
STABILITY ANALYSIS OF PIEZOELASTIC STRUCTURES
FOR ROBUST VIBRATION CONTROL

T. Rittenschober
Profactor Production Research GmbH, Austria

Corresponding author: T. Rittenschober,
Profactor Production Research GmbH, Smart and Adaptive Structures Group,

4407 Steyr/Gleink, Im Stadtgut A2, Austria, thomas.rittenschober@profactor.at

Abstract. The design of an observer for self sensing actuation of functional materials requires acurate
modeling of the piezoelastic structure under investigation. Under the assumption of linear piezoelas-
ticity and Kirchhoff plate theory, the resulting mathematical structure facilitates controller design for
harmonic disturbance suppression. Stability issues of the infinite dimensional model are resolved in
a straightforward manner by application of results on positive real transfer functions in conjunction
with the small gain theorem. If the disturbance frequency is unknown, the proposed controller can
be extended by an ordinary differential equation for the unknown frequency which is derived using a
stability argument involving the Hamilton-Jacobi inequality.

1 Introduction
Compensating for harmonic vibrations induced by rotating machinery and other periodic disturbances is a common
problem in the industry and robust controller solutions accompanied by self sensing actuation for lightweight
mechanical constructions, are essential to the breakthrough of active technologies in industrial applications. In fact,
self sensing actuation of functional materials enables collocation of actuator and sensor. In the case of piezoelectric
actuators, self sensing requires a robust separation of the time derivative of the actuation voltage from the measured
electric current in order to obtain a signal which is proportional to the strain rate integrated over the piezoelectric
patch area. Due to the unfavorable ratio of these two signals, the design of an observer for the electric current
due to the direct piezoelectric effect seems most appropriate. The design of observers relies on accurate modelling
of the underlying piezoelastic structure which in our case is chosen to be a rectangular plate equipped with two
piezoelectric actuators and two opposite edges either clamped or free. When designing a controller for the purpose
of suppressing harmonic vibrations, i.e. we require the regulated output to tend to zero as time goes to infinity,
the special mathematical structure of the model tremendously facilitates controller synthesis and resolves stability
issues of the infinite-dimensional model in a straightforward manner by applying results on positive real transfer
functions in conjunction with the small gain theorem. This result has been reported on a previous occasion, see
[7]. In many cases, however, the disturbance frequency is unknown. In this case, the proposed controller can be
extended by a nonlinear ordinary differential equation for the unknown frequency where the proof of stability of
the infinite-dimensional closed loop involves the Hamilton Jacobi inequality together with the small gain theorem.

2 The Mathematical Model
The plate structure under investigation along with its geometric properties is depicted in figure 1. Geometric
parameters and material properties are given by a = 0.45m, b = 0.35m, c = 0.1m, d = 0.1525m, e = 0.045m,
f = 0.01m, hb (thickness of plate) = 0.001m, hp (thickness of patch) = 0.001m, k = 0.05m, l = 0.55m, ρ (mass
density of plate) = 7500kg/m3, Eb (Young’s modulus plate)= 2e11N/m2, Ep (Young’s modulus patch)= 6e10N/m2,
νb (Poisson’s ratio of plate) = 0.33, νp (Poisson’s ratio of patch) = 0.25, G113 (piezoel. coupling const.) = 6.62C/m2

and F33 (relative permittivity) = 1.21e-8F/m.

Under the assumption of linearized piezoelasticity and the strain displacement relations as introduced by Kirch-
hoff, the piezoelastic plate-like structure under consideration may be modelled according to the partial differential
equation, see [2],
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where the coordinate t represents time, X ,Y,Z are local coordinates for the body B ⊆R3, w = w(t,X ,Y ) is the
transverse displacement of the plate’s neutral fibre, μ = ρhb is the mass area density of the respective material, D̄
is the flexural rigidity of the plate and computes as D̄ = Ebh3

b/
(
12

(
1−ν2

b
))

