
LEARNING OVER SETS WITH HYBRID RECURRENT NEURAL NETWORKS:
AN EMPIRICAL CATEGORIZATION OF AGGREGATION FUNCTIONS

W. Heidl1, C. Eitzinger1, M. Gyimesi2, F. Breitenecker2
1Profactor GmbH, Steyr, Austria; 2Vienna University of Technology, Vienna, Austria

Corresponding Author: W. Heidl, Profactor GmbH
Im Stadtgut A2, 4407 Steyr-Gleink, Austria; wolfgang.heidl@profactor.at

Abstract. Numerous applications benefit from parts-based representations resulting in sets of fea-
ture vectors. To apply standard machine learning methods, these sets of varying cardinality need to
be aggregated into a single fixed-length vector. We have evaluated three common recurrent neural
network (RNN) architectures, Elman, Williams & Zipser and Long Short Term Memory networks,
on approximating eight aggregation functions of varying complexity. The goal is to establish base-
line results showing whether existing RNNs can be applied to learn order invariant aggregation
functions. The results indicate that the aggregation functions can be categorized according to
whether they entail (a) selection of a subset of elements and/or (b) non-linear operations on the
elements. We have found that RNNs can very well learn to approximate aggregation functions re-
quiring either (a) or (b) and those requiring only linear sub functions with very high accuracy.
However, the combination of (a) and (b) cannot be learned adequately by these RNN architectures,
regardless of size and architecture.

1 Introduction
Numerous applications benefit from parts-based representations resulting in sets of feature vectors. As an exam-
ple, the good/bad decision in surface inspection tasks often depends on the whole set of extracted fault feature
vectors, such as their spatial distribution, their total area and similar quantities. This information cannot be util-
ized if faults are processed one-by-one. Learning the decision process in this context thus requires methods for
classification of sets of feature vectors extracted from the faults [11].

To apply standard machine learning methods, these sets of varying cardinality need to be aggregated into a sin-
gle fixed-length vector. We define the classification task over sets of feature vectors

 (1)

 (2)

as the composition of the aggregation function computing the fixed length k-aggregate
 and the classification function Since, per-se, no order is imposed on the set ele-

ments, the aggregation function has to be order invariant.

Traditionally, in applications like machine vision aggregation has been solved by experts choosing the appropri-
ate application-specific functions [11]. In practice this is often a time-consuming and expensive iterative process.
Furthermore, excluding an important pre-processing from machine learning of complex models can severely
limit the resulting system performance. Hence, from a machine learning perspective, trainable aggregation for
sets of varying cardinality is an important ingredient to flexible and accurate modelling which has received little
attention yet.

Numerous methods have been developed in the field of image processing for the classification of single feature
vectors, for the generation/invention of features and for feature selection. All of these algorithms cover a wide
range of applications and can be trained on samples. However, to date no machine vision classification methods
have been reported, that fulfil all the requirements needed for surface inspection:

 The number of potential faults extracted varies for each instance

 The set of potential faults has no inherent ordering of its elements

 Typically, there are no correspondences between the faults extracted from different parts

Related Work. Some work has been done on classification of structures containing an unknown number of
elements [3,6], where the authors propose to use generalized recursive neurons to represent the structure of a
graph. In order to achieve this, they make use of the linked structured of the graph and directly represent the
graph topology in the network. They put their method in context with standard neural networks (for the classifi-
cation of single patterns) and RNNs (for the classification of sequences).

1722

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

With respect to training of aggregation functions the work of Uwents and Blockeel [12] is very similar to our
classification problem. The authors propose a method to solve a combined selection and aggregation problem in
a structured data set. They investigate data in a relational database, from which they select a relevant set of ob-
jects and classify the set using a trainable aggregation function. Because the size of the set is not known (it de-
pends on the results of the selection process) they used RNNs for classification. However, the work was focused
primarily on the selection process; furthermore, the trainable aggregation has only been tested on fairly simple
functions. Still, they identify a few key questions such as which architecture to choose for the network or how to
achieve order-invariance.

