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Abstract. Previously, dynamic temperature profiles were optimized with the technique of optimal
experiment design for parameter estimation to obtain unique and accurate identification of a nonlinear,
microbial kinetic model enclosing four parameters [13]. E. coli K12 MG1655 was selected as a model
micro-organism. The dynamic optimization problem was reduced to a series of two-parameter estima-
tion problems. For all combinations of two model parameters, D-optimal dynamic temperature profiles
were designed within a temperature region, confined to guarantee practical feasibility and model va-
lidity. The optimal experiments were implemented in a computer controlled bioreactor, and the kinetic
parameters were identified from the resulting experimental data. Experimental observations underlined
the importance of selecting the upper temperature constraint for OED/PE as close as possible to the
true maximum growth temperature Tmax. Realistic and accurate model parameters were obtained.

In this paper, the OED/PE strategy, as constructed for the case study of E. coli K12 MG1655, is further
exploited for the yeast Zygosaccharomyces bailii. Again, accurate and reliable kinetic parameter values
are obtained from the series of optimal dynamic bioreactor experiments, confirming the advantage of
OED/PE implementation for the identification of kinetic models.

1 Introduction
Mathematical models are the key-stone of optimal design, control and operation of bioprocesses. In the domain
of predictive microbiology, models are developed in which the influence of varying environmental factors on the
microbial evolution in food products is described. A general condition of the global predictive model is the ability
to describe the general characteristics of the investigated microbial behavior. A predictive model structure is
mostly developed for an extended range of food-related microorganisms, but the model parameter values need to
be improved for each microorganism specificly. Once this model structure is selected, solid implementation asks
for accurate estimation of the model parameters such that model predictions closely represent reality. Accurate
parameter estimation is, however, often hindered by (i) a too small amplitude of process output sensitivities with
respect to the model parameters, (ii) correlation of model parameters, (iii) measurements with limited accuracy
and/or small measurement frequency, and (iv) a lack of measurements for certain (biologically important) state
variables [4].

In predictive microbiology, model parameters are usually determined based on static experiments covering the
whole range supported by the model, or a fixed range selected for its high relevance. An accurate determination
of parameters asks for an extended range of experimental data so that this working method is time-consuming
and labor-intensive. Furthermore, problems can occur when the estimates are transferred to more realistic varying
conditions. The use of dynamic experiments is a better alternative as this lowers the experimental load and allows
evaluation of the model validity under more realistic, time-varying environmental conditions. Presuming model
validity, the mathematical technique of optimal experiment design for parameter estimation (OED/PE) forms an
excellent starting point for the selection of highly informative, dynamic experiments, aiming at unique and accurate
parameter estimation. OED/PE was already successfully adopted in [13] for the estimation of the four parameters
belonging to the Cardinal Temperature Model with Inflection (CTMI) [11], i.e., Tmin, Topt , Tmax (the minimum, op-
timum and maximum growth temperature, respectively) and μopt (the specific growth rate at Topt ). This nonlinear
kinetic model describes the effect of temperature on the microbial growth rate in the whole growth region, ranging
from the minimum to the maximum temperature for growth. E. coli K12 MG1655 was selected as a model organ-
ism. Here, the optimization problem was reduced to a problem wherein the parameters are estimated two-by-two,
as accurate estimation of the four parameters from a single experiment, taking into account the stringent limitations
on the dynamics of a biological system, is doubtful. Starting from the four CTMI parameters, six combinations of
two parameters were constructed. For each parameter couple, the D-optimal experiment was designed, while the
two other parameters were assumed perfectly known. To guarantee model validity and practical feasibility, optimal
experiments were selected in a confined temperature region. Next, the six optimal experiments were performed
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in a computer controlled bioreactor and CTMI parameters were identified from the experimental data. Realistic
CTMI parameters were obtained, and it was concluded that, in general, the implementation of OED/PE can im-
prove the statistical quality of the kinetic model parameters. However, a major drawback of the use of OED/PE
for the identification of the CTMI was uncovered. A reliable and accurate estimate of the maximum growth tem-
perature Tmax can only be obtained when temperatures at or very close to the true Tmax are included in the optimal
temperature profile. Therefore, a reliable initial estimation of the maximum temperature for growth is required.

