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Abstract. This paper presents a procedure for improving the transient response of a boundary-
controlled nonlinear flexible elastic beam via a feed-forward action. It is shown that it is possible
to obtain a formal analytic solution of an infinite-dimensional linear system, which approximates the
nonlinear dynamics, under time-varying boundary conditions in terms of the free vibration modes of
the structure, whose calculation is a relatively easy task. The feed-forward action is then obtained by
inverting the relationship between input and output variables. A numerical example is presented and
some simulation results are discussed.

1 Introduction
Most control systems employ two distinct kinds of control actions: a feed-back action, to improve the stability
properties of the system and increase its robustness with respect to parameters variations and/or disturbances, and
a feed-forward action, usually needed to achieve a rapid response and improve tracking performances with respect
to a time-varying reference signal. Designing a feed-forward controller requires, generally speaking, to invert (at
least partially) the dynamics of the system to be controlled in order to obtain a output-input relationship which is
then put in cascade with the open loop system itself.

When dealing with infinite dimensional systems, however, this step is not straightforward, because calculating the
direct dynamics of the system in closed form may be a formidable task in itself. Even when the system has already
been studied and a solution is available, usually it is developed under some assumptions which are unrealistic in
control application, e.g. zero boundary conditions or infinite spatial domain. Conversely, the typical effect of a
control system is to introduce time-varying boundary conditions or generate a distributed action across the spatial
domain over which the system is defined, and obtain a solution thus becomes much more difficult.

This paper focuses on designing a feed-forward controller for flexible beams. In robotics, this problem has been
usually addressed by solving the Lagrange’s inverse equation of motion in time domain. In this case, the flexible
beam is a finite dimensional system of proper order, obtained under the hypothesis that the position of a point of
the link is described by a virtual rigid body motion plus a deflection, modeled by an Euler-Bernoulli beam model
with “some” zero boundary conditions compatible with the rigid coordinates (e.g. clamp-free, pin-free or pin-pin),
[1, 4, 9].

The same problem has been also addressed in the context of flatness-based control, mainly with reference to
the Euler-Bernoulli beam model, [8, 15]. On the other hand, the procedure illustrated in this paper is applied
to the nonlinear flexible elastic beam model introduced in [12] with time-varying boundary conditions on the
position/orientation of the extremities of the link and/or on the applied forces/torques. Upon linearization around
the unstressed configuration, this nonlinear model simplifies into the well-known Timoshenko beam model for
which a formal expression of the dynamics, i.e. of the solution of the PDE with time-varying boundary conditions,
can be computed. This solution is expressed as an infinite series whose convergence properties, differently from
[8, 15], are not addressed here and are currently under investigation. Some analogies in the approach can be found
in [10] where a similar feed-forward control strategy for the Korteweg-De Vries equation is proposed within the
flatness framework. Then, the synthesis of the feed-forward control law (i.e. the time-domain inversion of the
equation of motion) is an application of well-known results for linear dynamical systems.

2 Flexible elastic beam model
Consider a slender flexible beam of length L and with an unstressed configuration which is not required to be a
straight line. If z ∈ Z ≡ [0, L] denotes the position along the link in the unstressed configuration, assume that
the configuration in the space of the cross section, i.e. the relative configuration between a body reference Eb(z)
attached to the cross section and an inertial reference E0 is given by h(z) ∈ SE(3) (see also Fig. 1). The distributed
port Hamiltonian formulation of the flexible link dynamics is [12]:

∂

∂ t
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Figure 1: Representation of the nonlinear flexible link in the deformed and unstressed configurations.

with boundary terms given by

f B(0) = δpH |0 f B(L) = δpH |L eB(0) = δqH |0 eB(L) = δqH |L (2)

In (1), H is the total Hamiltonian, given by the sum of two contributions: the kinetic energy and the potential
elastic one due to deformation, i.e.

H (p,q) =

∫
Z

[
K(p)+W (q)

]
dz =

1
2

∫
Z

[〈p | p〉Y + 〈q | q〉C−1 ]dz (3)

Note that the state (energy) variables associated with the flexible link are the infinitesimal deformation q and
momentum p, expressed in body reference. If I denotes inertia tensor of the cross section and p ∈ se∗(3) the
momentum of the cross section which corresponds to t ∈ se(3) via the tensor I, the first contribution in (3) denotes
the kinetic energy density, where Y = I−1. Note that p is a function of z ∈ Z with values in se∗(3). In the same
way, C is the compliance tensor, with inverse C−1, which defines a quadratic form on se(3) taking into account the
potential elastic energy due to deformation, [18]. Finally, in (1), n̂ = ĥ−1

∂zĥ is the “twist” in body reference that
provides the direction of the unstressed configuration while δ denotes the variational derivative, [21]. It is clear,
then, that the boundary terms in (2) are simply the generalized velocities (i.e. f B(·) = δpH |·) and forces (i.e.
eB(·) = δqH |·) at the extremities of the beam (i.e. in z = 0 and z = L).