Recently classification of bags-of-features has received attention in the field of object recognition. Using local
features extracted from patches around salient image locations, recognition is performed by matching features of
a new image with those of known objects (e.g. [8]). Grauman and Darrell [4] proposed a kernel function operat-
ing on sets of features, which computes the partial match similarity between sets. Utilizing this kernel, a variety
of machine learning algorithms such as Support Vector Machines (e.g. [10]) can be applied to sets of features.
The method draws on the assumption that direct correspondences exist between the elements of sets to be com-
pared. Another approach to define kernels over sets is based on rewriting the sets of features as matrices and
calculating the principal angles between the two linear subspaces spanned by these matrices [14]. While not
requiring direct correspondences between the set elements, this method is in practice limited to sets of equal
cardinality [4].

We investigate the capability of common RNN architectures to learn order invariant aggregation functions rele-
vant the context of surface inspection. Based on the results, we identify two categories of aggregation compo-
nents. We show that either category can be learned accurately; however, none of networks can manage to learn a
combination of both. Section 2 describes the architectures and mode of operation of RNNs used for learning
feature aggregation functions. Section 3 presents the experimental setup and results on eight aggregation prob-
lems. Concluding remarks are given in Section 4.

2 Recurrent Neural Networks for Feature Aggregation
Due to their recurrent structure, RNNs can deal with a variable number of input vectors without growing with the
number of objects that we want to process. Furthermore aggregation and succeeding processing steps such as
classification can be integrated into a homogenous structure, which allows for training of both components in a
uniform manner. The principle structure is shown in Figure 1.

Figure 1: Recurrent Neural Network architecture for classification of sets of feature vectors.

The n input vectors x1, x2, …, xn will be processed by the network as if they were a time sequence. The classifica-
tion result will be available at the output after n “time steps”. However, this sequence of vectors lacks an impor-
tant property of time series, as it has no inherent ordering. Therefore, special methods for achieving invariance of
the RNN with respect to the presentation order of the set elements have to be applied.

For this paper, we have not investigated the aspect of classification, since once the varying number of potential
faults have been aggregated to a fixed-length representation, standard classification methods can be applied. If
the classifier provides for an error signal at its input, the combined aggregation/classification system can be
simultaneously trained by gradient based learning algorithms [1].

2.1 Network Architectures
We consider three common RNN architectures for learning aggregation functions producing
fixed length aggregates out of sets of varying cardinality . The Elman network [2] and the architecture pro-
posed by Williams & Zipser (WZ) [13] date back to the late 1980s and introduce feedback loops to the then well
known Multilayer Perceptron (MLP) feed forward neural networks. While Elman limited the feedback to within

x
x

i1
i2

Recurrent part
(Aggregation)

Feedforward part
(Classifier)

 State
(aggregated features)

Input

Output

1723

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

the hidden layer of the network, Williams & Zipser added feedback loops within the output layer, from the out-
put to input layer and feedforward connections bypassing the hidden layer to their so-called fully connected
network (Figure 2).

Figure 2: The network architectures used for evaluation are the Elman network, the fully connected
WZ network proposed by Williams & Zipser and the Long Short Term Memory (LSTM) network.

Arrows indicate data flow direction and lines represent vector quantities, except for the output, which
is a scalar. The networks differ in the connection architecture as well as in the special cells used in the

LSTM hidden layer (Figure 3).

Long short-term memory (LSTM) networks have been introduced by Hochreiter [7] as a solution to the vanish-
ing gradient problem. Standard RNNs can hardly learn long-term dependencies between the data, since the error
gradient with respect to the weights vanishes for larger time-lags between output and input. The error signal used
to adapt the weights during training thus decreases exponentially when going back through time. Long short-
term memory (LSTM) networks solve this problem, by incorporating constant error carrousels (CEC), neurons
that propagate the error unchanged, thus avoiding the decaying gradient. Access to the CEC is controlled by
multipliers which are driven by dedicated neurons called input and output gates. The inputs of the gates are con-
nected the network inputs and the outputs of all cells in the network.

Figure 3: LSTM cell. The constant error carrousel (CEC) prevents the vanishing gradient problem of

standard RNNs by propagating the error signal unchanged. Access to the CEC is controlled by the
input and output gates.