. We denote by Eb and hb Young’s
modulus and the thickness of the support structure, respectively, and νb is Poisson’s ratio. The associated material
and geometric properties of the piezoelectric layer are denoted by a subscript p. We shall note at this stage that the
structural influence due to added mass and stiffness from the piezoelectric material will be neglected. Assuming a
typical property of transversely isotropic piezoelectric material that the coupling constants G113 and G223 appearing
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Figure 1: Geometric configuration of the piezoelastic structure.

in the constitutive equations [6]

σ = Cε −GE , D = Gε +FE (2)

are identical, the constant c then computes as c = G113hp (hp +2h)/4 and, hence, incorporates piezoelectric and
geometric properties. The constant h describes the distance between the neutral fibre and the interface between
the piezoelectric layer and the support structure. We denote by σ , ε, C, F, G, E and D in (2) the stress, strain,
elasticity, relative permittivity, coupling, electric field and electric flux density tensors, respectively. U = U (t) is
the electric potential at the upper electrode of the piezoelectric layer, the shape function λ = λ (X ,Y ) describes
the weighted spatial distribution of the electric potential U at the upper electrode and B = B(X ,Y ) is the spatial
distribution of the body force acting on the structure. The tensorial components appearing in the constitutive
equations (2) are, in general, functions of the spatial coordinates and will be set piecewise constant in our case.
The solution technique applied to the partial differential equation from (1) under the appropriate kinematic and
dynamic boundary and initial conditions makes use of separation of variables, i.e.

w(t,X ,Y ) =
∞

∑
i=1

∞

∑
j=1

qi j (t)φi j (X ,Y ) ,

the orthogonality property of the eigenfunctions φi j and the Laplace transform, see [1]. The transfer functions of
the system Ga

(
s,X1,X2) due to piezoelectric actuation may be then written as
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where D denotes the corresponding domain of integration, Ω = dXdY is the corresponding volume form and
Pa,i j are the modal gains of mode i j of the transfer function due to piezoelectric actuation. We use φi j (X ,Y ) =

φ 1
i (X)φ 2

j (Y ) where φ 1
i (X) and φ 2

j (Y ) are chosen as the fundamental mode shapes of beams having the boundary
conditions of the plate [5]. The natural frequencies ωi j for the C-F-C-F configuration are computed according to
[5] and ξi j is the damping ratio associated with mode mode φi j. The type of damping involved is referred to as
Rayleigh damping which is assumed to be proportional to the distributed mass and stiffness of the structure. Due
to the non-continuity and, hence, non-differentiability of the chosen shape function λ at the edges of the patches,
we have to take a closer look at the modal gains Pa,i j. The relation∫

D

φi j

(
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is derived from integration by parts and only holds if the corresponding boundary integral vanishes. Alternatively,
one may divide the domain of the plate into subdomains of constant electric potential and connect the subdomains
via the governing kinematic and dynamic boundary conditions. In this case, the governing pde (1) of the subdo-
main becomes homogeneous with respect to piezoelectric actuation and the piezoelectric material only acts as a
distributed torque at the boundary.

3 The Self Sensing Concept
Considering the linear constitutive relations from (2), respecting conservation of charge, i.e.

∂
∂X

D1 +
∂

∂Y
D2 +

∂
∂Z

D3 = 0

which reduces to ∂
∂Z D3 = 0 due to the simplification ∂

∂X Φ = ∂
∂Y Φ = 0 on the electrical potential Φ and G111 =

G112 = 0 of typical piezoelectric material, by Kirchhoff’s assumptions on the relations of strain and displacement
and G123 = G213 = 0, we get

D3 = −G113Z
∂ 2

∂X2 w−G223Z
∂ 2

∂Y 2 w+F33E3 .

Accounting for G113 = G223, the charge Q at the electrode of the piezoelectric actuator computes as

Q =
∫
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The constant Cp = F33e2/hp is the capacitance of the piezoelectric patch.