In case of planar motion, e.g. on the x− y plane of the inertial reference E0, and under the hypothesis that the
unstressed configuration of the beam is a line in the x-direction of the body reference Eb, it is easy to verify that
the linearization of (1) results into a transverse wave equation in the displacements in the x-direction, and in the
following PDE:

∂

∂ t

⎛⎜⎝ py
pθ

qy
qθ

⎞⎟⎠ =

⎛⎜⎝ 0 0 ∂z 0
0 0 1 ∂z
∂z −1 0 0
0 ∂z 0 0

⎞⎟⎠
⎛⎜⎜⎝

ρ
−1 py

I−1 pθ

kAGqy
EI qθ

⎞⎟⎟⎠ (4)

in which py and pθ are the translational and rotational momenta of the cross-section, while qy and qθ can be
identified with the shear and the bending respectively. In [11], it has been proved that (4) is the port Hamiltonian
formulation of the Timoshenko beam equation, where ρ is the mass density, E and G are, respectively, the Young’s
and shear moduli, A is the cross-section area, I is the area moment of the cross-section and k is the shear factor
which is used to calculate the transverse shear stiffness of the beam. In the literature, several values for this
coefficient have been proposed. This paper uses the derivation of [3], which corresponds (assuming a rectangular
cross-section) to a value of k = 0.85. If written in terms of the deflection of the beam w(z, t) and of the angle of
rotation of the cross-section ψ(z, t), (4) transforms into, [20]:

ρAẅ− kAG
(
w′ −ψ

)′
= 0

ρIψ̈ − kAG
(
w′ −ψ

)
−EIψ

′′ = 0 (5)

where in the above and later, derivation with respect to time is denoted by a dot and derivation with respect to the
spatial variable z by a prime. Finally, let us also define the quantities bending moment M = −EIψ

′, transverse
shear Q = kAG(w′ −ψ) and radius of gyration r0 =

√
I/A. The feed-forward action for the nonlinear system (1)

will be computed on the basis of its linear approximation (5).

3 General solutions of the Timoshenko beam equation
Let us now consider a beam whose dynamics is described by (5). The usual way to deal with time-varying forcing
actions is to assume the existence of a solution y in the form y(t,z) = Z(z)T (t), then Laplace transform the PDE to
“get rid” of the time derivatives and obtain a ODE in the spatial variable z. Once this equation is solved, its reverse
Laplace transform yields the solution sought. This approach has been adopted in [2] and more recently, in the
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context of feed-forward control design, by [17]. The main limitation of this method is that finding a reverse Laplace
transform of an arbitrary function can be quite difficult and moreover, in case the loading condition changes,
another inverse transform must be calculated. On the other hand, this paper follows the strategy described in
[6, 16] showing that it is possible to obtain formal solutions for forced motions of beams through superposition
of the modes of the associated homogeneous problem (i.e. the problem where all boundary conditions are set to
zero). Generally speaking, it is applicable under the following assumptions:

• The PDE describing the system dynamics is linear;
• The modes obtained by solving the homogeneous problem form a complete set.

This reduces at calculating the forced response of the system to the solution of an eigenvalue problem (a simple,
albeit somewhat tedious task). Moreover, once a given set of modes is known, it is possible to derive quite easily
the system dynamics for any input-output combination corresponding to the boundary conditions chosen. Let us
assume that external forces may act on the system only through the boundary conditions, that will be expressed by
means of the following differential operators:

B1(w,ψ) = w|z=0 or Q|z=0

B2(w,ψ) = ψ|z=0 or M|z=0

B3(w,ψ) = w|z=L or Q|z=L

B4(w,ψ) = ψ|z=L or M|z=L (6)

Once a set of boundary conditions has been chosen among (6) and the initial conditions w(z,0), ẇ(z,0), ψ(z,0)
and ψ̇(z,0) have been assigned, the solution of (5) exists and is unique.