2.2 Order Invariance
Order invariance of RNNs can be realized by reshuffling of the data during training: The sequence of the feature
vectors in the set will be randomly permuted after each training epoch of the network. The neural network should
thus learn to be order-invariant. It is clear that it is impossible to cover all permutations of the input data, but
experiments [12] showed that the network will be able to generalize from a comparable small number of permu-
tations.

As a second option we use sorting as a pre-processing step that establishes order invariance among the set ele-
ments. Sorting, however, requires an ordering, which is non-trivial for data with more than one dimension. For
the general, multi-dimensional case lexicographical precedence [5] or vector norms can be used as sorting crite-
rion in a first approach.

Elman

ouput
layer

hidden
layer

ouput
layer

hidden
layer

WZ

ouput
layer

LSTM
Cells

LSTM

1724

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

3 Experiments
We have evaluated Elman, WZ and LSTM RNN architectures, on approximating eight aggregation functions
of varying complexity (see Figure 2 and Table 1). The data sets have been generated by applying aggregation
functions to sets of scalar entries . We have trained each network on both sorted and shuffled representa-
tions of the data sets. The goal is to establish baseline results showing whether these existing RNNs can in prin-
ciple learn order invariant aggregation functions.

3.1 Data Sets
We have evaluated the network’s performance on approximating functions aggregating sets of varying cardi-
nality to a fixed-length aggregate. These functions have been designed with visual quality inspection in mind.
For example the Sum function could describe the total area of detected faults. Another example is the minimum
geometric distance between faults, which is an important measure to decide if local build-ups of otherwise un-
critical faults can be tolerated. Table 1 shows the definition of the 8 aggregation functions used for the evalua-
tion.

Name Definition

Sum

Norm

MeanNorm

SumMax2

Max

SumMax2Abs

MaxAbs

MinDist

Table 1: Definition of the aggregation functions underlying the 8 data sets under evaluation.

Data sets have been produced by applying aggregation functions to sets of scalar entries . The number of
elements in each set is uniformly distributed

 (3)

with a minimum of 15 and a maximum of 30 elements. The range has been chosen such that the networks cannot
memorize all set elements. The entries itself are also generated randomly

 . (4)

Target values for the data sets are generated by scaling

 (5)

with and , such that almost all values are in the range [0,1], com-

patible with the logistic sigmoid activation function at the network’s output.

1725

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

3.2 Network Size
We have run the experiments with three different network sizes to assess their influence on learning result. The
network sizes are given in Table 2. For a given size, each of the network architectures should have equal com-
plexity. To account for the additional neurons in LSTM cells over standard networks, the number of cells in the
LSTM networks is chosen approximately halve the number hidden neurons for the other architectures.

Size Elman
[hidden neurons]

WZ
[hidden neurons]

LSTM
[cells]

small 5 5 3

medium 10 10 5

large 15 15 8

Table 2: Network sizes chosen for the experiments.

3.3 Training
During training the set elements are fed into the networks as a sequence. For the given artificial data sets training
could be closely guided by providing target values at every step of the sequence. However, such input is typi-
cally not available in practical settings. We have therefore decided that during training target values are pre-
sented to the network with the last set element only.

Adaptation of the network weights has been performed using Backpropagation through time (BPTT) algorithm
[2] for the Elman and Williams & Zipser network. The central idea is to unfold the recurrent neural network into
a multilayer feedforward neural network. The feedforward network thus has a layer for each time step in the
sequence. Then the standard Backpropagation algorithm is applied to the unfolded networks. The LSTM net-
works are trained by a combination of truncated BPTT and Real-time Recurrent Learning (RTRL) [13], an algo-
rithm which is specifically tailored to the LSTM architecture [7].

The weights and biases have been randomly initialized in the range of for the Elman and WZ net-
works and for the LSTM networks, except for the biases to the input and output gates. These biases
are initialized starting with for the first, for the second, for the third and so forth. This way, cell
activations are initially close to zero, and during training the cells will be sequentially activated to contribute to
the network function [7].