Alternatively, if the electric current I = Iindirect + Idirect = d
dt Q, i.e.
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d
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is at our disposal, we only need to robustly separate the time derivative of actuation voltage from it in order to
obtain a signal which is proportional to the strain rate integrated over the patch area. Due to the unfavorable ratio
of these two signals, the design of an observer for the direct part of the electric current seems most appropriate.
The corresponding transfer function of such a model is given by

Ḡa (s) =
Î (s)
Û (s)

=
Cps

s2

ω2
C

+2ξC
s

ωC
+1

+
∞

∑
i=1

∞

∑
j=1

2hpP2
a,i js

s2

ω2
i j

+2ξi j
s

ωi j
+1

. (4)

The state space representation is written as
d
dt xm,i j = Am,i jxm,i j +bmu , i, j = 1, . . . ,∞

d
dt xC = ACxC +bCu

ym,i j = cT
m,i jxm,i j , i, j = 1, . . . ,∞

yC = cT
CxC

y = yC +∑∞
i=1 ∑∞

j=1 ym,i j
e = ∑∞

i=1 ∑∞
j=1 ym,i j

(5)

where

Am,i j =

(
0 1

−ω2
i j −2ξi jωi j

)
, AC =

(
0 1

−ω2
C −2ξCωC

)
,

bm = bC =

(
0
1

)
, cm,i j =

(
0

P̄a,i jω2
i j

)
, cC =

(
0

Cpω2
C

)
with P̄a,i j = 2hpP2

a,i j. We denote by u ∈ R the driving voltage and by y ∈ R the measured current, i.e. the electric
current I. The regulated output e ∈ R is the sum of the direct electric currents ym,i j ∈ R due to each mode i j,
Am,i j ∈ R2×2 and bm,cm,i j ∈ R2 model the direct piezoelectric effect with state vector xm,i j ∈ R2. The objects
AC ∈R2×2 and bC,cC ∈R2 are the dynamic matrix and the input describing the capacitive effect of the piezoelectric
actuator with state vector xC ∈ R2. The indirect electric current is denoted by yC ∈ R. The model (4) can also be
descibed by its PCHD representation [8].
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In equation (4), we have extended the dynamics due to the indirect piezoelectric effect by taking resistance Rp and
inductance Lp of the piezoelectric patch into account, where

ωC =
1√

LpCp
, ξC =

1
2

Rp

√
Cp

Lp
.

The corresponding equivalent circuit diagram for (4) is depicted in figure 2 describing the indirect and direct
piezoelectric effect by means of a parallel conncetion of an RLC oscillator and an infinite series of damped spring
mass oscillators, respectively.

Figure 2: Equivalent circuit diaram for transfer function (4) describing the additive nature of the indirect and direct
piezoelectric effect.

4 Stability in Robust Vibration Control
A preliminary step in designing a feedback controller for vibration suppression requires the estimation of the cur-
rent due to the direct piezoelectric effect. Since the system (4) is infinite dimensional, one cannot construct a
realizable observer for (4), but one can construct a finite dimensional approximation [8]. The state space represen-
tation of the Kalman filter is given by

d
dt

x̂m,i j = Am,i j x̂m,i j − lm,i j
k

∑
I=1

l

∑
J=1

cT
m,IJ x̂m,IJ − lm,i jcT

C x̂C +bmu+ lm,i jy

d
dt

x̂C =
(
AC − lCcT

C
)

x̂C − lC
k

∑
I=1

l

∑
J=1

cT
m,IJ x̂m,IJ +bCu+ lCy

ê =
k

∑
i=1

l

∑
j=1

cT
m,i j x̂m,i j

where L =
(

lT
m,11, . . . , lT

m,kl , l
T
C

)T
with lm,kl , lC ∈ R2 denotes the observer gain, x̂m,i j, x̂C ∈ R2, i = 1, . . . ,k and j =

1, . . . , l.

Closing the loop is achieved by a controller for the robust suppression of harmonic vibrations where the underlying
theory is described in [4] and [8].