In this manuscript, the conclusions drawn with respect to the E. coli case study are evaluated through the imple-
mentation of OED/PE for the identification of the CTMI for Zygosaccharomyces bailii. Z. bailii is a common
spoilage yeast mostly found in food products with low pH values and high sugar concentrations, like apple juice
and ketchup. In contrast to E. coli, prior knowledge of the impact of temperature on the growth rate of Z. bailii is
minimal. Optimal experiments are designed and parameters are estimated following the OED/PE solution strategy
presented in [13].

2 Materials and methods
2.1 Computational environment

Optimization algorithms. The optimization problem was solved with a hybrid optimization algorithm wherein the
stochastic Integrated Control Random Search algorithm (ICRS) [1] was combined with the deterministic NAG
routine E04UCF (The Numerical Algorithms Group Ltd). Random values from the normal distribution in ICRS
were generated with the NAG pseudo-random generator G05FAF, combined with G05CCF to set the seed to a
non-repeatable initial value. Values for the three heuristic ICRS parameters k1, k2 and ne were set at the default
values declared in [1]. Differential equations were numerically integrated with the NAG routine D02EJF.

Parameter estimation, uncertainty, confidence intervals and prediction intervals. Model parameters were estimated
via the minimization of the global sum of squared errors (SSEglobal), using the lsqnonlin routine of the Optimization
Toolbox of Matlab version 6.5 (The Mathworks Inc.). The Matlab routine ode23s was used for the integration of
ordinary differential equations.

Parameter variances (s2
i ) were obtained from the main diagonal of the parameter variance covariance matrix P.

P was calculated as
{

JT · J
}

·MSEglobal with J the Jacobian matrix, calculated by lsqnonlin, and MSEglobal , the
global mean sum of squared errors. The asymptotic 95% confidence interval on the best parameter estimate p̂i was
calculated as follows [

p̂i± t(1− α2 ,nt−np) ·

√
s2

i

]
(1)

with p̂i the ith parameter estimate, t the Student t distribution value, α the significance level (α = 0.05), nt the
total number of experimental data in N experiments, np the total number of parameters, and nt −np the degrees of
freedom. Given the parameter variances, confidence limits on the model output were calculated as follows [14][

n(ti, p̂)± t(1− α2 ,nt−np) ·
√

s2
n(ti,p̂)

]
(2)

with n(ti, p̂) the model prediction at time ti, t the Student t distribution value and p̂ the vector of best parameter
estimates. The variance s2

n(ti,p̂) was derived from

s2
n(ti,p̂) =

[
∂n(ti,p)
∂p

|p=p̂

]
P

[
∂n(ti,p)
∂p

|p=p̂

]T

(3)

Prediction limits, taking into account measurement errors, are given by[
n(ti, p̂)± t(1− α2 ,nt−np) ·

√
s2

n(ti,p̂) + s2
n

]
(4)

with s2
n set equal to the MSEglobal .

2.2 Experimental protocol

Microorganism. A culture of the yeast Z. bailii (No. 174, stored at -75◦C) was obtained from the Laboratory of
Food Microbiology and Food Preservation (LFMFP, UGent, Belgium). The yeast is grown in Sabouraud liquid
medium (SAB, CM147, Oxoid) which has a glucose concentration of 20g/L (2% w/v). The inoculum was prepared
by transferring a loop of Z. bailii to a tube containing 6mL of SAB which was subsequently stored at 30◦C for 24h.

Bioreactor experiments. Dynamic experiments were performed in a computer controlled bioreactor (BioFlo
3000, New Brunswick Scientific). The reactor vessel was filled with 3.5L of SAB. Reactor contents were stirred
at 700 rpm and the aeration flow was set at 4L/min. Temperature profiles were programmed and controlled by the
Advanced Fermentation Software system (New Brunswick Scientific). Temperatures beyond room temperature
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Table 1: Cardinal Temperature Model with Inflection, with Tmin, Topt and Tmax respectively the minimum, optimum and
maximum temperature for growth [◦C], and μopt the maximum specific growth rate at the optimum growth temperature
[1/h].