Let us also assume to have solved the associated homogeneous problem, that is, we know the sequence of eigen-
frequencies ωn and the associated modal shapes Wn(z) and Ψn(z) such that

w(z, t) = Wn(z)sin(ωnt) ψ(z, t) = Ψn(z)sin(ωnt) (7)

are steady-state solutions of (5) when Bi, i = 1, . . . ,4 are all set to zero. It is also useful to note that the modal
shapes satisfy an orthogonality relationship.

Let us now tackle the case of forced vibrations, i.e. Bi = fi(t) can be time-varying. The solution of this problem
will be sought in the form:

w(z, t) =
4

∑
i=1

giw(z) fi(t)+ζw(z, t) ψ(z, t) =
4

∑
i=1

giψ(z) fi(t)+ζψ(z, t) (8)

where the functions giw and giψ are determined in such a way to make the boundary conditions on the functions ζw
and ζψ homogeneous. Such boundary conditions can be written as:

Bi(ζw,ζψ) = fi(t)−
4

∑
j=1

Bi(g jw,g jψ) f j(t),

with i = 1, . . . ,4, from which it is clear to see that requiring homogeneity translates into the following constraint
that giw and giψ must satisfy:

Bi(g jw,g jψ) = δi j, i, j = 1, . . . ,4 (9)

where δi j is Kronecker’s delta. By substituting (8) into (5) we obtain an homogeneous problem in ζw and ζψ :
whose solution will be sought in the form:

ζw(z, t) =
∞

∑
n=1

Wn(z)Tn(t) ζψ(z, t) =
∞

∑
n=1

Ψn(z)Tn(t) (10)

where the Tn are the solutions of the following sequence of ODEs:

T̈n +ω
2
n Tn = −

4

∑
i=1

Gin f̈i +
4

∑
i=1

G∗
in fi = Fn(t) (11)

where:

Gin =

∫ L

0

(
giwWn + r2

0giψ Ψn
)

dz∫ L

0

(
W 2

n + r2
0Ψ

2
n

)
dz

(12)

G∗
in =

∫ L

0

{
kG
ρ

(g′′iw −g′iψ)Wn + r2
0

[
E
ρ

g′′iψ +
kG

ρr2
0

(g′iw −giψ)

]
Ψn

}
dz∫ L

0

(
W 2

n + r2
0Ψ

2
n

)
dz

(13)
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The solution of (11) is given by:

Tn(t) =

[
Pn −

4

∑
i=1

Gin fi(0)

]
cos(ωnt)+

1
ωn

[
Vn −

4

∑
i=1

Gin ḟ (0)

]
sin(ωnt)+

1
ωn

∫ t

0
Fn(τ)sin [ωn(t − τ)]dτ (14)

where the coefficients Pn and Vn are determined, respectively, by the initial conditions on position and velocity.
This completes the formal solution of the problem. Note that the problem of finding conditions under which (10)
converges is still open. On the other hand, the following section will show how these results can be used to obtain
an input-output relationship that can be exploited to design a feed-forward controller.

4 Feed-forward action for the rotating Timoshenko beam
Let us now focus on a more specific example, a beam which is constrained to rotate thanks to a pin joint located
at z = 0. Let that point be the origin of an horizontal plane where the motion takes place and let the forcing action
be a torque τq(t) applied to the joint. To use such a model, it is necessary to devise a way to include the rigid-body
mode of rotation into the beam model. One of the simplest way is to define θ as the weighted average angle of
inclination through the origin (to be defined more precisely by (17)) and to assume that any longitudinal elongation
and stress of the beam due to rotation is small and may be neglected.

By denoting with (z,w) the position vector of a point of the center-line of the beam at distance z from the origin,
expressed in the moving frame associated with the beam, and with (w̃, z̃) the corresponding quantities in the fixed
reference frame, it has been proved in [19] that the dynamic model expressed in the fixed frame has the same form
of (5), provided that we set:

w̃ = w+ zθ ˙̃w2 = (ẇ+ zθ̇)2 ≈ ẇ2 + z2
θ̇

2
ψ̃ = ψ +θ ˙̃ψ2 = (ψ̇ + θ̇)2 ≈ ψ̇

2 + θ̇
2 (15)

and the rigid-body mode coupling equation is given by:[∫ L

0
ρI +ρAz2dz

]
︸ ︷︷ ︸

Jθ

θ̈ = τq (16)

where θ is defined by:

θ =

∫ L

0
(ρIψ̃ +ρAzw̃)dz∫ L

0

(
ρI +ρAz2)dz

(17)