The proposed controller for the robust suppression of harmonic vibrations exhibits the structure
d
dt ξ1 = Φξ1 +Θê
u1 = Γξ1 +u2

(6)

and the memoryless stabilizer

u2 = K2ê , K2 > 0. (7)

with the state ξ1 ∈ R2, Φ ∈ R2×2, Θ1 ∈ R2×1, Γ ∈ R1×2, the outputs u1,u2 ∈ R and

Φ =

(
0 1

−ω2
d 0

)
, Θ1 =

(
0
K

)
, Γ =

(
0 1

)
, (8)

The controller is driven by the observed direct part of the electric current ê.

The proof of stability for the infinite dimensional piezoelastic structure (4) together with the feedback configuration
consisting of the Kalman filter for the finite dimensional part of model (4), Ḡa, f in,

Ḡa, f in (s) =
Î f in (s)
Û (s)

= Ḡa,ind + Ḡa,dir
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=
Cps

s2

ω2
C

+2ξC
s

ωC
+1

+
k

∑
i=1

l

∑
j=1

2hpP2
a,i js

s2

ω2
i j

+2ξi j
s

ωi j
+1

.

and the controller (6) is described in [7]. In brief, the finite gain L2 stability of the finite dimensional part of
the closed loop is shown using a passivity based approach and the proof of I/O stability of the corresponding
infinite-dimensional closed loop involves the small gain theorem with the infinite-dimensional part Ḡa,inf of (4)

Ḡa,inf (s) =
Îinf (s)
Û (s)

=
∞

∑
i=k+1

∞

∑
j=l+1

2hpP2
a,i js

s2

ω2
i j

+2ξi j
s

ωi j
+1

which we pull out using the linear fractional transformation(
Û
ê

)
=

(
M11 M12
M21 M22

)(
Îinf
d̂

)
where d is the disturbance acting on the measured output I.

If the disturbance frequency is unknown, we may be well advised to extend the proposed controller by some sort
of adaptive control. The governing nonlinear ordinary differential equation for the unknown frequency ωd will be
derived next using a stability argument. The full control concept is depicted in figure 3.

Figure 3: Control loop showing the functional blocks and signals involved in the robust suppression of (un)known
harmonic disturbances.

We first observe that a necessary and sufficient condition for the L2 gain of M11 to be less than or equal to γ2 is the
existence of a positive semidefinite solution P of the Riccati equation

PAM +AT
MP+

1
γ2

2
PbMbT

MP+ cMcT
M = 0 (9)

which also satisfies the Hamilton-Jacobi equation

xT PAMx+
1

2γ2
2

xT PbMbT
MPx+

1
2

xT cMcT
Mx = 0 , (10)
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see [3], where we have used

M11 =

(
AM bM
cT

M 0

)
with AM ∈ R2(kl+2)+2×2(kl+2)+2, bM ∈ R2(kl+2)+2 and cM ∈ R2(kl+2)+2. Let ε denote the difference between the
squared nominal and estimated disturbance frequency, i.e. ε = ω̂2

d −ω2
d . Extending M11 by the frequency estimator,

we get the affine input system
d
dt x̄ = f (x̄)+gÎinf
U = h(x̄) (11)

where x̄ = (x,ε), x = (xm,11, . . . ,xm,kl ,xC, x̂m,11, . . . , x̂m,kl , x̂C,ξ1) with x̄ ∈ R2(kl+2)+3 and

f (x̄) =

(
AMx+ εBε x

k (x̄)

)
, g =

(
bM
0

)
, h(x̄) = cT

Mx (12)

with f ,g,h ∈ R2(kl+2)+3 and

Bε =

(
0 0
0 Ĩ

)
, Ĩ =

(
0 0
−1 0

)
.

Now, the extended system (11) is finite gain L2 stable with L2 gain less than or equal to γ4 if there is a continuously
differentiable, positive semidefinite function V that satisfies the Hamilton-Jacobi inequality

∂V
∂ x̄

f +
1

2γ2
4

∂V
∂ x̄

ggT
(

∂V
∂ x̄

)T
+

1
2

hT h ≤ 0 , (13)

see [3]. Let us choose V to be

V (x̄) =
1
2

xT Px+
1

2γ3
ε2 (14)

with P being the solution of the Riccati equation (9) and γ3 > 0. Plugging (12) and (14) into (13), we arrive at

xT PAMx+1/(2γ2
4 )xT PbMbT

MPx+
1
2

xT cMcT
Mx+ ε

(
xT PBε x+ γ−1

3 k (x̄)
)
≤ 0.