μmax = μopt · γ(T)

T < Tmin γ(T) = 0

Tmin≤ T ≤ Tmax γ(T) =
(T −Tmin)2(T −Tmax)

(Topt −Tmin)((Topt −Tmin)(T −Topt)− (Topt −Tmax)(Topt +Tmin−2T ))

T > Tmax γ(T) = 0

could be attained by the use of a recirculation chiller (CFT-33, Neslab Instruments). The bioreactor was inoculated
at approximately 7-9 ln(CFU/mL). After inoculation, cells were allowed to adapt to the new temperature for min-
imally 2h prior to the implementation of the temperature profile Tinput(t) and sampling, in order to minimize the
initial adaptation phase.

Cell density was determined based on plate counts. After serially diluting the sample in physiological salt solution
(8.5g/L NaCl and 1g/L peptone), the appropriate dilutions were plated on TSA supplemented with 15% w/v glucose
(Sigma) using a spiral plater (Eddy Jet, IUL Instruments s.a.). For each sample, at least two dilutions were plated.
Each cell count shown is an average of countable plates. The average time between sampling and plating was less
than 10 min which is smaller than the generation time. Plates were counted after incubation at 30◦C for 48h.

3 Optimal experiment design for parameter estimation
3.1 Theory

The information content of an experiment with continuous measurement of the model output y and duration t f can
be quantified by the Fisher information matrix (see e.g., [15]):

F �
∫ t f

0

(
∂y
∂p
|p=p◦

)T

Q
(
∂y
∂p
|p=p◦

)
dt (5)

with ∂y/∂p the sensitivity matrix which quantifies the sensitivity of the model output to small variations in the
model parameters p, and Q the errors on the output measurements which is typically taken equal to the inverse
of the measurement error variance matrix. For nonlinear models, the Fisher information matrix depends on the
unknown parameters p. F is therefore computed for p = p◦, with p◦ an initial guess for the unknown model
parameters (nominal parameter vector) obtained from literature or preliminary experiments. Optimal experiment
design results from the minimization or maximization of a scalar function of the Fisher information matrix. The
selected scalar function determines the focus of the design. D-optimal design aims at the minimization of the joint
confidence region on p via the maximization of the determinant of F.

3.2 Application to the case study

The evolution of cell density in time is described by the growth model of Baranyi and Roberts [2]:

dn(t)
dt

=
Q(t)

Q(t)+1
·μmax(T (t)) · [1− exp(n(t)−nmax)]

dQ(t)
dt

= μmax(T (t)) ·Q(t)
(6)

with n(t) [ln(CFU/mL)] the natural logarithm of the cell density at time t, n(0) the initial and nmax the maximum
value for n(t), Q(t) [-] the physiological state of the cells, and μmax [1/h] the maximum specific growth rate.
The duration of the initial adaptation phase, modeled via the parameter Q(t), is determined by the experimental
conditions and is not accurately predictable. Hence, a reduced form of the model of Baranyi and Roberts (Equation
(6)), in which the state variable Q(t) is omitted, was used to design the optimal experiments. As such, this model
coincides with a logistic growth model consisting of exponential growth followed by a stationary phase. The
evolution of μmax as function of temperature is incorporated in Equation (6) by the Cardinal Temperature Model
with Inflection (CTMI) [11]. The model equation is given in Table 1.

Unknown parameters are the four parameters of the CTMI: p = [Tmin Topt Tmax μopt ]
T . The measured model output

equals n(t), which is considered as a continuous measurement. For the estimation of the four CTMI parameters,
the optimization problem was reduced to a combination of optimization problems of lower complexity [13]. The
problem is reformulated as a series of two-parameter estimation problems. An optimal experiment is designed
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Figure 1: (Left) Representation of the parameterized temperature profile, which is characterized by four degrees of
freedom: T1 the initial temperature, ts,1 the time at which the increase or decrease in temperature starts, (ΔT/Δt)1 the rate
of temperature change and ts,2 the duration of the temperature change. (Right) Sensitivities of the CTMI with respect to
its parameters (-),(- · ), ( · · ) and (- -) corresponding to Tmin, Topt , Tmax and μopt , respectively. The figure is constructed
given the nominal CTMI values displayed in Table 3.

for each two-parameter combination, based on common nominal values. Next, all six optimal experiments are
implemented and new parameter values are globally estimated from all experimental data sets. The advantage of
this global OED/PE strategy is that the error in one (or more) nominal values is not spread over all designs, i.e.,
if a nominal value is far from its true value, not all designs are corrupted. Moreover, the advantage of taking into
account several experiments is that the variability of the system is included in the parameter uncertainty.