It is now possible to work out the solution of the rotating beam problem: let the input signal of our system be
u(t) = τq(t) and the output to be controlled the tip position, that is y(t) = w̃(L, t). The prescribed boundary
conditions are:

B1 = w̃(0) = 0 B2 = M(0) = u(t) B3 = Q(L) = 0 B4 = M(L) = 0 (18)

Once the boundary condition are set, it is possible to try and calculate the giw and giψ . In general, there are multiple
ways to satisfy the conditions (9), but a simple way to determine these functions is to assume they are polynomials
with unknown coefficients that must be derived by imposing (9). In this case, only g2w and g2ψ are needed and a
solution is found to be:

g2w(z) = 0 g2ψ(z) =
z2

2EIL
−

z
EI

+
L

2EI
(19)

The next step deals with the solution of the eigenvalue problem in order to find the numerical values of the resonant
frequencies ωn and the expressions of the modal shapes Wn and Ψn. To avoid dealing with cumbersome coefficients
and expressions, we shall use in the following passages the parametrization of [7], as reported in Table 1. By
assuming that the solution of the homogeneous problem is (7), it is possible to obtain a set of ODEs whose solution
is not identically zero only for some values of the frequency ωn. After a lengthy but straightforward calculation, it
can be shown that such frequencies can be obtained as solutions of the equation:

(α2 +β
2)

[
β

2 − s2

α

cosh(bα)sin(bβ )−
α

2 + s2

β

sinh(bα)cos(bβ )

]
= 0 (20)

if
√

(r2 − s2)2 +4/b2 > (r2 + s2), and

(β 2 −α

′2)

[
s2 −β

2

α
′

cos(bα)sin(bβ )−−
s2 −α

′2

β

sin(bα
′)cos(bβ )

]
= 0 (21)
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Table 1: Variable correspondence for the eigenvalue problem, [7].

variable value

b

√
ρ

EI
L2

ωn

r2 Iρ

ρL2

s2 EI
KL2

α

1
√

2

√
−(r2 + s2)+

√
(r2 − s2)2 +

4
b2

α
′ jα

β

1
√

2

√
(r2 + s2)+

√
(r2 − s2)2 +

4
b2

otherwise. The modal shapes associated to the Timoshenko beam are in the form:

Wn(x) = C1 cosh(bαξ )+C2 sinh(bαξ )+C3 cos(bβξ )+C4 sin(bβξ )

Ψn(x) = C′
1 sinh(bαξ )+C′

2 cosh(bαξ )+C′
3 sin(bβξ )+C′

4 cos(bβξ ) (22)

if
√

(r2 − s2)2 +4/b2 > (r2 + s2), and

Wn(x) = C1 cos(bα
′
ξ )+ jC2 sin(bα

′
ξ )+C3 cos(bβξ )+C4 sin(bβξ )

Ψn(x) = jC′
1 sin(bα

′
ξ )+C′

2 cos(bα
′
ξ )+C′

3 sin(bβξ )+C′
4 cos(bβξ ) (23)

otherwise. Of the eight coefficients, only half are independent: that is, once C1, C2, C3 and C4 are set, the other
four are uniquely determined (and vice versa). The correspondence is given by:

C′
1 =

b
L

α
2 + s2

α

C1 C′
2 =

b
L

α
2 + s2

α

C2 C′
3 = −

b
L

β
2 − s2

β

C3 C′
4 =

b
L

β
2 − s2

β

C4

if
√

(r2 − s2)2 +4/b2 > (r2 + s2), and

C′
1 = − j

b
L

s2 −α
′2

α
′

C1 C′
2 = − j

b
L

s2 −α
′2

α
′

C2 C′
3 = −

b
L

β
2 − s2

β

C3 C′
4 =

b
L

β
2 − s2

β

C4

otherwise. The actual value of the coefficients appearing in (22), (23) is determined by the mode number and the
boundary conditions and in any case is defined up to a multiplicative factor. If we set C1 to be this multiplicative
factor, their value is found to be:

C4 =
C1

β χ
β
−αχα

[
β (β 2 − s2)cosh(bα)cos(bβ )+β (α2 + s2)+α(α2 + s2)sinh(bα)sin(bβ )