The networks are trained for a fixed amount of 100 epochs, which we have found enough for training of all net-
work / data set combinations to converge. During one epoch each of the 500 training sets is fed into the net-
work once. For the shuffled version of the data, the set elements are randomly permuted after each epoch. The
network weights are updated after each set. In the given setting no signs of overfitting have been observed, i.e.
the performance of the networks on separate test data is very close the performance on the data used during train-
ing.

3.4 Results
We have evaluated Elman, WZ and LSTM networks, on approximating the eight aggregation functions pre-
sented in Section 3.1. We have trained each network using both sorted and shuffled representations of these data
sets. For each combination 10 independent networks have been trained to reduce the probability of reporting
results where training converged to a bad local minimum of the cost function. Results are reported only for the
best network of each combination, since we are interested in whether existing RNNs can in principle learn the
given aggregation functions. The accuracy of the approximation is assessed by the Pearson correlation coeffi-
cient R of the network‘s output with the target value on fresh test data not used during training.

Aggregation Functions. Results for the small networks (Section 3.2) are presented in Figure 4, where they have
been grouped by aggregation function and arranged in decreasing order of the median group accuracy. From the
chart it is apparent that the 5 best aggregation functions are distinguished from the remaining, in that they can be
learned with high accuracy. Categorization of the aggregation functions according to whether they entail (a)
selection of a subset of elements and/or (b) non-linear operations on the elements (see Table 3) reveals an inter-
esting structure in the results: We have found that RNNs can very well learn to approximate aggregation func-
tions requiring either (a) or (b) and those requiring only linear sub functions. For aggregation functions not re-
quiring selection, R is greater than 95%. For those requiring selection but only linear operations on the elements,
R is greater than 85%. However, if both selection and non-linear operations are required, the accuracy achieved
is less than 60%.

1726

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

Figure 4: Approximation performance of RNNs on feature aggregation functions of varying com-

plexity. The approximation is assessed by the correlation coefficient R of network‘s outputs with the
target values. For both shuffled and sorted representations of the data the best result over 10

independently training runs are illustrated.

Name Selection Non-linear

Sum no no

Norm no yes

MeanNorm no yes

SumMax2 yes no

Max yes no

SumMax2Abs yes yes

MaxAbs yes yes

MinDist yes yes

Table 3: Categorization of the aggregation functions underlying the 8 data sets under evaluation. The
two rightmost columns indicate whether selection of subsets and/or non-linear operations are needed

to compute the function.

Network size. For the given data sets and networks, the larger network sizes provide no significant improvement
in general. Taking the most difficult-to-estimate MinDist data set as an example, changing from small to me-
dium networks results in a correlation increase below 0.3% for either network type. Only the border case Sum-
Max2Abs data set can be approximated significantly better by the large Elman network, yielding 78% correla-
tion compared to around 60% reached by all small networks.

Network structure. Similar to the network size, the additional feedback loops and the direct input-output con-
nection available in the WZ network provide no advantage over the simpler Elman network. The LSTM network
is inferior to the other network types for most data sets except for the most difficult-to-approximate MinDist
aggregation function. This remains true even if larger networks with up to 8 LSTM cells are compared to the 5-
Hidden-neuron Elman and WZ networks. On MinDist the Elman and WZ network’s correlations deteriorate to
below 10% on shuffled data, unlike the LSTM network’s 40%, which is equal to the easier-to-handle sorted case.
Although correlation values below 40% are too low for practical applications, the performance of the LSTM on
the shuffled MinDist data is significantly better than random.

Sorting. For the scalar, real-valued set elements presented here, sorting within the instance sets is very straight
forward. It simplifies approximation of the aggregation functions by either moving the relevant elements to the
end of the sequence or by arranging elements such that those relevant to the result are adjacent. Sorting helps for
the function involving taking the plain max, since then all relevant elements are presented at the end of the se-
quence.

0%

20%

40%

60%

80%

100%

R
(m

ax
 o

ve
r

10
 r

un
s)

Elman, shuffled

Elman, sorted

WZ, shuffled

WZ, sorted

LSTM, shuffled

LSTM, sorted

1727

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

4 Conclusions
We have investigated the capability of three common RNN architectures in three different sizes to learn order
invariant aggregation functions. For 5 aggregation functions the reached accuracy is already close to 100% with
the small sized network. Increase size and complexity in the network structure does not result in increased ap-
proximation accuracy of the remaining aggregation functions. For these functions the trained networks produce
accuracies below 60%.