Realistic nominal parameters for Zygosaccharomyces bailii are derived from static experiments and literature:
Tmin = 10.50◦C, Topt = 28.50◦C, Tmax = 37.50◦C, and μopt = 0.2800 1/h. As an example, the initial and maximum
cell density are: n0 = 7.000 ln(CFU/mL) and nmax = 19.20 ln(CFU/mL). The weighting matrix Q reduces to a
single value, namely the inverse of the measurement error variance, which is taken equal to 3.27 × 10−2.

The control input is the time-varying temperature Tinput(t) that is parameterized to obtain a finite dimensional
dynamic optimization problem. The structure of Tinput(t) is drafted in Figure 1 (Left). After an initial period at
constant temperature, temperature linearly decreases or increases to reach a final phase of constant temperature.
Four degrees of freedom characterize this temperature profile: T1 [◦C] the initial temperature, ts,1 [h] the time at
which the increase or decrease in temperature starts, (ΔT/Δt)1 [◦C/h] the rate of temperature change, and ts,2 [h]
the duration of the temperature change. The four degrees of freedom implicitly determine the final temperature
T2 [◦C]. To guarantee validity of the models and practical feasibility of the optimal experiments at all time, two
constraints are imposed on the temperature input profile. (i) Only very moderate temperature gradients can be
applied as rapid changes can induce an intermediate adaptation phase and violate the model structure (see, e.g.,
[12]). Analogously to the case study of E. coli where the maximum rate of temperature change was set at 5◦C/h
(≤ 2× μopt ), the maximum (ΔT/Δt) for Z. bailii was chosen at 0.5◦C/h. (ii) The dynamic temperature profiles are
confined between Tlow and Thigh, here taken equal to 12◦C and 37◦C, respectively, ensuring smooth growth curves
and measurable growth rates at all times. From the results presented for E. coli, it was stated that Tmax can only be
estimated accurately when the nominal Tmax, and also the upper temperature constraint Thigh, are close to the true
Tmax. Therefore, the upper temperature limit Thigh was chosen very close to the nominal Tmax. The duration of the
designed experiments is fixed a priori at 60h from a practical point of view.

4 Results and discussion
4.1 Design of optimal temperature profiles: results and interpretation

The resulting OED/PE approach can be summarized as finding the optimal values for the four DOF of the pa-
rameterized temperature input that maximize the information embedded in the model output, i.e., cell density as
function of time. The input profile is subject to

12◦C ≤ Tinput(t) ≤ 37◦C
−0.5◦C/h ≤ (ΔT/Δt) ≤ 0.5◦C/h (7)

D-optimal experiments for all six parameter couples are calculated with the nominal Tmin, Topt , Tmax and μopt cho-
sen at 10.50◦C, 28.50◦C, 37.50◦C and 0.2800 1/h, respectively.
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Table 2: D-optimal temperature profiles for all two-parameter combinations. The parametrization of the temperature
profile is illustrated in Figure 1 (Left). Temperature is bounded within [12◦C, 37◦C] and t f is fixed at 60h. The global
optimum of the adopted criterion is presented in bold. (Letter codes refer to graphs of the performed experiments.)

Negative slope: ΔT/Δt ∈ [-0.5◦C/h, 0◦C/h]

T1 ts,1 (ΔT/Δt)1 ts,2 T2 det(F)

(Tmax, μopt ) 37.00 22.25 -0.5000 17.00 28.50 4.408×108

(Tmax, Tmin) 37.00 9.001 -0.5000 43.50 15.25 6.387×103 (B)

(Tmax, Topt ) 37.00 37.00 -0.5000 7.083 33.46 1.570×105

(Tmin, μopt ) 28.50 8.723 -0.5000 26.78 15.11 1.470×107 (D)

(Tmin, Topt ) 22.32 16.33 -0.5000 16.07 14.29 6.706×103 (E)

(Topt , μopt ) 33.73 8.537 -0.5000 30.11 18.67 8.678×107 (F)

Positive slope: ΔT/Δt ∈ [0◦C/h, 0.5◦C/h]

T1 ts,1 (ΔT/Δt)1 ts,2 T2 det(F)

(Tmax, μopt ) 28.50 11.94 0.5000 17.00 37.00 4.622×108 (A)