]
C3 = −C1

C2 =
α cos(bβ )C4 +[α sin(bβ )−β sinh(bα)]C1

β cosh(bα)

if
√

(r2 − s2)2 +4/b2 > (r2 + s2), and

C4 =
C1

α
′
χ
′
α

+β χ
′
β

[
β (β 2 − s2)cos(bα

′)cos(bβ )+β (s2 −α

′2)−α
′(s2 −α

′2)sin(bα
′)sin(bβ )]

]
C3 = −C1

C2 = j
α
′ cos(bβ )C4 +[α ′ sin(bβ )−β sin(bα

′)]C1

β cosh(bα
′)

otherwise, where:

χα = (α2 + s2)sinh(bα)cos(bβ ) χ
β

= (β 2 − s2)cosh(bα)sin(bβ )

χ
′
α

= (s2 −α

′2)sin(bα
′)cos(bβ ) χ

′
β

= (β 2 − s2)cos(bα
′)sin(bβ )
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(a) Input signal u(t).
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(b) The beam response y(t).

Figure 2: Comparison between the response provided by G̃(s) and the FE models.

Now, by combining (8), (10) and (14) and by assuming zero initial conditions and that at t = 0 no forcing action is
present, in light of (15) and (18), a particularly simple expression is obtained for y(t) = w̃(L, t):

y(t) = Lθ +
∞

∑
n=1

Wn(L)

ωn

∫ t

0
(−G2nü(τ)+G∗

2nu(τ))sin[ωn(t − τ)]dτ (24)

By recalling (16) and applying the Laplace transform to the whole expression, we finally get:

Y (s) =

{
L

Jθ s2 +
∞

∑
n=1

Wn(L)
G∗

2n −G2ns2

s2 +ω
2
n

}
︸ ︷︷ ︸

G(s)

U(s) (25)

where G(s) is the expression of the infinite-dimensional dynamics that links y(t) to u(t). It not straightforward
to prove the convergence of the series but, in practice, any implementation will truncate the number of terms in
the series to Nm, and then perform the dynamic inversion (that is, calculate G−1(s)) on this finite-dimensional
approximation G̃(s). If the control action is such that bandwidth of the input stays well below ωNm , however,
we can treat this G̃(s) as analytically exact up to the limits of the infinite-dimensional models (Euler-Bernoulli or
Timoshenko) used to derive it.

The accuracy of the approximated solution obtained by truncating the terms in (25) to Nm has been analyzed with
reference to a beam with unitary length, with E = 200e06, G = 75e06 and ρ = 7800, and with square cross-section
of side 0.01m. A model of this rotating beam was developed using ABAQUS©, a software package used for
finite-element (FE) analysis The beam geometry was meshed using 100 B22 elements, i.e. 3-node planar beam
elements with quadratic interpolation derived using Timoshenko’s theory. The number of the elements used is
overwhelmingly more than the strict necessary, but the objective here is to obtain a virtual prototype of the beam,
that can be used to validate the finite-dimensional approximation G̃(s).

The finite element model so obtained underwent a three step analysis: a first step of frequency extraction in order
to make sure that the natural frequencies of the beam matched those obtained by the frequency equations (20)
and (21), followed by two steps of dynamic simulation using the implicit solver ABAQUS/Standard to observe the
beam response to a specified control input (see Fig. 2(a)). The dynamic analysis was performed first by suppressing
nonlinear effects due to large deformations in order to simulate exactly a Timoshenko beam model (which is based
on a linearization of the equation of the elasticity), and then by including them. At the same time, the transfer
function of the beam (25) was approximated by setting Nm = 4 and the response under the same control input was
computed. A comparison of the results obtained is presented in Fig. 2(b). It can be seen that G̃(s) and the linearized
FE model yield practically identical responses, as expected; the behavior of the full non-linear model is instead
slightly different, and this is due both to the limitation of the Timoshenko model itself and to the approximations
(15) that were used to introduce the rigid body mode.

5 Control design and simulation results
In this section, a possible solution for the synthesis of the feed-forward control action that takes advantage from
the formal solution of the equation of motions computed in the previous section is presented, together with some
simulation results that prove the practical validity of the approach. The design of the control unit relies on the
inversion of the finite-dimensional approximation (25). This step becomes more complicated as the transfer func-
tion so obtained is non-minimum phase. This is a common characteristic of the beam models that assume (18) as
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Ns(z)
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Figure 3: The control setup.

boundary conditions. Generally speaking, this means that the compensator will be only an approximation of the
inverse dynamics, that would be otherwise unstable.

