. The central idea is to

unfold the recurrent neural network into a multilayer feedforward neural network. The feedforward network thus

has a layer for each time step in the sequence. Then the standard Backpropagation algorithm is applied to the

unfolded networks. The LSTM networks are trained by a combination of truncated BPTT and Real-time Recur-

rent Learning (RTRL) [9], an algorithm which is specifically tailored to the LSTM architecture [6].

The weights and biases have been randomly initialized in the range of for the Elman and WZ net-

works and for the LSTM networks, except for the biases to the input and output gates. These biases

are initialized starting with for the first, for the second, for the third and so forth. This way, cell

activations are initially close to zero, and during training the cells will be sequentially activated to contribute to

the network function [6].

3.3 Results
We have trained each network using both sorted and shuffled representations of the data sets. The accuracy of

the approximation is assessed by the Pearson correlation coefficient R of the network‘s output with the target

value on fresh test data not used during training. For each combination of aggregation function and network

architecture we have performed 10 independent training runs to reduce the probability of reporting results where

training converged to a bad local minimum of the cost function.

The LSTM network is inferior to the other network types for most data sets except for the most difficult-to-

approximate MinDist aggregation function. On MinDist the Elman and WZ network’s correlations deterio-

rate to below 10% on shuffled data, unlike the LSTM network’s 40%, which is equal to the easier-to-handle

sorted case. Although correlation values below 40% are too low for practical applications, the performance of

the LSTM on the shuffled MinDist data is significantly better than random.

(a) Standard data set

(b) Data set with removed correlation between
sequence length and output

Figure 2: LSTM network output vs. sequence length. The LSTM network is approximating a function dependent on the

sequence length only. (a) Due to the distribution of the data set this simplification still yields a 40% correlation between net-

work output and target value. (b) When correlations between sequence length and target value are removed from the data, the

accuracy of the network drops to below 10%.

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sequence length

network output
target values

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sequence length

network output
target values

2542

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

However, after further investigation into the state-space behaviour, we have found that the LSTM network is

actually approximating a function dependent only on the element count of the sets. Due to the distribution of the

test data this simplification still yields 40% correlation of the network‘s output with the target value. The Min-
Dist data set as described in Section 3.1 shows significant correlation between target value and the cardinality

of the sets (Figure 2a). Indeed, with increasing number of identically distributed set elements, the average

minimum distance between the elements decreases.

To remove this correlation we have implemented a sampling scheme, equalizing the distribution of the target

values. Out of the original data set the central 60% quantile of the target values has been determined as target

range. Then for each distinct set cardinality an equal number of samples within that range has

been generated by the original procedure but rejecting samples falling outside. The resulting target values have

then been rescaled according to Equation (3). Results for the modified data set verify the previously observed

behaviour of the LSTM network (Figure 2b), which the approximation accuracy now dropping below 10%.

4 Conclusions
Initial experiments indicated that LSTM networks are superior to earlier RNN architectures on the most difficult-

to-approximate MinDist data set, reaching equal performance for both sorted and shuffled representations of

the data. This was interpreted as a special capability of LSTM networks to learn order invariant functions. How-

ever, further experiments revealed that the target value distribution in the data set allowed for the network to

approximate a function dependent on the number of set elements only and still produce significant accuracy.

None of the tested networks can learn to approximate an equalized version of the MinDist. Additional experi-

ments will have to be carried out to check results unbiased by the element count for the remaining aggregation

functions. We assume that successful learning of many of these functions will require changes in the high level

architecture of RNNs:

Achieving order invariance is a major challenge in using recurrent neural networks for approximating aggrega-

tion functions. While the latter requires application-specific knowledge for multi-dimensional data, training on

shuffled data creates an unnecessarily large input space which complicates learning. We will therefore consider

networks where order-invariance is an inherent property of the structure. For the basic building blocks of such

networks we will consider symmetric functions [7], which are defined as being invariant under permutations of

their arguments. We assume that by using these basic building blocks, an order-invariant neural network could

be created.

5 Acknowledgements
This work has been supported by Austrian FWF grant P19376-N13.

6 References
[1] J. L. Elman, "Finding structure in time," Cognitive Science, vol. 14, iss. 2, pp. 179–211, 1990.

[2] P. Frasconi, M. Gori, and A. Sperduti, "A general framework for adaptive processing of data structures,"

IEEE Transactions on Neural Networks, vol. 9, iss. 5, pp. 768–786, 1998.

[3] K. Grauman and T. Darrell, "The Pyramid Match Kernel: Efficient Learning with Sets of Features," J.

Mach. Learn. Res. vol. 8, pp. 725–760, 2007.

[4] A. Graves, S. Fernandez, and J. Schmidhuber, "Multi-Dimensional Recurrent Neural Networks," in Proc.

Artificial Neural Networks ICANN, 2007, pp. 549–558.Casti, J. L.: Reality Rules – Picturing the World in
Mathematics: I, II. Wiley, New York, 1992.

[5] B. Hammer, "Recurrent networks for structured data - A unifying approach and its properties," Cognitive

Systems Research, vol. 3, iss. 2, pp. 145–165, 2002.

[6] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput. vol. 9, iss. 9, pp. 1735–
1780, 1997.

[7] I. G. Macdonald, “Symmetric Functions and Hall Polynomials (Oxford Mathematical Monographs),” 2
nd

ed., Oxford University Press, USA, 1999.

[8] M. Tahir, J. Smith, and P. Caleb-Solly, "A Novel Feature Selection Based Semi-supervised Method for Im-

age Classification," in Proc. Computer Vision Systems - ICVS, 2008, pp. 484–493.

[9] R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural net-

works," Neural Computation, vol. 1, iss. 2, pp. 270–280, 1989.

[10] L. Wolf and A. Shashua, "Learning over sets using kernel principal angles," J. Mach. Learn. Res. vol. 4, pp.

913–931, 2003.

2543

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