(Tmax, Tmin) 15.29 1.511 0.5000 43.43 37.00 6.243×103

(Tmax, Topt ) 33.44 20.06 0.5000 7.127 37.00 1.577×105 (C)

(Tmin, μopt ) 14.96 15.98 0.5000 27.08 28.50 1.374×107

(Tmin, Topt ) 14.28 17.48 0.5000 16.02 22.29 6.679×103

(Topt , μopt ) 19.82 9.244 0.5000 30.22 34.93 8.088×109

Design of optimal temperature profiles. The resulting optimal temperature profiles are listed in Table 2. Tem-
perature profiles are designed for both a linear increasing and decreasing temperature. For each parameter combi-
nation, the most informative temperature profile is presented in bold.

Contrary to the case study of E. coli [13], linearly decreasing temperature profiles are not per se the most informa-
tive for all parameter combinations. The parameter couples (Tmax, μopt) and (Tmax, Topt ) can be estimated better
from a dynamic experiment including a linear temperature increase. For all parameter combinations, differences in
the det(F) of optimal experiments given a positive and a negative temperature change are very small. Nearly equal
D-criterion values can be observed for (Tmax, Topt) and (Tmin, Topt ).

Due to the slow growth rates, the optimal temperature profiles are dominated by the temperature change. The
optimal (ΔT/Δt) always coincides with the absolute maximum temperature change, i.e., 0.5◦C/h. This is similar
to the case study of E. coli [13] and the work of Bernaerts et al. [3], where rapid temperature changes are preferred
to slow temperature changes. Initial or final temperatures of the optimal experiments aiming at the estimation
of (Tmax, μopt ), (Tmax, Tmin) and (Tmax, Topt ) are always equal to the upper temperature boundary. The lower
temperature constraint, however, is never attained.

Between the different parameter combinations, the values of T1, ts,1 and ts,2 vary. For a specific parameter couple,
the initial and final temperature of the experiments with a linear temperature decrease are (almost) identical to
the final and initial temperatures of the experiments with a positive slope, respectively. A larger variation exist
in the duration of the constant temperature phase. In general, experiments with positive and negative slopes are
seemingly each others’ mirror image.

Interpretation of optimal temperature profiles with respect to sensitivity functions. Analysis of the optimal
temperature profiles with respect to the sensitivities in Figure 1 (Right) is analogous to the case study of E. coli [13].
(i) Estimation of μopt is improved by sampling at and around Topt . This is reflected in the temperature profiles
associated with (Tmax, μopt ) and (Tmin, μopt ), for which the initial or final temperature is equal to Topt . For the
combination (Topt , μopt ), the informative region is crossed during the linear temperature change. (ii) Profiles
for the estimation of Tmin start or end at temperatures around 14◦C-15◦C, the temperature region in which the
inflection point of the CTMI model is situated. (iii) The informative temperature zones for Topt are situated around
20◦C and 33◦C. Therefore, one of these temperatures is mostly selected as begin or end temperature when a
parameter couple encloses Topt . (iv) As revealed before, the estimation of Tmax requires temperature profiles
including temperatures close to the true Tmax. This is reflected in the sensitivity of μmax with respect to Tmax,
which shows a very explicit extremum at Tmax. As such, optimal experiments for the estimation of Tmax always
start or end at the upper temperature boundary of 37◦C. (v) The lower temperature boundary is never attained since
no extrema exist around this lower boundary.
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Table 3: Nominal values, CTMI parameter estimates and standard deviations derived from the six optimal experiments
(Figure 2) and the six non-optimized dynamic experiments (Figure 3).

Optimal Non-optimized

Nominal values dynamic experiments dynamic experiments

Tmin 10.50 7.191 (2.386×10−1) 9.723 (3.588×10−1)

Topt 28.50 29.72 (1.323×10−1) 29.28 (1.225×10−1)

Tmax 37.50 37.13 (2.897×10−2) 37.03 (3.003×10−2)

μopt 0.2800 0.3333 (3.025×10−3) 0.3000 (2.680×10−3)

MSEglobal 5.775×10−2 1.814×10−2

(nt , np) (228, 17) (175, 17)

4.2 Parameter estimation from optimal experiments

As in the case study with E. coli, the optimal temperature profiles are simplified before practical implementation
in the bioreactor. The impact of the profile simplification on the information content of the experiment, i.e., the
value of the D-criterion, is negligible (data not shown). The periods of sampling are scheduled such that the
informative zones (see [6] and [9]), i.e., the initial lag phase, the begin and end of the exponential phase and the
stationary phase, are covered. Furthermore, sampling was preferentially placed during the temperature change and
at the constant phases at the very low and high temperatures. At the latter, growth is difficult to estimate without
prolonged sampling, due to the low growth rates. As can be seen in Figure 2, the periods without sampling are
small such that it can be expected that only a minimum of information is lost.