Empirically, we have found that the presented aggregation function can be categorized according to two building
blocks: (a) selection of a subset of elements and/or (b) non-linear operations on the elements. We have shown
that Elman, Williams & Zipser and LSTM networks learn to approximate aggregation functions entailing either
(a) or (b) with very high accuracy. However, the combination of (a) and (b) cannot be learned adequately by
these RNNs, regardless of size and architecture. We thus assume that approximation of these aggregation func-
tions requires changes in the network architecture on a higher level:

One research direction should be the extension of existing architectures, which could be done by adding more
feedforward layers at either the input or output. Implementation of such networks is straight-forward, since exist-
ing learning algorithms can be used with minor adaptations.

Our main direction of research will aim at changing network architecture on a more fundamental level. The ma-
jor challenge in using recurrent neural networks for approximating aggregation functions is to achieve order
invariance. The two approaches investigated here are based on shuffling of the set elements during training or
pre-sorting of the sets. While the latter requires application-specific knowledge for multi-dimensional data, train-
ing on shuffled data creates an unnecessarily large input space which complicates learning. We will therefore
consider networks where order-invariance is an inherent property of the structure. For the basic building blocks
of such networks we will consider symmetric functions [9], which are defined as being invariant under permuta-
tions of their arguments. We assume that by using these basic building blocks, an order-invariant neural network
could be created.

5 Acknowledgements
This work has been supported by Austrian FWF grant P19376-N13.

6 References
[1] L. Bottou, and P. Gallinari, "A Framework for the Cooperation of Learning Algorithms, " in: Advances in

Neural Information Processing Systems, pp. 781–788, Morgan Kaufmann, 1991.
[2] J. L. Elman, "Finding structure in time," Cognitive Science, vol. 14, iss. 2, pp. 179–211, 1990.
[3] P. Frasconi, M. Gori, and A. Sperduti, "A general framework for adaptive processing of data structures,"

IEEE Transactions on Neural Networks, vol. 9, iss. 5, pp. 768–786, 1998.
[4] K. Grauman and T. Darrell, "The Pyramid Match Kernel: Efficient Learning with Sets of Features," J.

Mach. Learn. Res. vol. 8, pp. 725–760, 2007.
[5] A. Graves, S. Fernandez, and J. Schmidhuber, "Multi-Dimensional Recurrent Neural Networks," in Proc.

Artificial Neural Networks ICANN, 2007, pp. 549–558.Casti, J. L.: Reality Rules – Picturing the World in
Mathematics: I, II. Wiley, New York, 1992.

[6] B. Hammer, "Recurrent networks for structured data - A unifying approach and its properties," Cognitive
Systems Research, vol. 3, iss. 2, pp. 145–165, 2002.

[7] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput. vol. 9, iss. 9, pp. 1735–
1780, 1997.

[8] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Com-
puter Vision, vol. 60, iss. 2, pp. 91–110, 2004.

[9] I. G. Macdonald, “Symmetric Functions and Hall Polynomials (Oxford Mathematical Monographs),” 2nd
ed., Oxford University Press, USA, 1999.

[10] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimiza-
tion, and Beyond (Adaptive Computation and Machine Learning), 1st ed., The MIT Press, 2001.

[11] M. Tahir, J. Smith, and P. Caleb-Solly, "A Novel Feature Selection Based Semi-supervised Method for Im-
age Classification," in Proc. Computer Vision Systems - ICVS, 2008, pp. 484–493.

[12] W. Uwents and H. Blockeel, "Classifying Relational Data with Neural Networks," in Proc. In Proceedings
of 15th International Conference on Inductive Logic Programming, 2005, pp. 384–396.

[13] R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural net-
works," Neural Computation, vol. 1, iss. 2, pp. 270–280, 1989.

[14] L. Wolf and A. Shashua, "Learning over sets using kernel principal angles," J. Mach. Learn. Res. vol. 4, pp.
913–931, 2003.

1728

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