It is outside the scope of this paper to review all the techniques investigated in the literature to compute a non-
causal inverse of a linear system and so we shall focus on a specific solution proposed by [13] which is based on
the so-called steering along zeros control (SAZC) strategy by [14]. This method assumes the plant to be controlled
to be a discrete-time system, but this is not particularly restrictive. Since most implementations of control units
are digital, this simply means approaching the synthesis problem by directly working on a discretized model of the
system rather than designing a continuous-time regulator that must be discretized later.

Let us denote by Gd(z) = N(z)/D(z) the discrete-time model of the system, obtained in this example by using
a matched pole/zero discretization method with sampling time of 0.005s. Furthermore, let N(z) = Nu(z)Ns(z),
where Nu(z) is made up by the unstable zeros of Gd(z), whereas Ns(z) contains the stable ones. Note that this
is equivalent to require that Gd(z) has no zeros on the unit circle. This is a rather strong assumption that will be
discussed later.

The control scheme is shown in Fig. 3. As it can be seen, the feed-forward action is decomposed into two contri-
butions: the first one, A(z)/Ns(z), is the standard inversion of the minimum-phase dynamics whereas the second
one, Ppre(z)/zkpre−1, is designed to steer the state of the system (for t < t0, the instant when the reference motion
starts) towards a suitable initial state which guarantees perfect tracking with bounded control signals. In practice,
only an approximate inverse can be computed as the exact solution of this problem would require infinite pre-action
time, so the convolution of unstable zeros in the reverse time direction is truncated after a finite number of samples
kpre. The delay z−d takes into account the relative degree d of Gd(z) and the feed-back regulator Rd(z) is necessary
to provide the necessary robustness to the system in case of external disturbances and not perfect knowledge of the
parameters of the link, which is always the case in practical applications.

The unknown polynomials in Fig. 3 can be determined, once kpre has been chosen, by solving two Diophantine
equations:

A(z)Nu(z)+B(z)Ns(z) = D(z)

B0(z)z
kpre + zPpre(z)N

u(z) = B(z) (26)

Note that (26) are correct if N(z) is monic, otherwise an additional gain must be incorporated in the controller.

Even if this kind of controller is quite easy to design, its working principle requires the zero-dynamics to be
asymptotically converging to zero, either in forward or reverse time. There is nothing, however, preventing Gd(z)
to have zeros on the unit circle and, in fact, the transfer function of this example exhibits this feature. A simple yet
effective way around this problem is to consider a “perturbed” output ŷ(k), defined as:

ŷ(k) = Gd(z)u(k)+ εu(k) =
N(z)+ εD(z)

D(z)︸ ︷︷ ︸
Ĝd(z)

(27)

where ε is assumed to be small enough such that ŷ(k) ≈ y(k), yet sufficient to move the zeros of the perturbed
transfer function outside the unit circle. If this (weaker) assumption is satisfied, the method described above may
still be applied to Ĝd(z), and the resulting controller used with Gd(z). Actually, by using a more general feed-
through compensator and putting ŷ in negative feedback with the control input, this strategy could also be used to
derive a stabilizing controller for the system, as discussed in [5].

It is arguable that the control problem examined until now is somewhat unrealistic, as pure open-loop control
of such a system would be possible in simulation only. Moreover, as it turned out, even then the performances
could not be up to the expectations, if “enough pathologies” arise. A more complete application would of course
include also the feed-back controller Rd(z) (see Fig. 3), in order to correct the approximations of the feed-forward
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Figure 4: Tracking performances with feed-back and feed-forward units.

action and provide robustness to the system. A final simulation has therefore been made by including a digital
PD controller with low gains. Using an proportional gain of 0.55 and a derivative gain of 0.001, the results are
plotted in Fig. 4(a) and 4(b). Now the feed-back action intervenes by eliminating the drift that could be seen in the
previous simulation and reduces the overall magnitude of the tracking error.

6 Conclusions
In this paper, a procedure to determine a feed-forward controller for a nonlinear flexible link model based on
its linearization around the unstressed configurations which turns out to be the Timoshenko beam model. Its
key feature is to bring a potentially difficult problem, such as determining an analytic input-output relationship in
presence of time-varying boundary conditions and distributed forcing actions, within the well-known framework of
modal analysis and polynomial transfer functions. The analytic solution in turn provides a complete understanding
of the assumptions that can be made without neglecting relevant dynamics and enables the re-use of a variety
of techniques coming from linear system theory on the resulting approximate model. A simple, yet significant
example of the use of such method is presented in the second half of the paper, together with a numerical example
and simulation results.
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