The simplified optimal experiments are implemented in a computer controlled bioreactor. The growth curves given
the dynamic temperature profiles are shown in Figure 2. (Letter codes refer to the optimal experiments as given
in Table 2.) The experimental protocol was designed such that the microbial cells are in the exponential growth
phase when sampling started. However, to take into account the possible presence of a (short) initial lag phase,
the growth curves are fitted using the full model of Baranyi and Roberts, i.e., with Q(t), as shown in Equation (6).
Growth model parameters and CTMI parameters are identified by fitting this full model of Baranyi and Roberts,
combined with the CTMI, on the six optimal experiments. The resulting CTMI parameter values and standard
deviations are listed in Table 3.

The trends in the growth curves are followed accurately, except for experiments (B) and (C). For both experiments,
microbial cells grow faster than described by the models. As the model simulation underestimates the growth in
experiments (B) and (C), this can not be due to the induction of an intermediate adaptation phase as a response to
the temperature change. In experiment (C), the growth in the initial phase at approximately 33◦C is characterized
by two growth phases. It seems unlikely that an initial lag phase is induced as the difference between the inoculation
temperature (30◦C) and the temperature in the bioreactor is small (less than 5◦C). Furthermore, microorganisms
are adapted to the new temperature prior to the implementation of the optimal temperature profile. An explanation
for the lack of fit in experiments (B) and (C) is thus not found.

The new CTMI parameter estimates are compared to the nominal parameters, selected based on a very small set
of static experiments and values published in [7]. These researchers estimated Tmin, Topt and Tmax roughly at
6.5◦C, 30◦C and 37◦C, respectively, for a medium with 10% (w/w) glucose. Values for Topt , Tmax and μopt are
very similar to the nominal values, and Topt and Tmax correspond to temperatures presented in [7]. However,
the minimum temperature for growth is estimated significantly lower than its nominal value. Most probably, the
nominal Tmin is an overestimation of the lower growth boundary and the new Tmin estimate and value given in
[7] are closer to the real minimum temperature for growth. All parameter estimates are characterized by a small
estimation error, with the largest estimation uncertainty associated with Tmin. This higher uncertainty can be
explained by the rather low sensitivity of the kinetic model with respect to the parameter Tmin. As can be seen in
Figure 1 (Left), the CTMI is significantly less sensitive for Tmin as for the three other model parameters. As a result,
small differences in the Tmin value only have a small influence on the models’ descriptive quality, and accurate and
reliable estimation of Tmin is not evident. Moreover, the nominal value for Tmin is chosen significantly higher than
the true minimum temperature for growth. As a result, limited information is available in the temperature region
the most informative for the estimation of Tmin. However, compared to literature, the obtained Tmin estimate is
realistic. It seems, however, very reasonable that a second iteration of OED/PE with a revision of the nominal
Tmin will improve the estimation of the minimum temperature for growth.

4.3 Evaluation and validation

Evaluation of the OED/PE strategy. To verify the advantage of OED/PE, the parameter estimates and correspond-
ing standard deviations are compared to CTMI parameters estimated from a series of non-optimized dynamic
bioreactor experiments. For the design of these dynamic experiments, the temperature region was subdivided in
three parts, namely [12◦C, 25◦C], [25◦C, 34◦C] and [27.5◦C, 37◦C]. In each zone, a linearly increasing and de-
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Figure 2: Global identification of the CTMI model on the six optimal experiments designed within [12◦C, 37◦C]: ex-
perimental data (◦), global identification curves (-) and temperature profiles (- -).The confidence and prediction intervals
are represented by (- · ) and (- -), respectively. The corresponding parameter estimates and standard deviations are listed
in Table 3.