Setting γ4 = γ2 and considering the Hamilton-Jacobi equality (10), we get

ε
(
xT PBε x+ γ−1

3 k (x̄)
)
≤ 0. (15)

Since expression (15) is not necessarily sign definite, we choose

d
dt

ε == k (x̄) = −γ3xT PBε x = −γ3xT Pξ 1
1 , γ3 > 0

to achieve equality in (13) and (15), respectively. Hence, system (11) is finite gain L2 stable with L2 gain γ2.
The stability of the infinite-dimensional closed loop can be proven by reinvoking the small gain theorem, i.e. the
stability of the closed loop which now incorporates the nonlinear frequency estimator is guaranteed if and only if
γ1γ2 < 1 where γ1,γ2 are the H∞ norms of Ḡa,inf and the affine input system (11), respectively.

It is clear that we cannot arbitrarily choose the entries in P, since we have to respect the the positive semidefinite-
ness of P and we may only use the observer and regulator states

(
x̂m,11, . . . , x̂m,kl , x̂C,ξ1

)
. The symmetric matrix

P

P =

(
A B
BT C

)
is positive semidefinite if and only if A > 0 and its Schur complement C−BT A−1B in P is positive semidefinite.
Every positive definite matrix A is invertible and its inverse A−1 is also positive definite, hence, BT A−1B > 0. Now,
the choice

P =

(
P11 P12
PT

12 p22

)
with P11 ∈R2(kl+2)+1×2(kl+2)+1, P12 ∈R2(kl+2)+1, p22 ∈R, P11 = PT

11 > 0, PT
12 = [0, . . . ,0,cT

m,11, . . . ,cT
m,kl ,0, . . . ,0],

p22 ≥ PT
12P−1

11 P12 guarantees the positive semidefiniteness of P and immediately leads to the update law

d
dt

ε = −γ3ξ 1
1
(
ê+ p22ξ 2

1
)

, γ3 > 0 (16)

which only uses the observed direct current ê and the regulator state ξ1 of (6).
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5 Measurement Results
The actual implementation of the proposed observer and control algorithms are carried out on dSpace RTI 1104
rapid prototyping hardware. The power amplification for the piezoelectric patches is supplied by a Trek PZD 350
dual channel piezo driver which is equipped with a current monitor. The piezoelectric actuator at the boundary in-
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Figure 4: Time signals for direct part of the measured current, indirect part of measured current, controller output,
actually measured current and estimated disturbance frequency when plate structure is excited at ωd = 2π259 rad/s with
frequency estimator initialized at ωd (0) = 2π262.6 rad/s.

jects a harmonic disturbance at ωd = 2π259 rad/s.For the case of an unknown harmonic disturbance, the controller
(6) is extended by a frequency estimator. The corresponding sensor and control signals are shown and in figure 4
with control switched on after five seconds. The update law is initialized with a value of ωd (0) = 2π262.6 rad/s
and the estimated frequency progressively converges to the actual disturbance frequency of 2π259 rad/s.

6 Summary
This contribution was concerned with compensation of harmonic vibrations in mechanical structures using the self
sensing capability of piezoelectric actuators. In order to use self sensing for vibration control, an observer for
the electric current due to the direct piezoelectric effect has been proposed. The special mathematical structure
of the underlying piezoelastic structure facilitates controller synthesis for harmonic disturbance suppression and
resolves stability issues of the infinite dimensional model by applying results on positive real transfer functions in
conjunction with the small gain theorem. If the disturbance frequency is unknown, the proposed controller can be
extended by an update law for the unknown frequency which has been derived using a stability argument involving
the Hamilton-Jacobi inequality.
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