1537

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



creasing temperature profile is designed. Profiles are selected such that temperature changes during exponential
growth. Moderate temperature changes (0.2◦C/h - 0.35◦C/h) are selected as rapid changes can induce an inter-
mediate adaptation phase that violates the model structure (see, e.g., [12]). When the temperature is at its final
setpoint, this temperature level is maintained until the stationary phase is reached. To ensure exponential growth
during temperature variation, temperature change was only initiated 5h after inoculation.

Topt and Tmax, estimated from the six non-optimized dynamic experiments are very similar to the estimates result-
ing from the optimal experiments, and correspond with the results given in [7]. A larger difference is observed for
Tmin, with a lower, more realistic value derived from the six optimal experiments. The overestimation of Tmin from
the non-optimized experiments is due to a lack of sufficient and accurate information at moderate and low tem-
peratures. Growth rate estimates can only be obtained during the linear temperature change and at the arbitrarily
chosen temperature levels (12◦C and 25◦C), and the constant temperature levels were often only maintained for
short periods. Moreover, growth at 12◦C was that slow that estimation of μmax from the available information
was inconclusive. In the optimal experiments, however, information can not only be collected during the temper-
ature change but also during the initial or final constant phases. The latter temperature levels are situated between
14◦C and 23◦C and are different for most optimal experiments. In most cases, these constant phases are rather
long (≈ 20h), making the growth rate estimates more accurate.

Validation of the cardinal temperatures estimates. The overall validity and transferability of the CTMI parameter
estimates is further confirmed by predicting the growth of the six non-optimized experiments. Values for n(0)i,
Q(0)i and nmax are estimated, while the CTMI parameters are fixed at the OED/PE estimates. Confidence and
prediction intervals are constructed. As can be seen in Figure 3, the general trends in the dynamic experiments
are well described. Except for experiment (1) where the growth at 12◦C is overestimated, approximately all cell
density measurements fall within the prediction interval. This observation confirms the general validity of the
CTMI parameters within the investigated temperature region.

5 Conclusions
In this manuscript, Z. bailii is used to evaluate conclusions drawn in [13] with respect to the implementation of
OED/PE for the identification of the CTMI for E. coli K12 MG1655.

From the results presented in [13], a major drawback of the application of OED/PE for the identification of the
CTMI was formulated. Only when the nominal Tmax, and also the upper temperature constraint (Thigh), are close
to the true Tmax, Tmax can be estimated accurately. Therefore, attention is paid to the selection of the nominal
Tmax and Thigh for the case study of Z. bailii. The nominal maximum temperature for growth and the upper
temperature boundary are chosen very close to the expected true Tmax.

Analogous to the case study with E. coli, D-optimal experiments are calculated for all six combinations of two
CTMI parameters. Tmin, Topt and Tmax values estimated from these six experiments are realistic, i.e., very similar
to the values obtained by Jermini et al. [7]. Associated standard deviations are very small. The largest estimation
error is associated with the estimation of Tmin. The nominal Tmin estimate is chosen too high such that the optimal
experiments lack information in the most information region. Additionally, accurate estimation of Tmin is hardened
by the lower sensitivity of the CTMI model with respect to Tmin, and the slow growth rates at low temperatures.
Estimation of Tmin can most likely be improved in a second OED/PE design round with revised nominal values
and an adapted lower temperature boundary.

The performance of OED/PE is compared to a series of non-optimized dynamic experiments. The minimum tem-
perature for growth estimated from the optimal experiments is better than the value derived from the non-optimized
dynamic experiments. In general, the main conclusion drawn from the E. coli case study can be confirmed: imple-
mentation of OED/PE improves the one-step identification of the CTMI compared to an arbitrarily chosen series
of dynamic experiments.
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Figure 3: (Validation) Simulation of the six dynamic experiments within [12◦C, 37◦C] with global cardinal estimates
from the six optimal experiments within [12◦C, 37◦C] and corresponding confidence and prediction regions. Estimates
for n(0)i, Q(0)i and nmax are obtained by globally fitting these six experimental data sets with a combination of the
Baranyi model and the CTMI, while fixing the CTMI parameters at the best estimates from the optimal experiments.
(experimental data (◦), simulation curve (-), temperature profile (- -), confidence interval (- · ) and prediction interval
(- -)).
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